1
|
Daget TM, Kassie BB, Tassew DF. A shift from synthetic to bio-based polymer for functionalization of textile materials: A review. Int J Biol Macromol 2025; 306:141637. [PMID: 40037460 DOI: 10.1016/j.ijbiomac.2025.141637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Textiles are used in various wearable and technical applications, requiring diverse properties. Functionalization refers to processes that impart new properties, such as flame retardancy, anti-microbial effects, UV protection, and hydrophobicity. The textile industry is shifting from synthetic polymers to eco-friendly biopolymers, which offer biodegradability and sustainability, reducing environmental impact. Biopolymer-based finishes improve performance while being safer and greener, supporting global sustainability goals. This review focuses on biopolymers used for textile functionalization and their potential in advanced medical applications like drug delivery and tissue engineering. Common biopolymer sources include renewable resources such as plants, microorganisms, and animals. Notable biopolymers, like bacterial and plant-based nanocellulose, lignin, chitosan, alginate, gelatin, collagen, keratin, and polylactic acid (PLA), are used for functions like anti-microbial, flame retardant, UV protective, and antioxidant properties. These biopolymers are also applied in tissue engineering, drug delivery, wound healing, and cosmetics as eco-friendly, biodegradable alternatives to petroleum-based materials.
Collapse
Affiliation(s)
- Tekalgn Mamay Daget
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| | - Bantamlak Birlie Kassie
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Dehenenet Flatie Tassew
- Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
2
|
El Khatib S, Hammoudi Halat D, Khaled S, Malki A, Alameddine B. Novel Compounds for Hair Repair: Chemical Characterization and In Vitro Analysis of Thiol Cross-Linking Agents. Pharmaceuticals (Basel) 2025; 18:632. [PMID: 40430453 PMCID: PMC12115070 DOI: 10.3390/ph18050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Introduction: Hair damage from chemical treatments, mechanical stress, and environmental factors can lead to significant degradation in hair quality, necessitating effective solutions for restoration. The aim of this study was to develop and evaluate novel compounds for repairing hair damage through the chemical regeneration of disulfide bridges. Materials and Methods: Three novel thiol-reactive cross-linking agents (APA, STA, SAA) were synthesized and characterized. Their efficacy in repairing hair damage was evaluated through in vitro tensile strength tests on human hair fibers, comparing treated and untreated samples. Cysteine reactivity tests were also performed to assess the capability of these agents to restore disulfide bridges in hair keratin. Results: The tensile strength tests revealed significant improvements in the mechanical properties of treated hair fibers compared to untreated samples. APA demonstrated the highest efficacy in restoring tensile strength and elasticity, showing higher performance in mechanical strengthening. The cysteine reactivity tests confirmed that APA could effectively re-establish disulfide bonds, particularly at higher temperatures. STA, while less effective than APA, showed substantial efficiency in restoring disulfide bonds. When compared to the reference agent, both APA and STA exhibited higher performance in tensile strength and cysteine reactivity, with APA showing the greatest improvement in mechanical properties. Conclusions: Our study successfully revealed the potential of the synthesized thiol-reactive cross-linking agents in repairing hair damage by chemically regenerating disulfide bridges. These findings offer a promising new direction for the development of advanced hair repair treatments in the cosmetic industry.
Collapse
Affiliation(s)
- Sami El Khatib
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa P.O. Box 146404, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology (GUST), West Mishref 32093, Kuwait
| | - Dalal Hammoudi Halat
- QU Health Office of Assessment and Accreditation, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Sanaa Khaled
- Department of Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa P.O. Box 146404, Lebanon;
| | - Ahmed Malki
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Bassam Alameddine
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait;
| |
Collapse
|
3
|
Buratti E, Sguizzato M, Sotgiu G, Zamboni R, Bertoldo M. Keratin-PNIPAM Hybrid Microgels: Preparation, Morphology and Swelling Properties. Gels 2024; 10:411. [PMID: 38920957 PMCID: PMC11202486 DOI: 10.3390/gels10060411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Combinations of synthetic polymers, such as poly(N-isopropylacrylamide) (PNIPAM), with natural biomolecules, such as keratin, show potential in the field of biomedicine, since these hybrids merge the thermoresponsive properties of PNIPAM with the bioactive characteristics of keratin. This synergy aims to produce hybrids that can respond to environmental stimuli while maintaining biocompatibility and functionality, making them suitable for various medical and biotechnological uses. In this study, we exploit keratin derived from wool waste in the textile industry, extracted via sulfitolysis, to synthesize hybrids with PNIPAM microgel. Utilizing two distinct methods-polymerization of NIPAM with keratin (HYB-P) and mixing preformed PNIPAM microgels with keratin (HYB-M)-resulted in hybrids with 20% and 25% keratin content, respectively. Dynamic light scattering (DLS) and transmission electron microscopic (TEM) analyses indicated the formation of colloidal systems with particle sizes of around 110 nm for HYB-P and 518 nm for HYB-M. The presence of keratin in both systems, 20% and 25%, respectively, was confirmed by spectroscopic (FTIR and NMR) and elemental analyses. Distinct structural differences were observed between HYB-P and HYB-M, suggesting a graft copolymer configuration for the former hybrid and a complexation for the latter one. Furthermore, these hybrids demonstrated temperature responsiveness akin to PNIPAM microgels and pH responsiveness, underscoring their potential for diverse biomedical applications.
Collapse
Affiliation(s)
- Elena Buratti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (M.S.); (M.B.)
| | - Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (M.S.); (M.B.)
| | - Giovanna Sotgiu
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council, Via Gobetti 101, 40129 Bologna, Italy; (G.S.); (R.Z.)
| | - Roberto Zamboni
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council, Via Gobetti 101, 40129 Bologna, Italy; (G.S.); (R.Z.)
| | - Monica Bertoldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy; (M.S.); (M.B.)
| |
Collapse
|
4
|
Dehghan-Niri M, Vasheghani-Farahani E, Eslaminejad MB, Tavakol M, Bagheri F. Preparation of gum tragacanth/poly (vinyl alcohol)/halloysite hydrogel using electron beam irradiation with potential for bone tissue engineering. Carbohydr Polym 2023; 305:120548. [PMID: 36737197 DOI: 10.1016/j.carbpol.2023.120548] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/01/2023] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Nanocomposite hydrogels based on tyramine conjugated gum tragacanth, poly (vinyl alcohol) (PVA), and halloysite nanotubes (HNTs) were prepared by electron beam irradiation and characterized. The FTIR, 1H NMR, and TGA results confirmed the chemical incorporation of HNTs into gum tragacanth. Gel content and swelling of hydrogels decreased with HNTs loading up to 20 % wt. The mechanical strength of hydrogels increased by increasing HNTs content up to 10 % with 371 kPa fracture stress at 0.95 fracture strain, compared to 312 kPa stress at 0.79 strain for gum tragacanth/PVA hydrogel. Hydrogel's biocompatibility and osteogenic activity were tested by seeding rabbit bone marrow mesenchymal stem cells. The cell viability was >85 % after 7 days of culture. In vitro secretion of ALP and calcium deposition on hydrogels in alizarin red assay after 21 days of culture indicated hydrogel potential for bone tissue engineering.
Collapse
Affiliation(s)
- Maryam Dehghan-Niri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Moslem Tavakol
- Department of Chemical and Polymer Engineering, Yazd University, Yazd, Iran
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Yan RR, Gong JS, Su C, Liu YL, Qian JY, Xu ZH, Shi JS. Preparation and applications of keratin biomaterials from natural keratin wastes. Appl Microbiol Biotechnol 2022; 106:2349-2366. [DOI: 10.1007/s00253-022-11882-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022]
|
6
|
Anbesaw MS. Bioconversion of Keratin Wastes Using Keratinolytic Microorganisms to Generate Value-Added Products. Int J Biomater 2022; 2022:2048031. [PMID: 37251738 PMCID: PMC10212687 DOI: 10.1155/2022/2048031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2023] Open
Abstract
The management of keratinous wastes generated from different industries is becoming a major concern across the world. In each year, more than a billion tons of keratin waste is released into the environment. Despite some trials that have been performed and utilize this waste into valuable products, still a huge amount of keratin waste from different sources is a less explored biomaterial for making valuable products. This indicates that the huge amount of keratin waste is neither disposed properly nor converted into usable products rather thrown away to the environment that causes environmental pollution. Due to the introduction of this waste associated with different pathogenic organisms into soil and water bodies, human beings and other small and large animals are affected by different diseases. Therefore, there is a need for modern and ecofriendly approaches to dispose and convert this waste into usable products. Hence, the objective of this review is to give a concise overview regarding the degradation of keratin waste by biological approaches using keratinase producing microorganisms. The review also focuses on the practical use of keratinases and the economical importance of bioconverted products of keratinous wastes for different applications. Various researches have been studied about the source, disposal mechanisms, techniques of hydrolysis, potential use, and physical and chemical properties of keratin wastes. However, there is negligible information with regard to the use of keratin wastes as media supplements for the growth of keratinolytic microorganisms and silver retrieval from photographic and used X-ray films. Hence, this review differs from other similar reviews in the literature in that it discusses these neglected concerns.
Collapse
Affiliation(s)
- Muhammed Seid Anbesaw
- Wollo University, School of Bio-Science and Technology, Department of Biotechnology, Dessie, Ethiopia
| |
Collapse
|
7
|
Elbalasy I, Wilharm N, Herchenhahn E, Konieczny R, Mayr SG, Schnauß J. From Strain Stiffening to Softening—Rheological Characterization of Keratins 8 and 18 Networks Crosslinked via Electron Irradiation. Polymers (Basel) 2022; 14:polym14030614. [PMID: 35160604 PMCID: PMC8838340 DOI: 10.3390/polym14030614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Networks of crosslinked keratin filaments are abundant in epithelial cells and tissues, providing resilience against mechanical forces and ensuring cellular integrity. Although studies of in vitro models of reconstituted keratin networks have revealed important mechanical aspects, the mechanical properties of crosslinked keratin structures remain poorly understood. Here, we exploited the power of electron beam irradiation (EBI) to crosslink in vitro networks of soft epithelial keratins 8 and 18 (k8–k18) filaments with different irradiation doses (30 kGy, 50 kGy, 80 kGy, 100 kGy, and 150 kGy). We combined bulk shear rheology with confocal microscopy to investigate the impact of crosslinking on the mechanical and structural properties of the resultant keratin gels. We found that irradiated keratin gels display higher linear elastic modulus than the unirradiated, entangled networks at all doses tested. However, at the high doses (80 kGy, 100 kGy, and 150 kGy), we observed a remarkable drop in the elastic modulus compared to 50 kGy. Intriguingly, the irradiation drastically changed the behavior for large, nonlinear deformations. While untreated keratin networks displayed a strong strain stiffening, increasing irradiation doses shifted the system to a strain softening behavior. In agreement with the rheological behavior in the linear regime, the confocal microscopy images revealed fully isotropic networks with high percolation in 30 kGy and 50 kGy-treated keratin samples, while irradiation with 100 kGy induced the formation of thick bundles and clusters. Our results demonstrate the impact of permanent crosslinking on k8–k18 mechanics and provide new insights into the potential contribution of intracellular covalent crosslinking to the loss of mechanical resilience in some human keratin diseases. These insights will also provide inspiration for the synthesis of new keratin-based biomaterials.
Collapse
Affiliation(s)
- Iman Elbalasy
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Nils Wilharm
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Erik Herchenhahn
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| | - Robert Konieczny
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
| | - Stefan G. Mayr
- Leibniz-Institut für Oberflächenmodifizierung e.V. (IOM), Permoserstr. 15, 04318 Leipzig, Germany; (N.W.); (R.K.)
- Division of Surface Physics, Department of Physics and Earth Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| | - Jörg Schnauß
- Peter-Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstraße 1, 04103 Leipzig, Germany
- Unconventional Computing Lab, Department of Computer Science and Creative Technologies, UWE, Bristol BS16 1QY, UK
- Correspondence: (I.E.); (S.G.M.); (J.S.)
| |
Collapse
|
8
|
Hybrid antibacterial hydrogels based on PVP and keratin incorporated with lavender extract. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02681-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Perța-Crișan S, Ursachi CȘ, Gavrilaș S, Oancea F, Munteanu FD. Closing the Loop with Keratin-Rich Fibrous Materials. Polymers (Basel) 2021; 13:1896. [PMID: 34200460 PMCID: PMC8201023 DOI: 10.3390/polym13111896] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
One of the agro-industry's side streams that is widely met is the-keratin rich fibrous material that is becoming a waste product without valorization. Its management as a waste is costly, as the incineration of this type of waste constitutes high environmental concern. Considering these facts, the keratin-rich waste can be considered as a treasure for the producers interested in the valorization of such slowly-biodegradable by-products. As keratin is a protein that needs harsh conditions for its degradation, and that in most of the cases its constitutive amino acids are destroyed, we review new extraction methods that are eco-friendly and cost-effective. The chemical and enzymatic extractions of keratin are compared and the optimization of the extraction conditions at the lab scale is considered. In this study, there are also considered the potential applications of the extracted keratin as well as the reuse of the by-products obtained during the extraction processes.
Collapse
Affiliation(s)
- Simona Perța-Crișan
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Claudiu Ștefan Ursachi
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Simona Gavrilaș
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| | - Florin Oancea
- Bioresource Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM Bucharest, 202 Splaiul Independentei, 6th District, 060021 Bucharest, Romania;
| | - Florentina-Daniela Munteanu
- Faculty of Food Engineering, Tourism and Environmental Protection, “Aurel Vlaicu” University of Arad, 2-4 E. Drăgoi Str., 310330 Arad, Romania; (S.P.-C.); (C.Ș.U.); (S.G.)
| |
Collapse
|
10
|
Dehghan-Niri M, Vasheghani-Farahani E, Baghaban Eslaminejad M, Tavakol M, Bagheri F. Physicomechanical, rheological and in vitro cytocompatibility properties of the electron beam irradiated blend hydrogels of tyramine conjugated gum tragacanth and poly (vinyl alcohol). MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111073. [PMID: 32994011 DOI: 10.1016/j.msec.2020.111073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/28/2023]
Abstract
In the present study, preparation of blend hydrogels of tyramine conjugated gum tragacanth and poly (vinyl alcohol) was carried out by electron beam irradiation, and modification of hydrogel properties with poly (vinyl alcohol) was demonstrated. Gel content, swelling behavior, pore size and mechanical and rheological properties of hydrogels prepared at 14, 28 and 56 kilogray (kGy) with different ratios of polymers were investigated. Gel content increased from 67 ± 2% for pure tyramine conjugated gum tragacanth hydrogel to >92% for blend hydrogels. However, the corresponding equilibrium swelling degree decreased from 35.21 ± 1.51 to 9.14 ± 1.66 due to the higher crosslink density of blend hydrogel. The mechanical strength of the hydrogels with interconnected pores increased significantly in the presence of poly (vinyl alcohol) and increasing irradiation dose up to 28 kGy with a twenty-fold enhancement of stress fracture and excellent elastic recovery in cyclic compression analysis. The equilibrium swelling degree of blend hydrogel containing 3% w/v tyramine conjugated gum tragacanth and 2% w/v poly (vinyl alcohol) prepared at 28 kGy was 16.59 ± 0.81. The biocompatibility of hydrogels was tested in the presence of rabbit bone marrow mesenchymal stem cells. The viability of cells exposed to hydrogel extract was >92% after 7 days of culture and indicated hydrogel biocompatibility with potential biomedical applications.
Collapse
Affiliation(s)
- Maryam Dehghan-Niri
- Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | | | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Moslem Tavakol
- Department of Chemical & Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Pourshahrestani S, Zeimaran E, Kadri NA, Mutlu N, Boccaccini AR. Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Adv Healthc Mater 2020; 9:e2000905. [PMID: 32940025 DOI: 10.1002/adhm.202000905] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Broad interest in developing new hemostatic technologies arises from unmet needs in mitigating uncontrolled hemorrhage in emergency, surgical, and battlefield settings. Although a variety of hemostats, sealants, and adhesives are available, development of ideal hemostatic compositions that offer a range of remarkable properties including capability to effectively and immediately manage bleeding, excellent mechanical properties, biocompatibility, biodegradability, antibacterial effect, and strong tissue adhesion properties, under wet and dynamic conditions, still remains a challenge. Benefiting from tunable mechanical properties, high porosity, biocompatibility, injectability and ease of handling, polymeric hydrogels with outstanding hemostatic properties have been receiving increasing attention over the past several years. In this review, after shedding light on hemostasis and wound healing processes, the most recent progresses in hydrogel systems engineered from natural and synthetic polymers for hemostatic applications are discussed based on a comprehensive literature review. Most studies described used in vivo models with accessible and compressible wounds to assess the hemostatic performance of hydrogels. The challenges that need to be tackled to accelerate the translation of these novel hemostatic hydrogel systems to clinical practice are emphasized and future directions for research in the field are presented.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Ehsan Zeimaran
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Nurshen Mutlu
- FunGlass – Centre for Functional and Surface Functionalized Glass Alexander Dubcek University of Trencin Trencin 911 50 Slovakia
| | - Aldo R. Boccaccini
- Institute of Biomaterials Department of Materials Science and Engineering University of Erlangen‐Nuremberg Erlangen 91058 Germany
| |
Collapse
|
12
|
Feroz S, Muhammad N, Ranayake J, Dias G. Keratin - Based materials for biomedical applications. Bioact Mater 2020; 5:496-509. [PMID: 32322760 PMCID: PMC7171262 DOI: 10.1016/j.bioactmat.2020.04.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
Keratin constitutes the major component of the feather, hair, hooves, horns, and wool represents a group of biological material having high cysteine content (7-13%) as compared to other structural proteins. Keratin -based biomaterials have been investigated extensively over the past few decades due to their intrinsic biological properties and excellent biocompatibility. Unlike other natural polymers such as starch, collagen, chitosan, the complex three-dimensional structure of keratin requires the use of harsh chemical conditions for their dissolution and extraction. The most commonly used methods for keratin extraction are oxidation, reduction, steam explosion, microbial method, microwave irradiation and use of ionic liquids. Keratin -based materials have been used extensively for various biomedical applications such as drug delivery, wound healing, tissue engineering. This review covers the structure, properties, history of keratin research, methods of extraction and some recent advancements related to the use of keratin derived biomaterials in the form of a 3-D scaffold, films, fibers, and hydrogels.
Collapse
Affiliation(s)
- Sandleen Feroz
- Department of Anatomy, School of Biomedical Sciences University of Otago, Otago, 9016, New Zealand
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Jithendra Ranayake
- Department of Anatomy, School of Biomedical Sciences University of Otago, Otago, 9016, New Zealand
| | - George Dias
- Department of Anatomy, School of Biomedical Sciences University of Otago, Otago, 9016, New Zealand
| |
Collapse
|
13
|
Vasile C, Pamfil D, Stoleru E, Baican M. New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules 2020; 25:E1539. [PMID: 32230990 PMCID: PMC7180755 DOI: 10.3390/molecules25071539] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/08/2023] Open
Abstract
New trends in biomedical applications of the hybrid polymeric hydrogels, obtained by combining natural polymers with synthetic ones, have been reviewed. Homopolysaccharides, heteropolysaccharides, as well as polypeptides, proteins and nucleic acids, are presented from the point of view of their ability to form hydrogels with synthetic polymers, the preparation procedures for polymeric organic hybrid hydrogels, general physico-chemical properties and main biomedical applications (i.e., tissue engineering, wound dressing, drug delivery, etc.).
Collapse
Affiliation(s)
- Cornelia Vasile
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Daniela Pamfil
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Elena Stoleru
- Physical Chemistry of Polymers Department, “P. Poni” Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, RO, Iaşi 700484, Romania; (D.P.); (E.S.)
| | - Mihaela Baican
- Pharmaceutical Physics Department, “Grigore T. Popa” Medicine and Pharmacy University, 16, University Str., Iaşi 700115, Romania
| |
Collapse
|
14
|
|
15
|
Smart release of antimicrobial ZnO nanoplates from a pH-responsive keratin hydrogel. J Colloid Interface Sci 2019; 536:372-380. [DOI: 10.1016/j.jcis.2018.10.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
|
16
|
|
17
|
Guo T, Yang X, Deng J, Zhu L, Wang B, Hao S. Keratin nanoparticles-coating electrospun PVA nanofibers for potential neural tissue applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 30:9. [PMID: 30594975 DOI: 10.1007/s10856-018-6207-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Keratin has the potential to improve biocompatibility and bioactivity of polymeric nanofibers. However, the addition of keratin into the blend nanofiber would decrease the mechanical properties of nanofibers due to the poor spinnability of keratin, and caused inhomogeneous distribution of keratin inside the nanofibers. Therefore, polymeric nanofibers surface-modified with keratin nanoparticles would improve the hydrophility and mechanical property. In this study, keratose (oxidative keratin, KOS) nanoparticles-coating PVA nanofibers (KNPs/PVA) were fabricated by electrospray deposition after electrospinning and acted on neural cells. The chemical conformation, mechanical properties and wettability of KNPs/PVA nanofibers were characterized. The KNPs/PVA nanofibers provided better wettability and stronger mechanical properties compared to KOS/PVA blend nanofibers at the same mass ratio of KOS to PVA. Furthermore, KNPs/PVA nanofibers displayed better cyto-biocompatibility in terms of cell morphology, adhesion and proliferation compared with PVA nanofibers and KOS/PVA blend nanofibers. These results suggested that polymeric nanofibers surface-modified with KOS nanoparticles can provide superior wettability, mechanical properties and biocompatibility by comparison with the blend nanofibers.
Collapse
Affiliation(s)
- Tingwang Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xin Yang
- Medical Technology Department, Dehong Vocational College, Dehong, 678400, Yunnan, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
18
|
Hua J, Ng PF, Fei B. High-strength hydrogels: Microstructure design, characterization and applications. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/polb.24725] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiachuan Hua
- Institute of Textiles and Clothing; Hong Kong Polytechnic University; Kowloon Hong Kong
| | - Pui Fai Ng
- Institute of Textiles and Clothing; Hong Kong Polytechnic University; Kowloon Hong Kong
| | - Bin Fei
- Institute of Textiles and Clothing; Hong Kong Polytechnic University; Kowloon Hong Kong
| |
Collapse
|
19
|
Shavandi A, Silva TH, Bekhit AA, Bekhit AEDA. Keratin: dissolution, extraction and biomedical application. Biomater Sci 2018; 5:1699-1735. [PMID: 28686242 DOI: 10.1039/c7bm00411g] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Keratinous materials such as wool, feathers and hooves are tough unique biological co-products that usually have high sulfur and protein contents. A high cystine content (7-13%) differentiates keratins from other structural proteins, such as collagen and elastin. Dissolution and extraction of keratin is a difficult process compared to other natural polymers, such as chitosan, starch, collagen, and a large-scale use of keratin depends on employing a relatively fast, cost-effective and time efficient extraction method. Keratin has some inherent ability to facilitate cell adhesion, proliferation, and regeneration of the tissue, therefore keratin biomaterials can provide a biocompatible matrix for regrowth and regeneration of the defective tissue. Additionally, due to its amino acid constituents, keratin can be tailored and finely tuned to meet the exact requirement of degradation, drug release or incorporation of different hydrophobic or hydrophilic tails. This review discusses the various methods available for the dissolution and extraction of keratin with emphasis on their advantages and limitations. The impacts of various methods and chemicals used on the structure and the properties of keratin are discussed with the aim of highlighting options available toward commercial keratin production. This review also reports the properties of various keratin-based biomaterials and critically examines how these materials are influenced by the keratin extraction procedure, discussing the features that make them effective as biomedical applications, as well as some of the mechanisms of action and physiological roles of keratin. Particular attention is given to the practical application of keratin biomaterials, namely addressing the advantages and limitations on the use of keratin films, 3D composite scaffolds and keratin hydrogels for tissue engineering, wound healing, hemostatic and controlled drug release.
Collapse
Affiliation(s)
- Amin Shavandi
- Center for Materials Science and Technology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
20
|
Akanda MR, Kim HY, Park M, Kim IS, Ahn D, Tae HJ, Park BY. Hair growth promoting activity of discarded biocomposite keratin extract. J Biomater Appl 2017; 32:230-241. [PMID: 28662599 DOI: 10.1177/0885328217717076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Keratin biomaterial has been used in regenerative medicine owing to its in-vivo and in-vitro biocompatibility. The present study was aimed to investigate the hair growth promoting activity of keratin extract and its mechanism of action. Keratin extract was topically applied on the synchronized depilated dorsal skin of telogenic C57BL/6 mice and promoted hair growth by inducing the anagen phase. The histomorphometric observation indicated significantly increases the number, shaft of hair follicles and deep subcutis area in the keratin extract treated group in contrast to the control group, which was considered an indication of anagen phase induction. Subsequently, the quantitative real-time polymerase chain reaction analysis revealed that fibroblast growth factor-10, vascular endothelial growth factor, insulin-like growth factor-1, β-catenin, and Shh were expressed earlier in the keratin extract-treated group than in the control group. Besides, keratin extract has been observed to be biocompatible when analyzed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 4',6-diamidino-2-phenylindole staining using immortalized human keratinocyte cells, showing more than 90% cell viability. Our study demonstrated that keratin extract stimulating hair follicle growth by inducing the growth phase; anagen in telogenic C57BL/6 mice and thus the topical application of keratin extract may represent a promising biomaterial for the management and applications of hair follicle disorder.
Collapse
Affiliation(s)
- Md Rashedunnabi Akanda
- 1 College of Veterinary Medicine and Biosafety Research Institute, Chonbuk National University, Republic of Korea.,2 Department of Pharmacology and Toxicology, Sylhet Agricultural University, Bangladesh
| | - Hak-Yong Kim
- 3 Department of BIN Fusion Technology, Chonbuk National University, Jeonju, Republic of Korea
| | - Mira Park
- 4 Department of Organic Materials & Fiber Engineering, Chonbuk National University, Jeonju, Republic of Korea
| | - In-Shik Kim
- 1 College of Veterinary Medicine and Biosafety Research Institute, Chonbuk National University, Republic of Korea
| | - Dongchoon Ahn
- 1 College of Veterinary Medicine and Biosafety Research Institute, Chonbuk National University, Republic of Korea
| | - Hyun-Jin Tae
- 1 College of Veterinary Medicine and Biosafety Research Institute, Chonbuk National University, Republic of Korea
| | - Byung-Yong Park
- 1 College of Veterinary Medicine and Biosafety Research Institute, Chonbuk National University, Republic of Korea
| |
Collapse
|
21
|
Bilal M, Asgher M, Iqbal HMN, Hu H, Zhang X. Biotransformation of lignocellulosic materials into value-added products-A review. Int J Biol Macromol 2017; 98:447-458. [PMID: 28163129 DOI: 10.1016/j.ijbiomac.2017.01.133] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/08/2023]
Abstract
In the past decade, with the key biotechnological advancements, lignocellulosic materials have gained a particular importance. In serious consideration of global economic, environmental and energy issues, research scientists have been re-directing their interests in (re)-valorizing naturally occurring lignocellulosic-based materials. In this context, lignin-modifying enzymes (LMEs) have gained considerable attention in numerous industrial and biotechnological processes. However, their lower catalytic efficiencies and operational stabilities limit their practical and multipurpose applications in various sectors. Therefore, to expand the range of natural industrial biocatalysts e.g. LMEs, significant progress related to the enzyme biotechnology has appeared. Owing to the abundant lignocellulose availability along with LMEs in combination with the scientific advances in the biotechnological era, solid-phase biocatalysts can be economically tailored on a large scale. This review article outlines first briefly on the lignocellulose materials as a potential source for biotransformation into value-added products including composites, fine chemicals, nutraceutical, delignification, and enzymes. Comprehensive information is also given on the purification and characterization of LMEs to present their potential for the industrial and biotechnological sector.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture Faisalabad, Pakistan
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Konop M, Sulejczak D, Czuwara J, Kosson P, Misicka A, Lipkowski AW, Rudnicka L. The role of allogenic keratin-derived dressing in wound healing in a mouse model. Wound Repair Regen 2017; 25:62-74. [DOI: 10.1111/wrr.12500] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Marek Konop
- Department of Dermatology; Medical University of Warsaw; Warsaw Poland
- Department of Neuropeptides; Mossakowski Medical Research Center, Polish Academy of Sciences; Warsaw Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology; Mossakowski Medical Research Center, Polish Academy of Sciences; Warsaw Poland
| | - Joanna Czuwara
- Department of Dermatology; Medical University of Warsaw; Warsaw Poland
| | - Piotr Kosson
- Toxicology Research Laboratory; Mossakowski Medical Research Center, Polish Academy of Sciences; Warsaw Poland
| | - Aleksandra Misicka
- Department of Neuropeptides; Mossakowski Medical Research Center, Polish Academy of Sciences; Warsaw Poland
| | - Andrzej W. Lipkowski
- Department of Neuropeptides; Mossakowski Medical Research Center, Polish Academy of Sciences; Warsaw Poland
| | - Lidia Rudnicka
- Department of Neuropeptides; Mossakowski Medical Research Center, Polish Academy of Sciences; Warsaw Poland
| |
Collapse
|
23
|
Choi J, Pant B, Lee C, Park M, Park SJ, Kim HY. Preparation and characterization of eggshell membrane/PVA hydrogel via electron beam irradiation technique. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Eslahi N, Abdorahim M, Simchi A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016; 17:3441-3463. [PMID: 27775329 DOI: 10.1021/acs.biomac.6b01235] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.
Collapse
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University , P.O. Box 14515/775, Tehran, Iran
| | | | | |
Collapse
|
25
|
Park M, Rabbani MM, Shin HK, Park SJ, Kim HY. Dyeing of electrospun nylon 6 nanofibers with reactive dyes using electron beam irradiation. J IND ENG CHEM 2016. [DOI: 10.1016/j.jiec.2016.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Patrucco A, Cristofaro F, Simionati M, Zoccola M, Bruni G, Fassina L, Visai L, Magenes G, Mossotti R, Montarsolo A, Tonin C. Wool fibril sponges with perspective biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:42-50. [DOI: 10.1016/j.msec.2015.11.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022]
|
27
|
Haryanto, Singh D, Huh PH, Kim SC. Hyperbranched poly(glycidol)/poly(ethylene oxide) crosslinked hydrogel for tissue engineering scaffold using e-beams. J Biomed Mater Res A 2015; 104:48-56. [DOI: 10.1002/jbm.a.35539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/17/2015] [Accepted: 06/30/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Haryanto
- Department of Chemical Engineering; Muhammadiyah University of Purwokerto; Central Java 53182 Indonesia
- Department of Advanced Organic Materials Engineering; Yeungnam University; Gyongbuk 712-749 Republic of Korea
| | - Deepti Singh
- Department of Nano; Medical and Polymer Materials, Yeungnam University; Gyongbuk 712-749 Republic of Korea
| | - Pil Ho Huh
- Department of Polymer Science and Engineering; Pusan National University; Busan 609-735 Republic of Korea
| | - Seong Cheol Kim
- Department of Advanced Organic Materials Engineering; Yeungnam University; Gyongbuk 712-749 Republic of Korea
| |
Collapse
|
28
|
Park M, Shin HK, Kim BS, Kim MJ, Kim IS, Park BY, Kim HY. Effect of discarded keratin-based biocomposite hydrogels on the wound healing process in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 55:88-94. [PMID: 26117742 DOI: 10.1016/j.msec.2015.03.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/02/2015] [Accepted: 03/22/2015] [Indexed: 12/23/2022]
Abstract
Biocompatible keratin-based hydrogels prepared by electron beam irradiation (EBI) were examined in wound healing. As the EBI dose increased to 60 kGy, the tensile strength of the hydrogels increased, while the percentage of elongation of the hydrogels decreased. After 7 days, the dehydrated wool-based hydrogels show the highest mechanical properties (the % elongation of 1341 and the tensile strength of 6030 g/cm(2) at an EBI dose of 30 kGy). Excision wound models were used to evaluate the effects of human hair-based hydrogels and wool-based hydrogels on various phases of healing. On post-wounding days 7 and 14, wounds treated with either human hair-based or wool-based hydrogels were greatly reduced in size compared to wounds that received other treatments, although the hydrocolloid wound dressing-treated wound also showed a pronounced reduction in size compared to an open wound as measured by a histological assay. On the 14th postoperative day, the cellular appearances were similar in the hydrocolloid wound dressing and wool-based hydrogel-treated wounds, and collagen fibers were substituted with fibroblasts and mixed with fibroblasts in the dermis. Furthermore, the wound treated with a human hair-based hydrogel showed almost complete epithelial regeneration, with the maturation of immature connective tissue and hair follicles and formation of a sebaceous gland.
Collapse
Affiliation(s)
- Mira Park
- Department of Organic Materials & Fiber Engineering, Chonbuk National University, Jeonju 561-756, South Korea
| | - Hye Kyoung Shin
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, South Korea
| | - Byoung-Suhk Kim
- Department of BIN fusion technology, Chonbuk National University, Jeonju 561-756, South Korea
| | - Myung Jin Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and Bio-safety Research institute, Chonbuk National University, Jeonju 561-756, South Korea
| | - In-Shik Kim
- Department of Veterinary Anatomy, College of Veterinary Medicine and Bio-safety Research institute, Chonbuk National University, Jeonju 561-756, South Korea
| | - Byung-Yong Park
- Department of Veterinary Anatomy, College of Veterinary Medicine and Bio-safety Research institute, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Hak-Yong Kim
- Department of BIN fusion technology, Chonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
29
|
Keratin/Polyvinyl Alcohol Blend Films Cross-Linked by Dialdehyde Starch and Their Potential Application for Drug Release. Polymers (Basel) 2015. [DOI: 10.3390/polym7030580] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
30
|
Park M, Shin HK, Panthi G, Rabbani MM, Alam AM, Choi J, Chung HJ, Hong ST, Kim HY. Novel preparation and characterization of human hair-based nanofibers using electrospinning process. Int J Biol Macromol 2015; 76:45-8. [PMID: 25709023 DOI: 10.1016/j.ijbiomac.2015.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/29/2015] [Accepted: 02/15/2015] [Indexed: 12/26/2022]
Abstract
Human hair-based biocomposite nanofibers (NFs) have been fabricated by an electrospinning technique. Aqueous keratin extracted from human hair was successfully blended with poly(vinyl alcohol) (PVA). The focus here is on transforming into keratin/PVA nanofibrous membranes and insoluble property of electrospun NFs. The resulting hair-based NFs were characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning colorimetry (DSC), and thermogravimetric analysis (TGA). Toward the potential use of these NFs after cross-linking with various weight fractions of glyoxal, its physicochemical properties, such as morphology, mechanical strength, crystallinity, and chemical structure were investigated. Keratin/PVA ratio of 2/1 NFs with 6 wt%-glyoxal showed good uniformity in fiber morphology and suitable mechanical properties, and excellent antibacterial activity providing a potential application of hair-based NFs in biomedical field.
Collapse
Affiliation(s)
- Mira Park
- Department of Organic Materials & Fiber Engineering, Chonbuk National University, Jeonju 561-756, South Korea.
| | - Hye Kyoung Shin
- Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751, South Korea
| | - Gopal Panthi
- Department of Organic Materials & Fiber Engineering, Chonbuk National University, Jeonju 561-756, South Korea
| | | | - Al-Mahmnur Alam
- Department of BIN Fusion technology, Chonbuk National University, Jeonju 561-756, South Korea
| | - Jawun Choi
- Department of BIN Fusion technology, Chonbuk National University, Jeonju 561-756, South Korea
| | - Hea-Jong Chung
- Department of Biomedical Sciences, Chonbuk National University Medical School, Jeonju 561-756, South Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences, Chonbuk National University Medical School, Jeonju 561-756, South Korea
| | - Hak-Yong Kim
- Department of BIN Fusion technology, Chonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
31
|
Choi J, Panthi G, Liu Y, Kim J, Chae SH, Lee C, Park M, Kim HY. Keratin/poly (vinyl alcohol) blended nanofibers with high optical transmittance. POLYMER 2015. [DOI: 10.1016/j.polymer.2014.12.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Haryanto, Singh D, Han SS, Son JH, Kim SC. Poly(ethylene glycol) dicarboxylate/poly(ethylene oxide) hydrogel film co-crosslinked by electron beam irradiation as an anti-adhesion barrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 46:195-201. [DOI: 10.1016/j.msec.2014.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/26/2014] [Accepted: 10/08/2014] [Indexed: 11/16/2022]
|
33
|
Grkovic M, Stojanovic DB, Kojovic A, Strnad S, Kreze T, Aleksic R, Uskokovic PS. Keratin–polyethylene oxide bio-nanocomposites reinforced with ultrasonically functionalized graphene. RSC Adv 2015. [DOI: 10.1039/c5ra12402f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polyethylene oxide (PEO) functionalized graphene (f-G) was prepared by ultrasonication of pristine graphene in PEO aqueous solution.
Collapse
Affiliation(s)
- M. Grkovic
- Innovation Centre
- University of Belgrade
- Faculty of Technology and Metallurgy
- Belgrade
- Serbia
| | - D. B. Stojanovic
- University of Belgrade
- Faculty of Technology and Metallurgy
- Belgrade
- Serbia
| | - A. Kojovic
- University of Belgrade
- Faculty of Technology and Metallurgy
- Belgrade
- Serbia
| | - S. Strnad
- University of Maribor
- Faculty of Mechanical Engineering
- Slovenia
| | - T. Kreze
- University of Maribor
- Faculty of Mechanical Engineering
- Slovenia
| | - R. Aleksic
- University of Belgrade
- Faculty of Technology and Metallurgy
- Belgrade
- Serbia
| | - P. S. Uskokovic
- University of Belgrade
- Faculty of Technology and Metallurgy
- Belgrade
- Serbia
| |
Collapse
|
34
|
Liu Y, Park M, Shin HK, Pant B, Choi J, Park YW, Lee JY, Park SJ, Kim HY. Facile preparation and characterization of poly(vinyl alcohol)/chitosan/graphene oxide biocomposite nanofibers. J IND ENG CHEM 2014. [DOI: 10.1016/j.jiec.2014.02.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|