1
|
Rezaie M, Nemati F, Firoozbakhtian A, Tabesh H, Ganjali MR, Hosseini M. Three‐Dimensional Graphene Network Decorated with Bimetallic Cerium/Copper Oxide Nanoparticles for Non‐Enzymatic Diagnosis of Phenylketonuria. ChemistrySelect 2022. [DOI: 10.1002/slct.202203123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Maryam Rezaie
- Nanobiosensors Lab Department of Life Science Engineering Faculty of New Sciences & Technologies University of Tehran Tehran 1439817435 Iran
| | - Fatemeh Nemati
- Nanobiosensors Lab Department of Life Science Engineering Faculty of New Sciences & Technologies University of Tehran Tehran 1439817435 Iran
| | - Ali Firoozbakhtian
- Nanobiosensors Lab Department of Life Science Engineering Faculty of New Sciences & Technologies University of Tehran Tehran 1439817435 Iran
| | - Hadi Tabesh
- Department of Life Science Engineering Faculty of New Sciences & Technologies University of Tehran Tehran Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry School of Chemistry College of Science University of Tehran Tehran 1439817435 Iran
| | - Morteza Hosseini
- Nanobiosensors Lab Department of Life Science Engineering Faculty of New Sciences & Technologies University of Tehran Tehran 1439817435 Iran
| |
Collapse
|
2
|
Rezaie M, Nemati F, Firoozbakhtian A, Tabesh H, Hosseini M. Three-dimensional Graphene Network Decorated with Bimetallic Cerium/Copper Oxide Nanoparticles for Non-enzymatic Diagnosis of Phenylketonuria. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Yu D, Li Z, Zhou X, Wang W, Wang L, Liu T, Du J. Study on the modification of magnetic graphene oxide and the effect of immobilized lipase. Int J Biol Macromol 2022; 216:498-509. [DOI: 10.1016/j.ijbiomac.2022.06.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 12/16/2022]
|
4
|
Broli N, Vasjari M, Vallja L, Duka S, Shehu A, Cenolli S. Electrochemical determination of atenolol and propranolol using a carbon paste sensor modified with natural ilmenite. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
In this study, a simple voltammetric method was reported for independent determination of propranolol (PROP) and atenolol (ATN) in pharmaceutical tablets using carbon paste electrode modified with natural Ilmenite (CPE-I). The analytical performance of the modified sensor was evaluated using the square wave voltammetry and cyclic voltammetry for determination of both β(beta) blockers in 0.1 mol L−1 of sulfuric acid solution (H2SO4). The signal obtained with modified carbon paste electrode in 0.1 mol L−1 of H2SO4 showed a good electrocatalytic activity toward the oxidations of PROP and ATN compared with the bare one. The enhanced oxidation peak current response can be attributed to the catalytic effect of the ilmenite nanomaterial incorporated into the carbon paste electrode. Under optimal condition, good linear calibration curves were obtained ranging from 0.20 to 8.9 mmol L−1 for PROP and 2.0 to 9.9 µmol L−1 for ATN, with detection limits of 80 and 0.31 µmol L−1, respectively. The CPE-I sensor had good repeatability and reproducibility (RSD ≤ 3.2%) and high sensitivity for the detection of both ATN and PROP. The proposed sensor was applied for detection of these drugs in pharmaceutical tablets. The obtained results indicate that the voltammetric CPE-I sensor could be an alternative method for the routine quality control of the β blockers in complex matrices.
Collapse
Affiliation(s)
- Nevila Broli
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana , Tirana , Albania
| | - Majlinda Vasjari
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana , Tirana , Albania
| | - Loreta Vallja
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana , Tirana , Albania
| | - Sonila Duka
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana , Tirana , Albania
| | - Alma Shehu
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana , Tirana , Albania
| | - Sadik Cenolli
- Department of Chemistry, Faculty of Natural Sciences, University of Tirana , Tirana , Albania
| |
Collapse
|
5
|
Alışık F, Burç M, Titretir Duran S, Güngör Ö, Cengiz MA, Köytepe S. Development of Gum-Arabic-based polyurethane membrane-modified electrodes as voltammetric sensor for the detection of phenylalanine. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03605-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Li F, Huang Y, Huang K, Lin J, Huang P. Functional Magnetic Graphene Composites for Biosensing. Int J Mol Sci 2020; 21:E390. [PMID: 31936264 PMCID: PMC7013569 DOI: 10.3390/ijms21020390] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/13/2019] [Accepted: 12/26/2019] [Indexed: 12/14/2022] Open
Abstract
Magnetic graphene composites (MGCs), which are composed of magnetic nanoparticles with graphene or its derivatives, played an important role in sensors development. Due to the enhanced electronic properties and the synergistic effect of magnetic nanomaterials and graphene, MGCs could be used to realize more efficient sensors such as chemical, biological, and electronic sensors, compared to their single component alone. In this review, we first reviewed the various routes for MGCs preparation. Then, sensors based on MGCs were discussed in different groups, including optical sensors, electrochemical sensors, and others. At the end of the paper, the challenges and opportunities for MGCs in sensors implementation are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China; (F.L.); (Y.H.); (K.H.); (J.L.)
| |
Collapse
|
7
|
Shokrollahi A, Zamani R. Synthesis of Fe3O4@SiO2 magnetic nanoparticle, functionalized with 2,6-pyridine dicarboxylic acid. INORG NANO-MET CHEM 2019. [DOI: 10.1080/24701556.2019.1574819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Xu X, Ji D, Zhang Y, Gao X, Xu P, Li X, Liu CC, Wen W. Detection of Phenylketonuria Markers Using a ZIF-67 Encapsulated PtPd Alloy Nanoparticle (PtPd@ZIF-67)-Based Disposable Electrochemical Microsensor. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20734-20742. [PMID: 31094505 DOI: 10.1021/acsami.9b05431] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phenylketonuria (PKU) is a common disease in congenital disorder of amino acid metabolism, which can lead to intellectual disability, seizures, behavioral problems, and mental disorders. We report herein a facile method to screen for PKU by the measurements of its metabolites (markers). In this work, a disposable electrochemical microsensor modified with a ZIF (zeolitic imidazolate framework)-based nanocomposite is constructed, in which ZIF-67 crystals are encapsulated with PtPd alloy nanoparticles (NPs) forming the nanocomposite (PtPd@ZIF-67). According to electrochemical measurements, the PtPd@ZIF-67-modified microsensor shows good responses and selectivity to phenylpyruvic acid and phenylacetic acid, while almost no response toward other amino acid analogues is observed. Here, a new sensing mechanism based on the acylation reaction between the imidazole linker in ZIF-67 and carboxyl in PKU markers has been proposed and verified through the Fourier-transform infrared spectroscopy study. Moreover, the encapsulated PtPd NPs elevate the electron transfer capability of the PtPd@ZIF-67-modified microsensor and further improve the electrochemical sensing performance. Finally, we demonstrate that the developed PtPd@ZIF-67-modified microsensor has the possibility to sensing of PKU markers with high response and good specificity and may be extended to exploit the point-of-care rapid PKU screening.
Collapse
Affiliation(s)
- Xinyue Xu
- Materials Genome Institute , Shanghai University , Shanghai 200444 , China
| | - Dongqing Ji
- Materials Genome Institute , Shanghai University , Shanghai 200444 , China
| | - Yuan Zhang
- Materials Genome Institute , Shanghai University , Shanghai 200444 , China
| | - Xinghua Gao
- Materials Genome Institute , Shanghai University , Shanghai 200444 , China
| | - Pengcheng Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Chung-Chiun Liu
- Department of Chemical Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Weijia Wen
- Materials Genome Institute , Shanghai University , Shanghai 200444 , China
| |
Collapse
|
9
|
Niu X, Yang X, Mo Z, Guo R, Liu N, Zhao P, Liu Z. Perylene-functionalized graphene sheets modified with β-cyclodextrin for the voltammetric discrimination of phenylalanine enantiomers. Bioelectrochemistry 2019; 129:189-198. [PMID: 31195330 DOI: 10.1016/j.bioelechem.2019.05.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022]
Abstract
A facile approach was reported to synthesize β-cyclodextrin functionalized graphene that is bridged by 3,4,9,10-perylene tetracarboxylic acid (rGO-PTCA-CD) via a chemical route that involves the functionalization of rGO with PTCA followed by covalently cross-linking NH2-β-CD. The as-prepared rGO-PTCA-CD was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemical methods. The working electrodes were thoroughly studied for the cyclic voltammetry by using [Fe(CN)6]4-/3- as redox probe and using ferrocene as an internal standard. Furthermore, rGO-PTCA-CD was successfully applied to the recognition of phenylalanine enantiomers. The host-guest inclusion interaction between rGO-PTCA-CD and the phenylalanine enantiomers was investigated by differential pulse voltammetry with Fc used as a competitor. The recognition result showed that the rGO-PTCA-CD-modified glassy carbon electrode exhibited higher chiral recognition capability for L-Phe than for D-Phe with an enantioselectivity coefficient of 2.07. The proposed modified electrode had a limit of detection of 0.08 nM and 0.2 nM (S/N = 3) for L-Phe and D-Phe, respectively, with a linear response range of 0.01 mM to 5 mM, which was ascribed to the synergy of the rGO-PTCA (e.g., its excellent electrochemical performance) and β-CD (e.g., the hydrophobic inner cavity with good molecular recognition and enrichment abilities).
Collapse
Affiliation(s)
- Xiaohui Niu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xing Yang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pan Zhao
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhenyu Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
10
|
Hasanzadeh M, Navay Baghban H, Shadjou N. Non-enzymatic Determination of L-Proline Amino Acid in Unprocessed Human Plasma Sample Using Hybrid of Graphene Quantum Dots Decorated with Gold Nanoparticles and Poly Cysteine: A Novel Signal Amplification Strategy. ANAL SCI 2018. [PMID: 29526905 DOI: 10.2116/analsci.34.355] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An innovative electrochemical interface for quantitation of L-proline (L-Pro) based on ternary amplification strategy was fabricated. In this work, gold nanoparticles prepared by soft template methodology were immobilized onto green and biocompatible nanocomposite containing poly as a conductive matrix and graphene quantum dots as the amplification element. Therefore, a novel multilayer film based on poly-L-cysteine, graphene quantum dots (GQDs), and gold nanoparticles (GNPs) was exploited to develop a highly sensitive electrochemical sensor for the detection of L-Pro. Fully electrochemical methodology was used to prepare a new transducer on a glassy carbon electrode, which provided a high surface area towards sensitive detection of L-Pro. The prepared electrode was employed for the detection of L-Pro. Under optimized conditions, the calibration curve for L-Pro concentration was linear in 0.5 nM - 10 mM with a low limit of quantification of 0.1 nM. The practical analytical utility of the modified electrode was illustrated by determination of L-Pro in unprocessed human plasma samples.
Collapse
Affiliation(s)
- M Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences
| | - H Navay Baghban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences
| | - N Shadjou
- Department of Nano Technology, Faculty of Science, Urmia University
| |
Collapse
|
11
|
Shadjou N, Hasanzadeh M, Talebi F. Graphene Quantum Dots Incorporated into β-cyclodextrin: a Novel Polymeric Nanocomposite for Non-Enzymatic Sensing of L-Tyrosine at Physiological pH. JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1134/s1061934818060096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Hasanzadeh M, Zargami A, Baghban HN, Mokhtarzadeh A, Shadjou N, Mahboob S. Aptamer-based assay for monitoring genetic disorder phenylketonuria (PKU). Int J Biol Macromol 2018; 116:735-743. [PMID: 29777816 DOI: 10.1016/j.ijbiomac.2018.05.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 11/20/2022]
Abstract
The genetic disorder phenylketonuria (PKU) is the inability to metabolize phenylalanine because of a lack of the enzyme phenylalanine hydroxylase. Phenylalanine is used to biochemically form proteins, coded for by DNA. The development of an apta-assay for detection of l-Phenylalanine is presented in this work. A highly specific DNA-aptamer, selected to l-Phenylalanine was immobilized onto a gold nanostructure and electrochemical measurements were performed in a solution containing the phosphate buffer solution with physiological pH. We have constructed an aptamer immobilized gold nanostructure mediated, ultrasensitive electrochemical biosensor (Apt/AuNSs/Au electrode) for l-Phenylalanine detection without any additional signal amplification strategy. The aptamer assemble onto the AuNSs makes Apt/AuNSs/Au electrode an excellent platform for the l-Phenylalanine detection in physiological like condition. Differential pulse voltammetry were used for the quantitative l-Phenylalanine detection. The Apt/AuNSs/Au electrode offers an ultrasensitive and selective detection of l-Phenylalanine down to 0.23 μM level with a wide dynamic range from 0.72 μM-6 mM. The aptasensor exhibited excellent selectivity and stability. The real sample analysis was performed by spiking the unprocessed human serum samples with various concentration of l-Phenylalanine and obtained recovery within 2% error value. The sensor is found to be more sensitive than most of the literature reports. The simple and easy way of construction of this apta-assay provides an efficient and promising diagnosis of phenylketonuria.
Collapse
Affiliation(s)
- Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Zargami
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Hossein Navay Baghban
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Shadjou
- Department of Nanochemistry, Nano Technology Research Center, Uremia University, Uremia 57154, Iran
| | - Soltanali Mahboob
- Department of Biochemistry, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| |
Collapse
|
13
|
Yang K, Zhong H, Cheng ZP, Li XR, Zhang AR, Li TL, Zhang YJ, Liu GQ, Qian HY. Magnetic Fe3O4 stacked sphere-like nanocomposite and its application as platform for H2O2 sensing. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Movlaee K, Ganjali MR, Norouzi P, Neri G. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E406. [PMID: 29168771 PMCID: PMC5746896 DOI: 10.3390/nano7120406] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/03/2023]
Abstract
Iron oxide nanostructures (IONs) in combination with graphene or its derivatives-e.g., graphene oxide and reduced graphene oxide-hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances.
Collapse
Affiliation(s)
- Kaveh Movlaee
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
- Department of Engineering, University of Messina, I-98166 Messina, Italy.
| | - Mohmmad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| | - Giovanni Neri
- Department of Engineering, University of Messina, I-98166 Messina, Italy.
| |
Collapse
|
15
|
Beitollahi H, Yoonesfar R. Sensitive detection of sulfasalazine at a carbon paste electrode modified with NiO/CNT nanocomposite and ionic liquid in pharmaceutical and biological samples. INORG NANO-MET CHEM 2017. [DOI: 10.1080/24701556.2017.1357577] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Roghayeh Yoonesfar
- Department of Chemistry, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
16
|
Hasanzadeh M, Nahar AS, Hassanpour S, Shadjou N, Mokhtarzadeh A, Mohammadi J. Proline dehydrogenase-entrapped mesoporous magnetic silica nanomaterial for electrochemical biosensing of L-proline in biological fluids. Enzyme Microb Technol 2017; 105:64-76. [DOI: 10.1016/j.enzmictec.2017.05.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 10/19/2022]
|
17
|
Zaidi SA. Facile and efficient electrochemical enantiomer recognition of phenylalanine using β-Cyclodextrin immobilized on reduced graphene oxide. Biosens Bioelectron 2017; 94:714-718. [DOI: 10.1016/j.bios.2017.03.069] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/10/2017] [Accepted: 03/31/2017] [Indexed: 10/19/2022]
|
18
|
Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, de la Guardia M, Shadjou N, Mokhtarzadeh A. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:568-581. [DOI: 10.1016/j.msec.2016.12.125] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/10/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
|
19
|
Hasanzadeh M, Sadeghi S, Bageri L, Mokhtarzadeh A, karimzadeh A, Shadjou N, Mahboob S. Poly-dopamine-beta-cyclodextrin: A novel nanobiopolymer towards sensing of some amino acids at physiological pH. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:343-57. [DOI: 10.1016/j.msec.2016.06.081] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/20/2016] [Accepted: 06/25/2016] [Indexed: 10/21/2022]
|
20
|
Hasanzadeh M, Karimzadeh A, Shadjou N, Mokhtarzadeh A, Bageri L, Sadeghi S, Mahboob S. Graphene quantum dots decorated with magnetic nanoparticles: Synthesis, electrodeposition, characterization and application as an electrochemical sensor towards determination of some amino acids at physiological pH. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:814-830. [DOI: 10.1016/j.msec.2016.07.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/04/2016] [Accepted: 07/12/2016] [Indexed: 11/25/2022]
|
21
|
Hasanzadeh M, Shadjou N, Mokhtarzadeh A, Ramezani M. Two dimension (2-D) graphene-based nanomaterials as signal amplification elements in electrochemical microfluidic immune-devices: Recent advances. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:482-493. [DOI: 10.1016/j.msec.2016.06.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 12/25/2022]
|
22
|
Wang C, Li T, Liu Z, Guo Y, Li C, Dong C, Shuang S. An ultra-sensitive sensor based on β-cyclodextrin modified magnetic graphene oxide for detection of tryptophan. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.07.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Pashazadeh P, Mokhtarzadeh A, Hasanzadeh M, Hejazi M, Hashemi M, de la Guardia M. Nano-materials for use in sensing of salmonella infections: Recent advances. Biosens Bioelectron 2016; 87:1050-1064. [PMID: 27728896 DOI: 10.1016/j.bios.2016.08.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/22/2022]
Abstract
Salmonella infectious diseases spreading every day through food have become a life-threatening problem for millions of people and growing menace to society. Health expert's estimate that the yearly cost of all the food borne diseases is approximately $5-6 billion. Traditional methodologies for salmonella analysis provide high reliability and very low limits of detection. Among them immunoassays and Nucleic acid-based assays provide results within 24h, but they are expensive, tedious and time consuming. So, there is an urgent need for development of rapid, robust and cost-effective alternative technologies for real-time monitoring of salmonella. Several biosensors have been designed and commercialized for detection of this pathogen in food and water. In this overview, we have updated the literature concerning novel biosensing methods such as various optical and electrochemical biosensors and newly developed nano- and micro-scaled and aptamers based biosensors for detection of salmonella pathogen. Furthermore, attention has been focused on the principal concepts, applications, and examples that have been achieved up to diagnose salmonella. In addition, commercial biosensors and foreseeable future trends for onsite detecting salmonella have been summarized.
Collapse
Affiliation(s)
- Paria Pashazadeh
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran
| | - Ahad Mokhtarzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabhriz University of Medical Sciences, Tabriz, 51664 Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, 51664 Iran
| | - Maryam Hejazi
- School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maryam Hashemi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain.
| |
Collapse
|
24
|
Jahanbani S, Benvidi A. A novel electrochemical DNA biosensor based on a modified magnetic bar carbon paste electrode with Fe3O4NPs-reduced graphene oxide/PANHS nanocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:1-8. [PMID: 27523989 DOI: 10.1016/j.msec.2016.05.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/07/2016] [Accepted: 05/15/2016] [Indexed: 11/30/2022]
Abstract
In this study, we have designed a label free DNA biosensor based on a magnetic bar carbon paste electrode (MBCPE) modified with nanomaterial of Fe3O4/reduced graphene oxide (Fe3O4NP-RGO) as a composite and 1- pyrenebutyric acid-N- hydroxysuccinimide ester (PANHS) as a linker for detection of DNA sequences. Probe (BRCA1 5382 insC mutation detection) strands were immobilized on the MBCPE/Fe3O4-RGO/PANHS electrode for the exact incubation time. The characterization of the modified electrode was studied using different techniques such as scanning electron microscopy (SEM), infrared spectroscopy (IR), vibrating sample magnetometer (VSM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry methods. Some experimental parameters such as immobilization time of probe DNA, time and temperature of hybridization process were investigated. Under the optimum conditions, the immobilization of the probe and its hybridization with the target DNA (Complementary DNA) were tested. This DNA biosensor revealed a good linear relationship between ∆Rct and logarithm of the complementary target DNA concentration ranging from 1.0×10(-18)molL(-1) to 1.0×10(-8)molL(-1) with a correlation coefficient of 0.9935 and a detection limit of 2.8×10(-19)molL(-1). In addition, the mentioned biosensor was satisfactorily applied for discriminating of complementary sequences from non-complementary sequences. The constructed biosensor (MBCPE/Fe3O4-RGO/PANHS/ssDNA) with high sensitivity, selectivity, stability, reproducibility and low cost can be used for detection of BRCA1 5382 insC mutation.
Collapse
Affiliation(s)
- Shahriar Jahanbani
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Islamic Republic of Iran
| | - Ali Benvidi
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Islamic Republic of Iran.
| |
Collapse
|
25
|
Roushani M, Hoseini SJ, Azadpour M, Heidari V, Bahrami M, Maddahfar M. Electrocatalytic oxidation behavior of NADH at Pt/Fe3O4/reduced-graphene oxide nanohybrids modified glassy carbon electrode and its determination. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:237-246. [PMID: 27287119 DOI: 10.1016/j.msec.2016.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/18/2016] [Accepted: 05/05/2016] [Indexed: 01/08/2023]
Abstract
We have developed Pt/Fe3O4/reduced-graphene oxide nanohybrids modified glassy carbon (Pt/Fe3O4/RGO/GC) electrode as a novel system for the preparation of electrochemical sensing platform. Characterization of as-made composite was determined using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM) and energy-dispersive analysis of X-ray (EDAX) where the Pt, Fe, Si, O and C elements were observed. The Pt/Fe3O4/RGO/GC electrode was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect between Pt, Fe3O4 and RGO, the nanohybrid exhibited excellent performance toward dihydronicotinamide adenine dinucleotide (NADH) oxidation in 0.1M phosphate buffer solution, pH7.0, with a low detection limit of 5nM.
Collapse
Affiliation(s)
- Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 69315516, Iran.
| | - S Jafar Hoseini
- Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, 7591874831, Iran
| | - Mitra Azadpour
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam, 69315516, Iran
| | - Vahid Heidari
- Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, 7591874831, Iran
| | - Mehrangiz Bahrami
- Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, 7591874831, Iran
| | - Mahnaz Maddahfar
- Department of Chemistry, Faculty of Sciences, Yasouj University, Yasouj, 7591874831, Iran
| |
Collapse
|
26
|
Shadjou N, Hasanzadeh M. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances. J Biomed Mater Res A 2016; 104:1250-75. [DOI: 10.1002/jbm.a.35645] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/06/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nasrin Shadjou
- Department of Nanochemistry; Nano Technology Research Center and Faculty of Chemistry, Urmia University; Urmia Iran
| | - Mohammad Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences; Tabriz 51664 Iran
| |
Collapse
|
27
|
Hasanzadeh M, Shadjou N, de la Guardia M. Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.016] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Mahpishanian S, Sereshti H, Baghdadi M. Superparamagnetic core–shells anchored onto graphene oxide grafted with phenylethyl amine as a nano-adsorbent for extraction and enrichment of organophosphorus pesticides from fruit, vegetable and water samples. J Chromatogr A 2015; 1406:48-58. [DOI: 10.1016/j.chroma.2015.06.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/28/2022]
|
29
|
Electrochemical determination of hydrochlorothiazide and folic acid in real samples using a modified graphene oxide sheet paste electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 52:297-305. [DOI: 10.1016/j.msec.2015.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 01/24/2015] [Accepted: 03/22/2015] [Indexed: 11/18/2022]
|
30
|
V. Shumyantseva V, V. Suprun E, V. Bulko T, I. Archakov A. Electrochemical methods for detection of post-translational modifications of proteins. Biosens Bioelectron 2014; 61:131-9. [DOI: 10.1016/j.bios.2014.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 04/11/2014] [Accepted: 05/01/2014] [Indexed: 01/04/2023]
|
31
|
Omidinia E, Shadjou N, Hasanzadeh M. Immobilization of phenylalanine-dehydrogenase on nano-sized polytaurine: A new platform for application of nano-polymeric materials on enzymatic biosensing technology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:368-73. [DOI: 10.1016/j.msec.2014.05.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/25/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
32
|
Hasanzadeh M, Pournaghi-Azar MH, Shadjou N, Jouyban A. Determination of lisinopril using β-cyclodextrin/graphene oxide-SO3H modified glassy carbon electrode. J APPL ELECTROCHEM 2014. [DOI: 10.1007/s10800-014-0689-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Polystyrene–graphene oxide modified glassy carbon electrode as a new class of polymeric nanosensors for electrochemical determination of histamine. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2014.01.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
ß-Cyclodextrin/graphene oxide grafted sulfonic acid: Application for electro-oxidation and determination of cadaverine in fish samples. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|