1
|
Wang L, Kang J, Li Y, Xia Y, Li X, Du X, Yin Z, Tian F, Wu F, Zhao B. BMSCs laden gelatin methacrylate (GelMA) hydrogel integrating silk fibroin/hydroxyapatite scaffold with multi-layered-oriented pores for enhanced bone regeneration. Int J Pharm 2025; 675:125495. [PMID: 40154821 DOI: 10.1016/j.ijpharm.2025.125495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
Due to the limited regenerative ability of bone tissue, bone injury repair has always been a complicated problem in clinical treatment. Bone tissue engineering based on cell delivery is an effective method to repair bone defects, but it also puts forward strict requirements on the scaffold used in the repair process and the survival rate of cell inoculation. To address this challenge, we constructed a bone mesenchymal stem cells (BMSCs) laden gelatin methacrylate (GelMA) hydrogel to integrate in silk fibroin (SF) /nano-hydroxyapatite (nHAp) scaffold, building a dual architecture to achieve enhanced angiogenesis and bone regeneration. The GelMA hydrogel prepared by visible photo-crosslinking showed good cell loading capacity, and the multi-layered-oriented pores of the scaffold provided a suitable microenvironment for cell proliferation and nutrient exchange. We further explored the effects of this "dual-system" complex on BMSCs and in a critical-sized rat cranial defect model. The results showed that BMSCs@GelMA-SF/nHAp composite scaffold with directional pore structure was more conducive to the repair of skull defects in rats due to the faster rate of vascularization and osteogenesis, indicating the developed gel-scaffold complex would be a promising therapeutic strategy for the repair of bone defects regeneration.
Collapse
Affiliation(s)
- Lu Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Jie Kang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Yuanjiao Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China; Academy of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yijing Xia
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Xiujuan Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Xin Du
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Ziruo Yin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Feng Tian
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China
| | - Feng Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| | - Bin Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi, China; Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, China.
| |
Collapse
|
2
|
Krzykowska B, Uram Ł, Frącz W, Kovářová M, Sedlařík V, Hanusova D, Kisiel M, Paciorek-Sadowska J, Borowicz M, Zarzyka I. Polymer Bionanocomposites Based on a P3BH/Polyurethane Matrix with Organomodified Montmorillonite-Mechanical and Thermal Properties, Biodegradability, and Cytotoxicity. Polymers (Basel) 2024; 16:2681. [PMID: 39339144 PMCID: PMC11435496 DOI: 10.3390/polym16182681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
In the present work, hybrid nanobiocomposites based on poly(3-hydroxybutyrate), P3HB, with the use of aromatic linear polyurethane as modifier and organic nanoclay, Cloisite 30B, as a nanofiller were produced. The aromatic linear polyurethane (PU) was synthesized in a reaction of diphenylmethane 4,4'-diisocyanate and polyethylene glycol with a molecular mass of 1000 g/mole. The obtained nanobiocomposites were characterized by the small-angle X-ray scattering technique, scanning electron microscopy, Fourier infrared spectroscopy, thermogravimetry, and differential scanning calorimetry, and moreover, their selected mechanical properties, biodegradability, and cytotoxicity were tested. The effect of the organomodified montmorillonite presence in the biocomposites on their properties was investigated and compared to those of the native P3HB and the P3HB-PU composition. The obtained hybrid nanobiocomposites have an exfoliated structure. The presence and content of Cloisite 30B influence the P3HB-PU composition's properties, and 2 wt.% Cloisite 30B leads to the best improvement in the aforementioned properties. The obtained results indicate that the thermal stability and mechanical properties of P3HB were improved, particularly in terms of increasing the degradation temperature, reducing hardness, and increasing impact strength, which were also confirmed by the morphological analysis of these bionanocomposites. However, the presence of organomodified montmorillonite in the obtained polymer biocomposites decreased their biodegradability slightly. The produced hybrid polymer nanobiocomposites have tailored mechanical and thermal properties and processing conditions for their expected application in the production of biodegradable, short-lived products for agriculture. Moreover, in vitro studies on human skin fibroblasts and keratinocytes showed their satisfactory biocompatibility and low cytotoxicity, which make them safe when in contact with the human body, for instance, in biomedical applications.
Collapse
Affiliation(s)
- Beata Krzykowska
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| | - Łukasz Uram
- Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Wiesław Frącz
- Department of Material Forming and Processing, Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Powstańców Warszawy 8, 35-959 Rzeszów, Poland;
| | - Miroslava Kovářová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Vladimir Sedlařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Dominika Hanusova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic; (M.K.); (V.S.); (D.H.)
| | - Maciej Kisiel
- Department of Industrial and Materials Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Joanna Paciorek-Sadowska
- Department of Chemistry & Technology Polyurethanes, Faculty of Materials Engineering, Kazimierz Wielki University, JK Chodkiewicza Street 30, 85-064 Bydgoszcz, Poland; (J.P.-S.); (M.B.)
| | - Marcin Borowicz
- Department of Chemistry & Technology Polyurethanes, Faculty of Materials Engineering, Kazimierz Wielki University, JK Chodkiewicza Street 30, 85-064 Bydgoszcz, Poland; (J.P.-S.); (M.B.)
| | - Iwona Zarzyka
- Department of Organic Chemistry, Faculty of Chemistry, Rzeszów University of Technology, Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
3
|
Nain A, Chakraborty S, Barman SR, Gavit P, Indrakumar S, Agrawal A, Lin ZH, Chatterjee K. Progress in the development of piezoelectric biomaterials for tissue remodeling. Biomaterials 2024; 307:122528. [PMID: 38522326 DOI: 10.1016/j.biomaterials.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Piezoelectric biomaterials have demonstrated significant potential in the past few decades to heal damaged tissue and restore cellular functionalities. Herein, we discuss the role of bioelectricity in tissue remodeling and explore ways to mimic such tissue-like properties in synthetic biomaterials. In the past decade, biomedical engineers have adopted emerging functional biomaterials-based tissue engineering approaches using innovative bioelectronic stimulation protocols based on dynamic stimuli to direct cellular activation, proliferation, and differentiation on engineered biomaterial constructs. The primary focus of this review is to discuss the concepts of piezoelectric energy harvesting, piezoelectric materials, and their application in soft (skin and neural) and hard (dental and bone) tissue regeneration. While discussing the prospective applications as an engineered tissue, an important distinction has been made between piezoceramics, piezopolymers, and their composites. The superiority of piezopolymers over piezoceramics to circumvent issues such as stiffness mismatch, biocompatibility, and biodegradability are highlighted. We aim to provide a comprehensive review of the field and identify opportunities for the future to develop clinically relevant and state-of-the-art biomaterials for personalized and remote health care.
Collapse
Affiliation(s)
- Amit Nain
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| | - Srishti Chakraborty
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Snigdha Roy Barman
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Pratik Gavit
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India; School of Bio Science and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sushma Indrakumar
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Akhilesh Agrawal
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipe, 10617, Taiwan.
| | - Kaushik Chatterjee
- Department of Material Engineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India; Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
4
|
Pecorini G, Braccini S, Simoni S, Corti A, Parrini G, Puppi D. Additive Manufacturing of Wet-Spun Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-Based Scaffolds Loaded with Hydroxyapatite. Macromol Biosci 2024; 24:e2300538. [PMID: 38534197 DOI: 10.1002/mabi.202300538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Tissue engineering represents an advanced therapeutic approach for the treatment of bone tissue defects. Polyhydroxyalkanoates are a promising class of natural polymers in this context thanks to their biocompatibility, processing versatility, and mechanical properties. The aim of this study is the development by computer-aided wet-spinning of novel poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)-based composite scaffolds for bone engineering. In particular, PHBV scaffolds are loaded with hydroxyapatite (HA), an osteoinductive ceramic, in order to tailor their biological activity and mechanical properties. PHBV blending with poly(lactide-co-glycolide) (PLGA) is also explored to increase the processing properties of the polymeric mixture used for composite scaffold fabrication. Different HA percentages, up to 15% wt., can be loaded into the PHBV or PHBV/PLGA scaffolds without compromising their interconnected porous architecture, as well as the polymer morphological and thermal properties, as demonstrated by scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. In addition, HA loading results in increased scaffold compressive stiffness to levels comparable to those of trabecular bone tissue, as well as in higher in vitro MC3T3-E1 cell viability and production of mineralized extracellular matrix, in comparison to what observed for unloaded scaffolds. The observed mechanical and biological properties suggest the suitability of the developed scaffolds for bone engineering.
Collapse
Affiliation(s)
- Gianni Pecorini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Simona Braccini
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Stefano Simoni
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | - Andrea Corti
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| | | | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, Pisa, 56124, Italy
| |
Collapse
|
5
|
Aqel S, Al-Thani N, Haider MZ, Abdelhady S, Al Thani AA, Kobeissy F, Shaito AA. Biomaterials in Traumatic Brain Injury: Perspectives and Challenges. BIOLOGY 2023; 13:21. [PMID: 38248452 PMCID: PMC10813103 DOI: 10.3390/biology13010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and long-term impairment globally. TBI has a dynamic pathology, encompassing a variety of metabolic and molecular events that occur in two phases: primary and secondary. A forceful external blow to the brain initiates the primary phase, followed by a secondary phase that involves the release of calcium ions (Ca2+) and the initiation of a cascade of inflammatory processes, including mitochondrial dysfunction, a rise in oxidative stress, activation of glial cells, and damage to the blood-brain barrier (BBB), resulting in paracellular leakage. Currently, there are no FDA-approved drugs for TBI, but existing approaches rely on delivering micro- and macromolecular treatments, which are constrained by the BBB, poor retention, off-target toxicity, and the complex pathology of TBI. Therefore, there is a demand for innovative and alternative therapeutics with effective delivery tactics for the diagnosis and treatment of TBI. Tissue engineering, which includes the use of biomaterials, is one such alternative approach. Biomaterials, such as hydrogels, including self-assembling peptides and electrospun nanofibers, can be used alone or in combination with neuronal stem cells to induce neurite outgrowth, the differentiation of human neural stem cells, and nerve gap bridging in TBI. This review examines the inclusion of biomaterials as potential treatments for TBI, including their types, synthesis, and mechanisms of action. This review also discusses the challenges faced by the use of biomaterials in TBI, including the development of biodegradable, biocompatible, and mechanically flexible biomaterials and, if combined with stem cells, the survival rate of the transplanted stem cells. A better understanding of the mechanisms and drawbacks of these novel therapeutic approaches will help to guide the design of future TBI therapies.
Collapse
Affiliation(s)
- Sarah Aqel
- Medical Research Center, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Najlaa Al-Thani
- Research and Development Department, Barzan Holdings, Doha P.O. Box 7178, Qatar
| | - Mohammad Z. Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Samar Abdelhady
- Faculty of Medicine, Alexandria University, Alexandria 21544, Egypt;
| | - Asmaa A. Al Thani
- Biomedical Research Center and Department of Biomedical Sciences, College of Health Science, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics & Biomarkers (CNMB), Morehouse School of Medicine, 720 Westview Dr. SW, Atlanta, GA 30310, USA
| | - Abdullah A. Shaito
- Biomedical Research Center, Department of Biomedical Sciences at College of Health Sciences, College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
6
|
Sadreddini S, Jodati H, Evis Z, Keskin D. Novel barium-doped-baghdadite incorporated PHBV-PCL composite fibrous scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 2023; 148:106185. [PMID: 37837873 DOI: 10.1016/j.jmbbm.2023.106185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Bioceramic/polymer composites have dragged a lot of attention for treating hard tissue damage in recent years. In this study, we synthesized barium-doped baghdadite (Ba-BAG), as a novel bioceramic, and later developed fibrous composite poly (hydroxybutyrate) co (hydroxyvalerate)- polycaprolactone (PHBV-PCL) scaffolds containing different amounts of baghdadite (BAG) and Ba-BAG, intended to be used in bone regeneration. Our results demonstrated that BAG and Ba-doped BAG powders were synthesized successfully using the sol-gel method and their microstructural, physicochemical, and cytotoxical properties results were evaluated. In the following, PHBV/PCL composite scaffolds containing different amounts of BAG and Ba-BAG (1, 3, and 5 wt%) were produced by the wet electrospinning method. The porosity of scaffolds decreased from 78% to 72% in Ba-BAG-incorporated PHBV/PCL scaffolds. The compressive strength of the scaffolds was between 4.69 and 9.28 kPa, which was increased to their maximum values in the scaffolds with Ba-BAG. The presence of BAG and Ba-BAG in the polymer scaffolds resulted in increasing bioactivity, and it was introduced as a suitable way to control the degradation rate of scaffolds. The presence of the BAG component was a major reason for higher cell proliferation in reinforced PHBV/PCL polymeric scaffolds, while Ba existence played its influential role in the higher osteogenic activity of cells on Ba-BAG incorporated PHBV/PCL scaffolds. Thus, the incorporation of Ba-BAG bioceramic materials into the structure of polymeric PHBV/PCL scaffolds promoted their various properties, and allow these scaffolds to be used as promising candidates in bone tissue engineering applications.
Collapse
Affiliation(s)
- Sanaossadat Sadreddini
- Department of Biomedical Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Hossein Jodati
- Department of Biomedical Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Zafer Evis
- Department of Biomedical Engineering, Middle East Technical University, Ankara, 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey.
| | - Dilek Keskin
- Department of Biomedical Engineering, Middle East Technical University, Ankara, 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
7
|
Koczoń P, Dąbrowska A, Laskowska E, Łabuz M, Maj K, Masztakowski J, Bartyzel BJ, Bryś A, Bryś J, Gruczyńska-Sękowska E. Applications of Silk Fibroin in Human and Veterinary Medicine. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7128. [PMID: 38005058 PMCID: PMC10672237 DOI: 10.3390/ma16227128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
The properties of silk make it a promising material for medical applications, both in human and veterinary medicine. Its predominant amino acids, glycine and alanine, exhibit low chemical reactivity, reducing the risk of graft rejection, a notable advantage over most synthetic polymers. Hence, silk is increasingly used as a material for 3D printing in biomedicine. It can be used to build cell scaffolding with the desired cytocompatibility and biodegradability. In combination with gelatine, silk can be used in the treatment of arthritis, and as a hydrogel, to regenerate chondrocytes and mesenchymal cells. When combined with gelatine and collagen, it can also make skin grafts and regenerate the integumentary system. In the treatment of bone tissue, it can be used in combination with polylactic acid and hydroxyapatite to produce bone clips having good mechanical properties and high immunological tolerance. Furthermore, silk can provide a good microenvironment for the proliferation of bone marrow stem cells. Moreover, research is underway to produce artificial blood vessels using silk in combination with glycidyl methacrylate. Silk vascular grafts have demonstrated a high degree of patency and a satisfactory degree of endothelial cells coverage.
Collapse
Affiliation(s)
- Piotr Koczoń
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159C, Nowoursynowska St., 02-776 Warsaw, Poland; (P.K.); (J.B.)
| | - Alicja Dąbrowska
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Ewa Laskowska
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Małgorzata Łabuz
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Katarzyna Maj
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Jakub Masztakowski
- The Scientific Society of Veterinary Medicine Students, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland; (A.D.); (E.L.); (M.Ł.); (K.M.); (J.M.)
| | - Bartłomiej J. Bartyzel
- Department of Morphological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 159, Nowoursynowska St., 02-776 Warsaw, Poland;
| | - Andrzej Bryś
- Department of Fundamental Engineering and Energetics, Institute of Mechanical Engineering, Warsaw University of Life Sciences, 164, Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159C, Nowoursynowska St., 02-776 Warsaw, Poland; (P.K.); (J.B.)
| | - Eliza Gruczyńska-Sękowska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, 159C, Nowoursynowska St., 02-776 Warsaw, Poland; (P.K.); (J.B.)
| |
Collapse
|
8
|
Ren ZW, Wang ZY, Ding YW, Dao JW, Li HR, Ma X, Yang XY, Zhou ZQ, Liu JX, Mi CH, Gao ZC, Pei H, Wei DX. Polyhydroxyalkanoates: the natural biopolyester for future medical innovations. Biomater Sci 2023; 11:6013-6034. [PMID: 37522312 DOI: 10.1039/d3bm01043k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are a family of natural microbial biopolyesters with the same basic chemical structure and diverse side chain groups. Based on their excellent biodegradability, biocompatibility, thermoplastic properties and diversity, PHAs are highly promising medical biomaterials and elements of medical devices for applications in tissue engineering and drug delivery. However, due to the high cost of biotechnological production, most PHAs have yet to be applied in the clinic and have only been studied at laboratory scale. This review focuses on the biosynthesis, diversity, physical properties, biodegradability and biosafety of PHAs. We also discuss optimization strategies for improved microbial production of commercial PHAs via novel synthetic biology tools. Moreover, we also systematically summarize various medical devices based on PHAs and related design approaches for medical applications, including tissue repair and drug delivery. The main degradation product of PHAs, 3-hydroxybutyrate (3HB), is recognized as a new functional molecule for cancer therapy and immune regulation. Although PHAs still account for only a small percentage of medical polymers, up-and-coming novel medical PHA devices will enter the clinical translation stage in the next few years.
Collapse
Affiliation(s)
- Zi-Wei Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Ze-Yu Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jin-Wei Dao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, 678400, China
| | - Hao-Ru Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Xin-Yu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zi-Qi Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Jia-Xuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
| | - Zhe-Chen Gao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hua Pei
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570311, China.
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China
| |
Collapse
|
9
|
Puricelli C, Gigliotti CL, Stoppa I, Sacchetti S, Pantham D, Scomparin A, Rolla R, Pizzimenti S, Dianzani U, Boggio E, Sutti S. Use of Poly Lactic-co-glycolic Acid Nano and Micro Particles in the Delivery of Drugs Modulating Different Phases of Inflammation. Pharmaceutics 2023; 15:1772. [PMID: 37376219 PMCID: PMC10301392 DOI: 10.3390/pharmaceutics15061772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic inflammation contributes to the pathogenesis of many diseases, including apparently unrelated conditions such as metabolic disorders, cardiovascular diseases, neurodegenerative diseases, osteoporosis, and tumors, but the use of conventional anti-inflammatory drugs to treat these diseases is generally not very effective given their adverse effects. In addition, some alternative anti-inflammatory medications, such as many natural compounds, have scarce solubility and stability, which are associated with low bioavailability. Therefore, encapsulation within nanoparticles (NPs) may represent an effective strategy to enhance the pharmacological properties of these bioactive molecules, and poly lactic-co-glycolic acid (PLGA) NPs have been widely used because of their high biocompatibility and biodegradability and possibility to finely tune erosion time, hydrophilic/hydrophobic nature, and mechanical properties by acting on the polymer's composition and preparation technique. Many studies have been focused on the use of PLGA-NPs to deliver immunosuppressive treatments for autoimmune and allergic diseases or to elicit protective immune responses, such as in vaccination and cancer immunotherapy. By contrast, this review is focused on the use of PLGA NPs in preclinical in vivo models of other diseases in which a key role is played by chronic inflammation or unbalance between the protective and reparative phases of inflammation, with a particular focus on intestinal bowel disease; cardiovascular, neurodegenerative, osteoarticular, and ocular diseases; and wound healing.
Collapse
Affiliation(s)
- Chiara Puricelli
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Ian Stoppa
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
| | - Sara Sacchetti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Deepika Pantham
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Torino, 10125 Turin, Italy;
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roberta Rolla
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Science, University of Turin, Corso Raffaello 30, 10125 Torino, Italy;
| | - Umberto Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- Maggiore della Carità University Hospital, Corso Mazzini 18, 28100 Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
- NOVAICOS s.r.l.s, Via Amico Canobio 4/6, 28100 Novara, Italy
| | - Salvatore Sutti
- Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy; (C.P.); (C.L.G.); (I.S.); (S.S.); (D.P.); (R.R.); (E.B.); (S.S.)
| |
Collapse
|
10
|
Aparicio-Collado JL, Zheng Q, Molina-Mateo J, Torregrosa Cabanilles C, Vidaurre A, Serrano-Aroca Á, Sabater i Serra R. Engineered Highly Porous Polyvinyl Alcohol Hydrogels with Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Graphene Nanosheets for Musculoskeletal Tissue Engineering: Morphology, Water Sorption, Thermal, Mechanical, Electrical Properties, and Biocompatibility. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3114. [PMID: 37109950 PMCID: PMC10145967 DOI: 10.3390/ma16083114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
Electroactive composite materials are very promising for musculoskeletal tissue engineering because they can be applied in combination with electrostimulation. In this context, novel graphene-based poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polyvinyl alcohol (PHBV/PVA) semi-interpenetrated networks (semi-IPN) hydrogels were engineered with low amounts of graphene (G) nanosheets dispersed within the polymer matrix to endow them with electroactive properties. The nanohybrid hydrogels, obtained by applying a hybrid solvent casting-freeze-drying method, show an interconnected porous structure and a high water-absorption capacity (swelling degree > 1200%). The thermal characterization indicates that the structure presents microphase separation, with PHBV microdomains located between the PVA network. The PHBV chains located in the microdomains are able to crystallize; even more after the addition of G nanosheets, which act as a nucleating agent. Thermogravimetric analysis indicates that the degradation profile of the semi-IPN is located between those of the neat components, with an improved thermal stability at high temperatures (>450 °C) after the addition of G nanosheets. The mechanical (complex modulus) and electrical properties (surface conductivity) significantly increase in the nanohybrid hydrogels with 0.2% of G nanosheets. Nevertheless, when the amount of G nanoparticles increases fourfold (0.8%), the mechanical properties diminish and the electrical conductivity does not increase proportionally, suggesting the presence of G aggregates. The biological assessment (C2C12 murine myoblasts) indicates a good biocompatibility and proliferative behavior. These results reveal a new conductive and biocompatible semi-IPN with remarkable values of electrical conductivity and ability to induce myoblast proliferation, indicating its great potential for musculoskeletal tissue engineering.
Collapse
Affiliation(s)
- José Luis Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
| | - Qiqi Zheng
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
| | - José Molina-Mateo
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
| | - Constantino Torregrosa Cabanilles
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
| | - Ana Vidaurre
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 València, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 València, Spain
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; (J.L.A.-C.); (J.M.-M.); (C.T.C.); (A.V.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 València, Spain
- Department of Electrical Engineering, Universitat Politècnica de València, 46022 València, Spain
| |
Collapse
|
11
|
Turhan EA, Akbaba S, Tezcaner A, Evis Z. Boron nitride nanofiber/Zn-doped hydroxyapatite/polycaprolactone scaffolds for bone tissue engineering applications. BIOMATERIALS ADVANCES 2023; 148:213382. [PMID: 36963343 DOI: 10.1016/j.bioadv.2023.213382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
In this study, Zn doped hydroxyapatite (Zn HA)/boron nitride nanofiber (BNNF)/poly-ε-caprolactone (PCL) composite aligned fibrous scaffolds are produced with rotary jet spinning (RJS) for bone tissue engineering applications. It is hypothesized that addition of Zn HA and BNNF will contribute to cell viability as well as mechanical and osteogenic properties of the PCL scaffolds. Zn HA was synthesized by mixing Ca and P sources followed by sonication and aging whereas BNNF was obtained by the reaction of melamine with boric acid followed by freeze-drying for annealing of fibers. It is found that incorporation of both Zn HA and BNNF in PCL fibers resulted in higher calcium phosphate (CaP) precipitation on the scaffolds. Also, in vitro cell culture studies showed that presence of both Zn HA and BNNF also had synergistic effect for enhanced proliferation and osteogenic activity of Saos-2 cells. Mechanical properties of PCL-Zn HA-BNNF were found similar to that of non-load bearing bones. Furthermore, the presence of Zn HA and BNNF had synergistic effects to cell attachment, proliferation and spreading without causing cytotoxic effect on cells. The highest ALP activity was obtained in the PCL-Zn HA- BNNF group at days 7 and 14 due to release of zinc, calcium, phosphate and boron. Considering its mechanical and bioactivity properties, PCL-Zn HA-BNNF composite scaffolds hold promise as non-load bearing bone substitutes.
Collapse
Affiliation(s)
- Emine Ayşe Turhan
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Sema Akbaba
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Boron Research Institute, Turkish Energy Nuclear and Mineral Research Agency, Ankara 06520, Turkey
| | - Ayşen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey; Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Zafer Evis
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara 06800, Turkey.
| |
Collapse
|
12
|
Râpă M, Stefan LM, Seciu-Grama AM, Gaspar-Pintiliescu A, Matei E, Zaharia C, Stănescu PO, Predescu C. Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (P(3HB- co-3HV))/Bacterial Cellulose (BC) Biocomposites for Potential Use in Biomedical Applications. Polymers (Basel) 2022; 14:polym14245544. [PMID: 36559911 PMCID: PMC9786213 DOI: 10.3390/polym14245544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to obtain biocomposites consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), bacterial cellulose (BC) and α-tocopherol by a melt processing technique for potential use in biomedical applications. The melt processing and roughness of biocomposites were evaluated and compared to sample without BC. The degradation rate of PHBV/BC biocomposites was measured in phosphate buffer saline (PBS) by determining the mass variation and evidencing of thermal and structural changes by differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transformed infrared spectrometry (ATR-FTIR). The cell viability, cell morphology, cell cycle distribution and total collagen content were investigated on murine NCTC fibroblasts. Overall, the adding of BC to polyester matrix led to an adequate melt processing of biocomposites and increased surface roughness and cytocompatibility, allowing the cells to secrete the extracellular matrix (collagen) and stimulate cell proliferation. Results showed that the PHBV/BC biocomposites were favorable for long-term degradation and could be used for the design of medical devices with controlled degradability.
Collapse
Affiliation(s)
- Maria Râpă
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Laura Mihaela Stefan
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Ana-Maria Seciu-Grama
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Alexandra Gaspar-Pintiliescu
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Ecaterina Matei
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| | - Cătălin Zaharia
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Paul Octavian Stănescu
- Advanced Polymer Materials Group, Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Cristian Predescu
- Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| |
Collapse
|
13
|
Han X, Liu J, Tian S, Tao F, Xu P. Microbial cell factories for bio-based biodegradable plastics production. iScience 2022; 25:105462. [DOI: 10.1016/j.isci.2022.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
15
|
Hurtado A, Cano-Vicent A, Tuñón-Molina A, Aparicio-Collado JL, Salesa B, I Serra RS, Serrano-Aroca Á. Engineering alginate hydrogel films with poly(3-hydroxybutyrate-co-3-valerate) and graphene nanoplatelets: Enhancement of antiviral activity, cell adhesion and electroactive properties. Int J Biol Macromol 2022; 219:694-708. [PMID: 35961550 PMCID: PMC9364692 DOI: 10.1016/j.ijbiomac.2022.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 12/27/2022]
Abstract
A new biodegradable semi-interpenetrated polymer network (semi-IPN) of two US Food and Drug Administration approved materials, poly(3-hydroxybutyrate-co-3-valerate) (PHBV) and calcium alginate (CA) was engineered to provide an alternative strategy to enhance the poor adhesion properties of CA. The synthesis procedure allows the additional incorporation of 10 % w/w of graphene nanoplatelets (GNPs), which have no cytotoxic effect on human keratinocytes. This quantity of multilayer graphene provides superior antiviral activity to the novel semi-IPN against a surrogate virus of SARS-CoV-2. Adding GNPs hardly affects the water absorption or electrical conductivity of the pure components of CA and PHBV. However, the semi-IPN's electrical conductivity increases dramatically after adding GNP due to molecular rearrangements of the intertwined polymer chains that continuously distribute the GNP nanosheets, This new hydrophilic composite biomaterial film shows great promise for skin biomedical applications, especially those that require antiviral and/or biodegradable electroconductive materials.
Collapse
Affiliation(s)
- Alejandro Hurtado
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Alba Cano-Vicent
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Alberto Tuñón-Molina
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Jose Luis Aparicio-Collado
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain
| | - Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain
| | - Roser Sabater I Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain; CIBER-BBN, Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine, 46022 València, Spain.
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, Valencia 46001, Spain.
| |
Collapse
|
16
|
Electrically Conductive Biocomposites Based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Wood-Derived Carbon Fillers. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this paper, biobased carbons were used as fillers in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The mechanical and electrical properties of these 100% biocomposites were analyzed. First, biocarbons were prepared from wood dust and cellulose fibers using carbonization temperatures ranging 900–2300 °C. XRD revealed significant improvements of the graphitic structure with increasing temperatures for both precursors, with slightly higher ordering in wood-dust-based carbons. An increase of the carbon content with continuous removal of other elements was observed with increasing temperature. The carbonized cellulose fiber showed an accumulation of Na and O on the fiber surface at a carbonization temperature of 1500 °C. Significant degradation of PHBV was observed when mixed with this specific filler, which can, most probably, be attributed to this exceptional surface chemistry. With any other fillers, the preparation of injection-molded PHBV composites was possible without any difficulties. Small improvements in the mechanical performance were observed, with carbonized fibers being slightly superior to the wood dust analogues. Improvements at higher filler content were observed. These effects were even more pronounced in the electrical conductivity. In the range of 15–20 vol.% carbonized fibers, the percolation threshold could be reached, resulting in an electrical conductivity of 0.7 S/cm. For comparison, polypropylene composites were prepared using cellulose fibers carbonized at 2000 °C. Due to longer fibers retained in the composites, percolation could be reached in the range of 5–10 vol.%. The electrical conductivity was even higher compared to that of composites using commercial carbon fibers, showing a great potential for carbonized cellulose fibers in electrical applications.
Collapse
|
17
|
Fabrication of Electrospun Xylan-g-PMMA/TiO 2 Nanofibers and Photocatalytic Degradation of Methylene Blue. Polymers (Basel) 2022; 14:polym14122489. [PMID: 35746065 PMCID: PMC9229088 DOI: 10.3390/polym14122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 12/04/2022] Open
Abstract
Herein, xylan-g-PMMA was synthesized by grafting poly(methyl methacrylate) (PMMA) onto xylan and characterized by FT-IR and HSQC NMR spectroscopies, and the xylan-g-PMMA/TiO2 solution was used to electrospun nanofibers at the voltage of 15 Kv, which was the first time employing xylan to electrospun nanofibers. Moreover, the electrospinning operating parameters were optimized by assessing the electrospinning process and the morphology of electrospun fibers, as follows: the mixed solvent of DMF and chloroform in a volume ratio of 5:1, an anhydroxylose unit (AXU)/MMA molar ratio lower than 1:2, the flow speed of 0.00565–0.02260 mL/min, and a receiving distance of 10–15 cm. Diameters of the electrospun fibers increased with increasing DMF content in the used solvent mixture, MMA dosage, and receiving distance. TiO2 nanoparticles were successfully dispersed in electrospun xylan-g-PMMA nanofibers and characterized by scanning electron microscopy, energy dispersive X-ray diffraction spectrum, and X-ray photoelectron spectroscopy, and their application for methylene blue (MB) degradation presented above 80% photocatalytic efficiency, showing the good potential in water treatment.
Collapse
|
18
|
Agarwal A, Rao GK, Majumder S, Shandilya M, Rawat V, Purwar R, Verma M, Srivastava CM. Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges. 3 Biotech 2022; 12:92. [PMID: 35342680 PMCID: PMC8921418 DOI: 10.1007/s13205-022-03152-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Electrospinning is an electrostatic fiber fabrication technique that operates by the application of a strong electric field on polymer solution or melts. It is used to fabricate fibers whose size lies in the range of few microns to the nanometer range. Historic development of electrospinning has evinced attention due to its outstanding attributes such as small diameter, excellent pore inter-connectivity, high porosity, and high surface-to-volume ratio. This review aims to highlight the theory behind electrospinning and the machine setup with a detailed discussion about the processing parameters. It discusses the latest innovations in natural protein-based electrospun nanofibers for health care applications. Various plant- and animal-based proteins have been discussed with detailed sample preparation and corresponding processing parameters. The usage of these electrospun nanofibers in regenerative medicine and drug delivery has also been discussed. Some technical innovations in electrospinning techniques such as emulsion electrospinning and coaxial electrospinning have been highlighted. Coaxial electrospun core-shell nanofibers have the potential to be utilized as an advanced nano-architecture for sustained release targeted delivery as well as for regenerative medicine. Healthcare applications of nanofibers formed via emulsion and coaxial electrospinning have been discussed briefly. Electrospun nanofibers have still much scope for commercialization on large scale. Some of the available wound-dressing materials have been discussed in brief.
Collapse
Affiliation(s)
- Anushka Agarwal
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Gyaneshwar K. Rao
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Sudip Majumder
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Manish Shandilya
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Varun Rawat
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Roli Purwar
- Department of Applied Chemistry, Delhi Technological University, New Delhi, Delhi 110042 India
| | - Monu Verma
- Department of Environmental Engineering, University of Seoul, Seoul, 130743 South Korea
| | - Chandra Mohan Srivastava
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
- Centre for Polymer Technology, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| |
Collapse
|
19
|
Surmenev RA, Ivanov AN, Saveleva MS, Kiriiazi TS, Fedonnikov AS, Surmeneva MA. The effect of different sizes of cross‐linked fibers of biodegradable electrospun poly(ε‐caprolactone) scaffolds on osteogenic behavior in a rat model in vivo. J Appl Polym Sci 2022. [DOI: 10.1002/app.52244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Roman A. Surmenev
- Research Center Physical Materials Science and Composite Materials, Research School of Chemistry & Applied Biomedical Sciences National Research Tomsk Polytechnic University Tomsk Russian Federation
| | - Alexey N. Ivanov
- Federal State Budgetary Educational Institution of Higher Education “V.I. Razumovsky Saratov State Medical University” of the Ministry of Healthcare of the Russian Federation Saratov Russian Federation
| | - Mariia S. Saveleva
- Remote Controlled Systems for Theranostics Laboratory, Science Medical Center Saratov State University Saratov Russian Federation
| | - Tatiana S. Kiriiazi
- Federal State Budgetary Educational Institution of Higher Education “V.I. Razumovsky Saratov State Medical University” of the Ministry of Healthcare of the Russian Federation Saratov Russian Federation
| | - Alexander S. Fedonnikov
- Federal State Budgetary Educational Institution of Higher Education “V.I. Razumovsky Saratov State Medical University” of the Ministry of Healthcare of the Russian Federation Saratov Russian Federation
| | - Maria A. Surmeneva
- Research Center Physical Materials Science and Composite Materials, Research School of Chemistry & Applied Biomedical Sciences National Research Tomsk Polytechnic University Tomsk Russian Federation
| |
Collapse
|
20
|
Shibryaeva LS, Blinov ND, Lyusova LR, Naumova YA. Features of Thermal Degradation of Filled Compositions Based on Styrene–Butadiene Thermoplastic Elastomers. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s156009042202004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Lopez Marquez A, Gareis IE, Dias FJ, Gerhard C, Lezcano MF. Methods to Characterize Electrospun Scaffold Morphology: A Critical Review. Polymers (Basel) 2022; 14:467. [PMID: 35160457 PMCID: PMC8839183 DOI: 10.3390/polym14030467] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 12/10/2022] Open
Abstract
Electrospun scaffolds can imitate the hierarchical structures present in the extracellular matrix, representing one of the main concerns of modern tissue engineering. They are characterized in order to evaluate their capability to support cells or to provide guidelines for reproducibility. The issues with widely used methods for morphological characterization are discussed in order to provide insight into a desirable methodology for electrospun scaffold characterization. Reported methods include imaging and physical measurements. Characterization methods harbor inherent limitations and benefits, and these are discussed and presented in a comprehensive selection matrix to provide researchers with the adequate tools and insights required to characterize their electrospun scaffolds. It is shown that imaging methods present the most benefits, with drawbacks being limited to required costs and expertise. By making use of more appropriate characterization, researchers will avoid measurements that do not represent their scaffolds and perhaps might discover that they can extract more characteristics from their scaffold at no further cost.
Collapse
Affiliation(s)
- Alex Lopez Marquez
- Faculty of Engineering and Health, University of Applied Sciences and Arts, 37085 Gottingen, Germany; (A.L.M.); (C.G.)
| | - Iván Emilio Gareis
- Laboratorio de Cibernética, Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
| | - Fernando José Dias
- Research Centre for Dental Sciences CICO, Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Christoph Gerhard
- Faculty of Engineering and Health, University of Applied Sciences and Arts, 37085 Gottingen, Germany; (A.L.M.); (C.G.)
| | - María Florencia Lezcano
- Laboratorio de Cibernética, Departamento de Bioingeniería, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Oro Verde 3100, Argentina;
- Research Centre for Dental Sciences CICO, Department of Integral Adults Dentistry, Dental School, Universidad de La Frontera, Temuco 4811230, Chile;
| |
Collapse
|
22
|
El-Shanshory AA, Agwa MM, Abd-Elhamid AI, Soliman HMA, Mo X, Kenawy ER. Metronidazole Topically Immobilized Electrospun Nanofibrous Scaffold: Novel Secondary Intention Wound Healing Accelerator. Polymers (Basel) 2022; 14:polym14030454. [PMID: 35160444 PMCID: PMC8840736 DOI: 10.3390/polym14030454] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/30/2022] Open
Abstract
The process of secondary intention wound healing includes long repair and healing time. Electrospun nanofibrous scaffolds have shown potential for wound dressing. Biopolymers have gained much attention due to their remarkable characteristics such as biodegradability, biocompatibility, non-immunogenicity and nontoxicity. This study anticipated to develop a new composite metronidazole (MTZ) immobilized nanofibrous scaffold based on poly (3-hydroxy butyrate) (PHB) and Gelatin (Gel) to be utilized as a novel secondary intention wound healing accelerator. Herein, PHB and Gel were mixed together at different weight ratios to prepare polymer solutions with final concentration of (7%), loaded with two different concentrations 5% (Z1) and 10% (Z2) of MTZ. Nanofibrous scaffolds were obtained by manipulating electrospinning technique. The properties of MTZ immobilized PHB/Gel nanofibrous scaffold were evaluated (SEM, FTIR, TGA, water uptake, contact angle, porosity, mechanical properties and antibacterial activity). Additionally, in vitro cytocompatibility of the obtained nanofibrous scaffolds were assessed by using the cell counting kit-8 (CCK-8 assay). Moreover, in vivo wound healing experiments revealed that the prepared nanofibrous scaffold highly augmented the transforming growth factor (TGF-β) signaling pathway, moderately suppressed the pro-inflammatory cytokine (IL-6). These results indicate that MTZ immobilized PHB/Gel nanofibrous scaffold significantly boost accelerating secondary intention wound healing.
Collapse
Affiliation(s)
- Ahmed A. El-Shanshory
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt; (A.I.A.-E.); (H.M.A.S.)
- Correspondence: (A.A.E.-S.); (E.-R.K.)
| | - Mona M. Agwa
- Department of Chemistry of Natural and Microbial Products, National Research Center, Dokki, Giza 12622, Egypt;
| | - Ahmed I. Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt; (A.I.A.-E.); (H.M.A.S.)
| | - Hesham M. A. Soliman
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, Alexandria 21934, Egypt; (A.I.A.-E.); (H.M.A.S.)
| | - Xiumei Mo
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China;
| | - El-Refaie Kenawy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: (A.A.E.-S.); (E.-R.K.)
| |
Collapse
|
23
|
Dalgic AD, Koman E, Karatas A, Tezcaner A, Keskin D. Natural origin bilayer pullulan-PHBV scaffold for wound healing applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112554. [DOI: 10.1016/j.msec.2021.112554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 01/14/2023]
|
24
|
Viola M, Piluso S, Groll J, Vermonden T, Malda J, Castilho M. The Importance of Interfaces in Multi-Material Biofabricated Tissue Structures. Adv Healthc Mater 2021; 10:e2101021. [PMID: 34510824 PMCID: PMC11468707 DOI: 10.1002/adhm.202101021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/06/2021] [Indexed: 11/09/2022]
Abstract
Biofabrication exploits additive manufacturing techniques for creating 3D structures with a precise geometry that aim to mimic a physiological cellular environment and to develop the growth of native tissues. The most recent approaches of 3D biofabrication integrate multiple technologies into a single biofabrication platform combining different materials within different length scales to achieve improved construct functionality. However, the importance of interfaces between the different material phases, has not been adequately explored. This is known to determine material's interaction and ultimately mechanical and biological performance of biofabricated parts. In this review, this gap is bridged by critically examining the interface between different material phases in (bio)fabricated structures, with a particular focus on how interfacial interactions can compromise or define the mechanical (and biological) properties of the engineered structures. It is believed that the importance of interfacial properties between the different constituents of a composite material, deserves particular attention in its role in modulating the final characteristics of 3D tissue-like structures.
Collapse
Affiliation(s)
- Martina Viola
- Department of OrthopeadicsUniversity Medical CenterHeidelberglaan 100Utrecht3508 GAThe Netherlands
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Faculty of ScienceUtrecht UniversityUtrecht3508 TBThe Netherlands
| | - Susanna Piluso
- Department of OrthopeadicsUniversity Medical CenterHeidelberglaan 100Utrecht3508 GAThe Netherlands
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication and Bavarian Polymer InstituteUniversity of WürzburgPleicherwall 2D‐97070WurzburgGermany
| | - Tina Vermonden
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical Sciences (UIPS)Faculty of ScienceUtrecht UniversityUtrecht3508 TBThe Netherlands
| | - Jos Malda
- Department of OrthopeadicsUniversity Medical CenterHeidelberglaan 100Utrecht3508 GAThe Netherlands
- Department of Clinical SciencesFaculty of Veterinary MedicineUtrecht UniversityYalelaan 1Utrecht3584 CLThe Netherlands
| | - Miguel Castilho
- Department of OrthopeadicsUniversity Medical CenterHeidelberglaan 100Utrecht3508 GAThe Netherlands
- Department of Biomedical EngineeringEindhoven University of TechnologyDe ZaaleEindhoven5600 MBThe Netherlands
| |
Collapse
|
25
|
Kaniuk Ł, Stachewicz U. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomater Sci Eng 2021; 7:5339-5362. [PMID: 34649426 PMCID: PMC8672356 DOI: 10.1021/acsbiomaterials.1c00757] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Biodegradable polymeric
biomaterials offer a significant advantage
in disposable or fast-consuming products in medical applications.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)
is an example of a polyhydroxyalkanoate (PHA), i.e., one group of
natural polyesters that are byproducts of reactions taking place in
microorganisms in conditions with an excess carbon source. PHA polymers
are a promising material for the production of everyday materials
and biomedical applications. Due to the high number of monomers in
the group, PHAs permit modifications enabling the production of copolymers
of different compositions and with different proportions of individual
monomers. In order to change and improve the properties of polymer
fibers, PHAs are combined with either other natural and synthetic
polymers or additives of inorganic phases. Importantly, electrospun
PHBV fibers and mats showed an enormous potential in both the medical
field (tissue engineering scaffolds, plasters, wound healing, drug
delivery systems) and industrial applications (filter systems, food
packaging). This Review summarizes the current state of the art in
processing PHBV, especially by electrospinning, its degradation processes,
and biocompatibility studies, starting from a general introduction
to the PHA group of polymers.
Collapse
Affiliation(s)
- Łukasz Kaniuk
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Urszula Stachewicz
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland
| |
Collapse
|
26
|
Sousa RC, Viana VGF, Meneses LFC, Maia Filho ALM, Santos FEP, Azevedo MMF, Nascimento HMS, Pinto LSS, Vasconcelos DFP. In vivo evaluation of bone repair guided with biological membrane based on polyhydroxybutyrate and norbixin. J Biomed Mater Res B Appl Biomater 2021; 110:743-754. [PMID: 34632693 DOI: 10.1002/jbm.b.34953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/23/2021] [Accepted: 09/29/2021] [Indexed: 11/09/2022]
Abstract
The present work aimed to synthesize and verify the effectiveness of the polyhydroxybutyrate and norbixin membrane as a scaffold in bone defects induced in the tibia of rats. Twenty-four male Rattus norvegicus rats were used, divided into control and membrane groups. After anesthesia, a bone defect was induced in the right tibia, followed by the implantation of the biomaterial at the site of the lesion only in the membrane group, with euthanasia after 15 and 30 days of the experiment. The deposition of organic and inorganic matrix, the quality of newly formed bone tissue and the morphology of the bone defect were measured. After 15 days of the experiment, the biomaterial significantly influenced the deposition of hydroxyapatite crystals, the formation of collagen I matrix and mineralization content in relation to the control group, in addition to the abbreviation of the inflammatory process and superior quality of the newly formed bone tissue. After 30 days, only the membrane group had fully completed its repair process. The biomaterial acted as a scaffold in the regeneration of the guided bone defect by accelerating the synthesis of collagen matrix, mineralization content, density, and maturity when compared to the control group.
Collapse
Affiliation(s)
- Rayssilane C Sousa
- Programa de Pós-Graduação em Biotecnologia/RENORBIO, Universidade Federal do Piauí, Teresina, Brazil
| | - Vicente G F Viana
- Programa de Pós-Graduação em Engenharia de Materiais, Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Teresina, Brazil
| | - Luiz F C Meneses
- Programa de Pós-Graduação em Engenharia de Materiais, Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Teresina, Brazil
| | - Antônio L M Maia Filho
- Núcleo de Pesquisa em Biotecnologia e Biodiversidade, Universidade Estadual do Piauí, Teresina, Brazil
| | | | | | - Hélio M S Nascimento
- Programa de Pós-Graduação em Biotecnologia/RENORBIO, Universidade Federal do Piauí, Teresina, Brazil
| | - Lucielma S S Pinto
- Departamento de Histologia e Embriologia da Faculdade de Ciências Médicas da Universidade Estadual do Piauí (UESPI), CCS/FACIME, Teresina, Brazil
| | - Daniel F P Vasconcelos
- Programa de Pós-Graduação em Biotecnologia/RENORBIO, Universidade Federal do Piauí, Teresina, Brazil
| |
Collapse
|
27
|
Zuluaga-Vélez A, Quintero-Martinez A, Orozco LM, Sepúlveda-Arias JC. Silk fibroin nanocomposites as tissue engineering scaffolds - A systematic review. Biomed Pharmacother 2021; 141:111924. [PMID: 34328093 DOI: 10.1016/j.biopha.2021.111924] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to study the physicochemical and biological performance of silk fibroin nanocomposites. In the last decade, only 51 articles contained either in vitro cell culture models or in vivo tests. The analysis of such works resulted in their classification into the following scaffold types: particles, mats and textiles, films, hydrogels, sponge-like structures, and mixed conformations. From the physicochemical perspective, the inorganic phase imbued in silk fibroin nanocomposites resulted in better stability and mechanical performance. This review revealed that the inorganic phase may be associated with specific biological responses, such as neovascularisation, cell differentiation, cell proliferation, and antimicrobial and immunomodulatory activity. The study of nanocomposites as tissue engineering scaffolds is a highly active area mostly focused on bone and cartilage regeneration with promising results. Nonetheless, there are still many challenges related to their application in other tissues, a better understanding of the interaction between the inorganic and organic phases, and the associated biological response.
Collapse
Affiliation(s)
- Augusto Zuluaga-Vélez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Adrián Quintero-Martinez
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Lina M Orozco
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia; Grupo Polifenoles, Facultad de Tecnologías, Escuela de Química, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Juan C Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.
| |
Collapse
|
28
|
Pryadko A, Surmeneva MA, Surmenev RA. Review of Hybrid Materials Based on Polyhydroxyalkanoates for Tissue Engineering Applications. Polymers (Basel) 2021; 13:1738. [PMID: 34073335 PMCID: PMC8199458 DOI: 10.3390/polym13111738] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
This review is focused on hybrid polyhydroxyalkanoate-based (PHA) biomaterials with improved physico-mechanical, chemical, and piezoelectric properties and controlled biodegradation rate for applications in bone, cartilage, nerve and skin tissue engineering. PHAs are polyesters produced by a wide range of bacteria under unbalanced growth conditions. They are biodegradable, biocompatible, and piezoelectric polymers, which make them very attractive biomaterials for various biomedical applications. As naturally derived materials, PHAs have been used for multiple cell and tissue engineering applications; however, their widespread biomedical applications are limited due to their lack of toughness, elasticity, hydrophilicity and bioactivity. The chemical structure of PHAs allows them to combine with other polymers or inorganic materials to form hybrid composites with improved structural and functional properties. Their type (films, fibers, and 3D printed scaffolds) and properties can be tailored with fabrication methods and materials used as fillers. Here, we are aiming to fill in a gap in literature, revealing an up-to-date overview of ongoing research strategies that make use of PHAs as versatile and prospective biomaterials. In this work, a systematic and detailed review of works investigating PHA-based hybrid materials with tailored properties and performance for use in tissue engineering applications is carried out. A literature survey revealed that PHA-based composites have better performance for use in tissue regeneration applications than pure PHA.
Collapse
Affiliation(s)
| | | | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 30 Lenina Avenue, Tomsk 634050, Russia; (A.P.); (M.A.S.)
| |
Collapse
|
29
|
Cellulose-Chitosan-Nanohydroxyapatite Hybrid Composites by One-Pot Synthesis for Biomedical Applications. Polymers (Basel) 2021; 13:polym13101655. [PMID: 34069677 PMCID: PMC8161035 DOI: 10.3390/polym13101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022] Open
Abstract
The development of organic–inorganic hybrid materials deserves special interest for bone tissue engineering applications, where materials must have properties that induce the survival and activation of cells derived from the mesenchyme. In this work, four bio-nanocomposites based on cellulose and variable content of chitosan, from 15 to 50 w% based on cellulose, with nanohydroxyapatite and β-Glycerophosphate as cross-linking agent were synthesized by simplified and low-energy-demanding solvent exchange method to determine the best ratio of chitosan to cellulose matrix. This study analyzes the metabolic activity and survival of human dermal fibroblast cells cultivated in four bio-nanocomposites based on cellulose and the variable content of chitosan. The biocompatibility was tested by the in vitro cytotoxicity assays Live/Dead and PrestoBlue. In addition, the composites were characterized by FTIR, XRD and SEM. The results have shown that the vibration bands of β-Glycerophosphate have prevailed over the other components bands, while new diffraction planes have emerged from the interaction between the cross-linking agent and the biopolymers. The bio-nanocomposite micrographs have shown no surface porosity as purposely designed. On the other hand, cell death and detachment were observed when the composites of 1 and 0.1 w/v% were used. However, the composite containing 10 w% chitosan, against the sum of cellulose and β-Glycerophosphate, has shown less cell death and detachment when used at 0.01 w/v%, making it suitable for more in vitro studies in bone tissue engineering, as a promising economical biomaterial.
Collapse
|
30
|
Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. PROGRESS IN MATERIALS SCIENCE 2021; 117:100721. [DOI: 10.1016/j.pmatsci.2020.100721] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
31
|
Karbowniczek JE, Kaniuk Ł, Berniak K, Gruszczyński A, Stachewicz U. Enhanced Cells Anchoring to Electrospun Hybrid Scaffolds With PHBV and HA Particles for Bone Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:632029. [PMID: 33681169 PMCID: PMC7928304 DOI: 10.3389/fbioe.2021.632029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Hybrid materials combining organic and inorganic compounds used as scaffolds are highly beneficial in bone regeneration. In this study, we successfully produced by blend electrospinning poly(3-hydroxybutyric acid-co-3-hydrovaleric acid) (PHBV) scaffolds enriched with hydroxyapatite (HA) particles to biomimic bone tissue for improved and faster regeneration processes. The morphology, fiber diameters, and composition of the scaffolds were investigated by scanning electron microscopy (SEM) techniques followed by focused ion beam (FIB) sectioning to verify HA particles integration with PHBV fibers. In vitro cell culture was performed for 7 days and followed with the cell proliferation test (CellTiter-Blue® Assay). Additionally, cell integration with the scaffold was visualized by confocal and SEM imaging. We developed a simple way of obtaining hybrid scaffolds by electrospinning PHBV solution with HA particles without any post-processing. The PHBV + HA scaffold enhanced cell proliferation and filopodia formation responsible for cell anchoring within the created 3D environment. The obtained results show the great potential in the development of hybrid scaffolds stimulating bone tissue regeneration.
Collapse
Affiliation(s)
- Joanna E Karbowniczek
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Łukasz Kaniuk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Krzysztof Berniak
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Adam Gruszczyński
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Kraków, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Kraków, Poland
| |
Collapse
|
32
|
Zhao D, Zhu T, Li J, Cui L, Zhang Z, Zhuang X, Ding J. Poly(lactic- co-glycolic acid)-based composite bone-substitute materials. Bioact Mater 2021; 6:346-360. [PMID: 32954053 PMCID: PMC7475521 DOI: 10.1016/j.bioactmat.2020.08.016] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 01/01/2023] Open
Abstract
Research and development of the ideal artificial bone-substitute materials to replace autologous and allogeneic bones for repairing bone defects is still a challenge in clinical orthopedics. Recently, poly(lactic-co-glycolic acid) (PLGA)-based artificial bone-substitute materials are attracting increasing attention as the benefit of their suitable biocompatibility, degradability, mechanical properties, and capabilities to promote bone regeneration. In this article, we comprehensively review the artificial bone-substitute materials made from PLGA or the composites of PLGA and other organic and inorganic substances, elaborate on their applications for bone regeneration with or without bioactive factors, and prospect the challenges and opportunities in clinical bone regeneration.
Collapse
Affiliation(s)
- Duoyi Zhao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, 4 Chongshandong Road, Shenyang, 110032, PR China
| | - Tongtong Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130033, PR China
| | - Jie Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
| | - Liguo Cui
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun, 130022, PR China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, 4 Chongshandong Road, Shenyang, 110032, PR China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun, 130022, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, PR China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun, 130022, PR China
| |
Collapse
|
33
|
Mobika J, Rajkumar M, Linto Sibi SP, Nithya Priya V. Investigation on hydrogen bonds and conformational changes in protein/polysaccharide/ceramic based tri-component system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118836. [PMID: 32858448 DOI: 10.1016/j.saa.2020.118836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/18/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The main attention of present work is to study the molecular level interactions in the interface of biocomposite to increase their applicability. A specific kind of molecular interaction namely, hydrogen bonds play a vital role in deciding composite property. In this study, we construct a tri-component system based on silk fibroin/sodium alginate/hydroxyapatite by varying protein and polysaccharide proportions using in-situ co-precipitation method. The Fourier Transfer Infrared (FTIR) prediction state that prepared composite exhibit inter-(OH⋯N, OH⋯O, OH⋯π) and intra-(OH⋯OH) molecular hydrogen bonds and their strength are varied in accordance with composition of composite. During composite preparation, conformational changes from the random coil to β-sheet structure through intermediate β-turns exist within the protein molecule that is confirmed by vibrational spectra. The crystallographic profile and morphology of HAP were greatly influenced by virtue of polymer matrix. Simulated body fluid (SBF) immersion study shows that biodegradation and swelling ratio are correlated with type of hydrogen bond and secondary structure of protein. Moreover, the in-vitro biomineralization, cytotoxicity and antibacterial activity of composite were analysed in detail.
Collapse
Affiliation(s)
- J Mobika
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamilnadu 641014, India
| | - M Rajkumar
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamilnadu 641014, India.
| | - S P Linto Sibi
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamilnadu 641014, India
| | - V Nithya Priya
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamilnadu 641014, India
| |
Collapse
|
34
|
Novel Semi-Interpenetrated Polymer Networks of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly (Vinyl Alcohol) with Incorporated Conductive Polypyrrole Nanoparticles. Polymers (Basel) 2020; 13:polym13010057. [PMID: 33375726 PMCID: PMC7795713 DOI: 10.3390/polym13010057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 12/02/2022] Open
Abstract
This paper reports the preparation and characterization of semi-interpenetrating polymer networks (semi-IPN) of poly(3-hydroxybutirate-co-3-hydroxyvalerate), PHBV, and poly (vinyl alcohol), PVA, with conductive polypirrole (PPy) nanoparticles. Stable hybrid semi-IPN (PHBV/PVA 30/70 ratio) hydrogels were produced by solvent casting, dissolving each polymer in chloroform and 1-methyl-2-pyrrolidone respectively, and subsequent glutaraldehyde crosslinking of the PVA chains. The microstructure and physical properties of this novel polymeric system were analysed, including thermal behaviour and degradation, water sorption, wettability and electrical conductivity. The conductivity of these advanced networks rose significantly at higher PPy nanoparticles content. Fourier transform infrared spectroscopy (FTIR) and calorimetry characterization indicated good miscibility and compatibility between all the constituents, with no phase separation and strong interactions between phases. A single glass transition was observed between those of pure PHBV and PVA, although PVA was dominant in its contribution to the glass transition process. Incorporating PPy nanoparticles significantly reduced the hydrogel swelling, even at low concentrations, indicating molecular interactions between the PPy nanoparticles and the hydrogel matrix. The PHBV/PVA semi-IPN showed higher thermal stability than the neat polymers and PHBV/PVA blend, which also remained in the tertiary systems.
Collapse
|
35
|
Sukhanova A, Murzova A, Boyandin A, Kiselev E, Sukovatyi A, Kuzmin A, Shabanov A. Poly-3-hydroxybutyrate/chitosan composite films and nonwoven mats. Int J Biol Macromol 2020; 165:2947-2956. [DOI: 10.1016/j.ijbiomac.2020.10.177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022]
|
36
|
Kumar SSD, Abrahamse H. Advancement of Nanobiomaterials to Deliver Natural Compounds for Tissue Engineering Applications. Int J Mol Sci 2020; 21:E6752. [PMID: 32942542 PMCID: PMC7555266 DOI: 10.3390/ijms21186752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Recent advancement in nanotechnology has provided a wide range of benefits in the biological sciences, especially in the field of tissue engineering and wound healing. Nanotechnology provides an easy process for designing nanocarrier-based biomaterials for the purpose and specific needs of tissue engineering applications. Naturally available medicinal compounds have unique clinical benefits, which can be incorporated into nanobiomaterials and enhance their applications in tissue engineering. The choice of using natural compounds in tissue engineering improves treatment modalities and can deal with side effects associated with synthetic drugs. In this review article, we focus on advances in the use of nanobiomaterials to deliver naturally available medicinal compounds for tissue engineering application, including the types of biomaterials, the potential role of nanocarriers, and the various effects of naturally available medicinal compounds incorporated scaffolds in tissue engineering.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
37
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
38
|
Tahmasebi A, Shapouri Moghadam A, Enderami SE, Islami M, Kaabi M, Saburi E, Daei Farshchi A, Soleimanifar F, Mansouri V. Aloe Vera-Derived Gel-Blended PHBV Nanofibrous Scaffold for Bone Tissue Engineering. ASAIO J 2020; 66:966-973. [PMID: 32740360 DOI: 10.1097/mat.0000000000001094] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Today, composite scaffolds fabricated by natural and synthetic polymers have attracted a lot of attention among researchers in the field of tissue engineering, and given their combined properties that can play a very useful role in repairing damaged tissues. In the current study, aloe vera-derived gel-blended poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanofibrous scaffold was fabricated by electrospinning, and then, PHBV and PHBV gel fabricated scaffolds characterized by scanning electron microscope, protein adsorption, cell attachment, tensile and cell's viability tests. After that, osteogenic supportive property of the scaffolds was studied by culturing of human-induced pluripotent stem cells on the scaffolds under osteogenic medium and evaluating of the common bone-related markers. The results showed that biocompatibility of the PHBV nanofibrous scaffold significantly improved when combined with the aloe vera gel. In addition, higher amounts of alkaline phosphatase activity, mineralization, and bone-related gene and protein expression were detected in stem cells when grown on PHBV-gel scaffold in comparison with those stem cells grown on the PHBV and culture plate. Taken together, it can be concluded that aloe vera gel-blended PHBV scaffold has a great promising osteoinductive potential that can be used as a suitable bioimplant for bone tissue engineering applications to accelerate bone regeneration and also degraded completely along with tissue regeneration.
Collapse
Affiliation(s)
- Aylin Tahmasebi
- From the Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Abbas Shapouri Moghadam
- Department of Immunogenetics, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Islami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohamad Kaabi
- From the Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Daei Farshchi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Soleimanifar
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Vahid Mansouri
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Substantial effect of silk fibroin reinforcement on properties of hydroxyapatite/silk fibroin nanocomposite for bone tissue engineering application. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127739] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Ang SL, Shaharuddin B, Chuah JA, Sudesh K. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silk fibroin film is a promising scaffold for bone tissue engineering. Int J Biol Macromol 2020; 145:173-188. [DOI: 10.1016/j.ijbiomac.2019.12.149] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/08/2019] [Accepted: 12/17/2019] [Indexed: 01/03/2023]
|
41
|
Valarmathi N, Sumathi S. Biomimetic hydroxyapatite/silkfibre/methylcellulose composites for bone tissue engineering applications. NEW J CHEM 2020. [DOI: 10.1039/c9nj05592d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydroxyapatite (HAP)/silk fibre (SF)/methylcellulose (MC) composites were developed by an electrospinning (E-Spin) method.
Collapse
|
42
|
Silk Fibroin Bioinks for Digital Light Processing (DLP) 3D Bioprinting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:53-66. [DOI: 10.1007/978-981-15-3258-0_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Jacob J, More N, Mounika C, Gondaliya P, Kalia K, Kapusetti G. Smart Piezoelectric Nanohybrid of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Barium Titanate for Stimulated Cartilage Regeneration. ACS APPLIED BIO MATERIALS 2019; 2:4922-4931. [DOI: 10.1021/acsabm.9b00667] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jaicy Jacob
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Namdev More
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Choppadandi Mounika
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| | - Govinda Kapusetti
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
44
|
Chahal S, Kumar A, Hussian FSJ. Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1308-1355. [DOI: 10.1080/09205063.2019.1630699] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sugandha Chahal
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia
| | - Anuj Kumar
- Natural Resources Institute Finland (Luke), Espoo, Finland
| | | |
Collapse
|
45
|
Gil-Castell O, Badia JD, Bou J, Ribes-Greus A. Performance of Polyester-Based Electrospun Scaffolds under In Vitro Hydrolytic Conditions: From Short-Term to Long-Term Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E786. [PMID: 31121950 PMCID: PMC6566282 DOI: 10.3390/nano9050786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 °C. The scaffolds for short-time applications were PLGA and PDO, in which the molar mass diminished down to 20% in a 20-30 days lifespan. While PDO developed crystallinity that prevented the geometry of the fibres, those of PLGA coalesced and collapsed. The scaffolds for long-term applications were PCL and PHB, in which the molar mass followed a progressive decrease, reaching values of 10% for PCL and almost 50% for PHB after 650 days of immersion. This resistant pattern was mainly ascribed to the stability of the crystalline domains of the fibres, in which the diameters remained almost unaffected. From the perspective of an adequate balance between the durability and degradation, this study may serve technologists as a reference point to design polyester-based scaffolds for biomedical applications.
Collapse
Affiliation(s)
- Oscar Gil-Castell
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain.
| | - José David Badia
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
- Departament d'Enginyeria Química, Escola Tècnica Superior d'Enginyeria, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain.
| | - Jordi Bou
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647 (ETSEIB), 08028 Barcelona, Spain.
| | - Amparo Ribes-Greus
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
46
|
Alissa Alam H, Dalgic AD, Tezcaner A, Ozen C, Keskin D. A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1581198] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hani Alissa Alam
- Graduate Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
| | - Ali Deniz Dalgic
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
| | - Aysen Tezcaner
- Graduate Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| | - Can Ozen
- Graduate Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
- Central Laboratory, Middle East Technical University, Ankara, Turkey
| | - Dilek Keskin
- Graduate Department of Biotechnology, Middle East Technical University, Ankara, Turkey
- MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Ankara, Turkey
- Department of Engineering Sciences, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
47
|
Gong W, Cheng T, Liu Q, Xiao Q, Li J. Surgical repair of abdominal wall defect with biomimetic nano/microfibrous hybrid scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:828-837. [DOI: 10.1016/j.msec.2018.08.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/10/2018] [Accepted: 08/27/2018] [Indexed: 01/10/2023]
|
48
|
Narayanan V, Sumathi S. Preparation, characterization and in vitro biological study of silk fiber/methylcellulose composite for bone tissue engineering applications. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2518-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: high-resolution tomography and in vitro study. Sci Rep 2018; 8:8907. [PMID: 29891842 PMCID: PMC5995873 DOI: 10.1038/s41598-018-27097-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023] Open
Abstract
To date, special interest has been paid to composite scaffolds based on polymers enriched with hydroxyapatite (HA). However, the role of HA containing different trace elements such as silicate in the structure of a polymer scaffold has not yet been fully explored. Here, we report the potential use of silicate-containing hydroxyapatite (SiHA) microparticles and microparticle aggregates in the predominant range from 2.23 to 12.40 µm in combination with polycaprolactone (PCL) as a hybrid scaffold with randomly oriented and well-aligned microfibers for regeneration of bone tissue. Chemical and mechanical properties of the developed 3D scaffolds were investigated with XRD, FTIR, EDX and tensile testing. Furthermore, the internal structure and surface morphology of the scaffolds were analyzed using synchrotron X-ray µCT and SEM. Upon culturing human mesenchymal stem cells (hMSC) on PCL-SiHA scaffolds, we found that both SiHA inclusion and microfiber orientation affected cell adhesion. The best hMSCs viability was revealed at 10 day for the PCL-SiHA scaffolds with well-aligned structure (~82%). It is expected that novel hybrid scaffolds of PCL will improve tissue ingrowth in vivo due to hydrophilic SiHA microparticles in combination with randomly oriented and well-aligned PCL microfibers, which mimic the structure of extracellular matrix of bone tissue.
Collapse
|
50
|
Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater 2018; 73:1-20. [PMID: 29673838 DOI: 10.1016/j.actbio.2018.04.026] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022]
Abstract
The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. STATEMENT OF SIGNIFICANCE Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing interest of the scientific community and compelling results of the published research articles has been the motivation of this review article. This article summarizes the significant progress in the field with a focus on the fabrication aspects of piezoelectric materials. The review of both material and cellular aspects on this topic ensures that this paper appeals to both material scientists and tissue engineers.
Collapse
|