1
|
Lahcen AA, Slaughter G. Nanomaterial-based electrochemical sensors for anti-HIV drug monitoring: Innovations, challenges, and prospects. J Pharm Biomed Anal 2025; 258:116727. [PMID: 39914329 DOI: 10.1016/j.jpba.2025.116727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/16/2025] [Accepted: 02/01/2025] [Indexed: 03/10/2025]
Abstract
Monitoring human immunodeficiency virus (HIV) and anti-HIV drugs is critical for optimizing treatment outcomes and preventing drug resistance. Accurate detection and quantification of anti-HIV drugs are essential to ensure appropriate dosing, enhancing patient care and therapeutic efficacy. Electrochemical biosensors have emerged as a pivotal tool in this context, offering high sensitivity, specificity, and rapid response times. Leveraging advancements in nanomaterials, these sensors provide reliable and efficient solutions for point-of-care (POC) applications in clinical and environmental settings. This review presents a comprehensive analysis of recent innovations in electrochemical sensor technologies for anti-HIV drug detection and quantification, focusing on nanomaterial-based platforms. It addresses the challenges of developing and implementing these technologies, including matrix effects, stability, and scalability. Furthermore, the review explores future directions, emphasizing the integration of sensors into POC systems and their potential to revolutionize personalized HIV treatment and pharmaceutical monitoring.
Collapse
Affiliation(s)
- Abdellatif Ait Lahcen
- Center for Bioelectronics, Old Dominion University, Norfolk, VA 23508, United States
| | - Gymama Slaughter
- Center for Bioelectronics, Old Dominion University, Norfolk, VA 23508, United States.
| |
Collapse
|
2
|
Raman APS, Mishra VK, Yadav S, Jain P, Singh P, Kumari K. A Mini Review on Electrochemical Nano-biosensors in Detection of Drugs/Pesticides. Indian J Microbiol 2025; 65:216-234. [PMID: 40371039 PMCID: PMC12069216 DOI: 10.1007/s12088-024-01303-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2025] Open
Abstract
Abstract In last few years, sensing of molecules has gained a huge attention of scientists and researchers. Small molecules (drugs, pesticides, and others) are being consumed directly or indirectly by us in our daily life. Often, these molecules enter the environment and interact with different non-target organisms. Consumption of drugs/pesticides emerged as a major concern for public health, environment, ground-water and agricultural soil. Pesticides can have odd impacts such as degradation of soil properties, environmental pollution, pollution of groundwater as well as the consumption of unwanted drugs can have serious health impacts. Therefore, the sensing of drugs/pesticides plays an important role in detecting and preventing the unwanted usage of drugs/pesticides. Quantitative and qualitative determination of pesticides and drugs can be achieved using electrochemical techniques. This review offers a concise examination of the literature about the electrochemical sensing of drugs and pesticides. The review provides a comprehensive summary of different electrochemical investigations and outlines the reported analytical performance metrics, including limits of detection and linearity ranges. Furthermore, it underscores the progress made in pesticide detection using electrochemical methods for the selected compounds, highlighting the challenges ahead and emphasizing the necessary efforts to develop sensors suitable for in-situ applications. Graphical Abstract
Collapse
Affiliation(s)
- Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Ghaziabad, Uttar Pradesh India
| | - Vaibhav Kumar Mishra
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Sandeep Yadav
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Ghaziabad, Uttar Pradesh India
| | - Pallavi Jain
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Ghaziabad, Uttar Pradesh India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, NCR Campus, Ghaziabad, Uttar Pradesh India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Brito C, Silva JV, Gonzaga RV, La-Scalea MA, Giarolla J, Ferreira EI. A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS OMEGA 2024; 9:8687-8708. [PMID: 38434894 PMCID: PMC10905599 DOI: 10.1021/acsomega.3c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
The use of carbon nanotubes (CNTs), which are nanometric materials, in pathogen detection, protection of environments, food safety, and in the diagnosis and treatment of diseases, as efficient drug delivery systems, is relevant for the improvement and advancement of pharmacological profiles of many molecules employed in therapeutics and in tissue bioengineering. It has contributed to the advancement of science due to the development of new tools and devices in the field of medicine. CNTs have versatile mechanical, physical, and chemical properties, in addition to their great potential for association with other materials to contribute to applications in different fields of medicine. As, for example, photothermal therapy, due to the ability to convert infrared light into heat, in tissue engineering, due to the mechanical resistance, flexibility, elasticity, and low density, in addition to many other possible applications, and as biomarkers, where the electronic and optics properties enable the transduction of their signals. This review aims to describe the state of the art and the perspectives and challenges of applying CNTs in the medical field. A systematic search was carried out in the indexes Medline, Lilacs, SciELO, and Web of Science using the descriptors "carbon nanotubes", "tissue regeneration", "electrical interface (biosensors and chemical sensors)", "photosensitizers", "photothermal", "drug delivery", "biocompatibility" and "nanotechnology", and "Prodrug design" and appropriately grouped. The literature reviewed showed great applicability, but more studies are needed regarding the biocompatibility of CNTs. The data obtained point to the need for standardized studies on the applications and interactions of these nanostructures with biological systems.
Collapse
Affiliation(s)
- Charles
L. Brito
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - João V. Silva
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Rodrigo V. Gonzaga
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Mauro A. La-Scalea
- Department
of Chemistry, Federal University of São
Paulo, Diadema 09972-270, Brazil
| | - Jeanine Giarolla
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Elizabeth I. Ferreira
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
4
|
Karadurmus L, Ozkan SA. Fabrication of an Electrochemical Sensor Based on a Molecularly Imprinted Polymer for the Highly Sensitive and Selective Determination of the Antiretroviral Drug Zidovudine in Biological Samples. MICROMACHINES 2023; 14:1881. [PMID: 37893318 PMCID: PMC10609403 DOI: 10.3390/mi14101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Molecularly Imprinted Polymers (MIP) have demonstrated considerable potential when combined with electrochemical sensors, exhibiting high sensitivity, selectivity and reproducibility levels. The aim of this work is to detect Zivudine (ZDV) in serum samples by means of an interface imprinting technique-based electrochemical sensor. Thus, ZDV was used as a template for the creation of an MIP-based electrochemical sensor, and differential pulse voltammetry (DPV) was used as the determination technique for the molecule. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques were also used to characterize the electrochemical sensor capabilities, which showed a good linearity between 1.0 × 10-10 M and 1.0 × 10-9 M. ZDV was detected with a detection limit of 1.63 × 10-11 M, while the recovery analysis of spiked serum samples demonstrated that the sensor was highly selective.
Collapse
Affiliation(s)
- Leyla Karadurmus
- Faculty of Pharmacy, Department of Analytical Chemistry, Adıyaman University, Adıyaman 02040, Türkiye
| | - Sibel A. Ozkan
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara 06560, Türkiye;
| |
Collapse
|
5
|
Bhardwaj G, Kaur R, Kaur N, Singh N. Gold nanoparticles capped DHPMs for meliorate detection of antiretroviral drug: Azidothymidine. Talanta 2022; 249:123591. [DOI: 10.1016/j.talanta.2022.123591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/10/2021] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
|
6
|
Electroanalytical sensors for antiretroviral drugs determination in pharmaceutical and biological samples: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Mavis Xhakaza N, Chokkareddy R, Redhi GG. Ionic Liquid Based Electrochemical Sensor for the Detection of Efavirenz. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
8
|
Xhakaza NM, Chokkareddy R, Redhi GG. An Efficient Sensor for the Detection of Zidovudine Based on 1‐Ethyl‐3‐methylimidazolium 1,1,2,2‐tetrafluoroethanesulfonate/ZnO Nanoparticle/MWCNT Glassy Carbon Electrodes**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Rajasekhar Chokkareddy
- Department of Chemistry Durban University of Technology Durban South Africa- 4001
- Department of Chemistry Aditya College of Engineering & Technology Surampalem 533437 Andhra Pradesh India
| | - Gan G Redhi
- Department of Chemistry Durban University of Technology Durban South Africa- 4001
| |
Collapse
|
9
|
Selcuk O, Demir Y, Erkmen C, Yıldırım S, Uslu B. Analytical Methods for Determination of Antiviral Drugs in Different Matrices: Recent Advances and Trends. Crit Rev Anal Chem 2021; 52:1662-1693. [PMID: 33983841 DOI: 10.1080/10408347.2021.1908111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Viruses are the main pathogenic substances that cause severe diseases in humans and other living things. They are among the most common microorganisms, and consequently, antiviral drugs have emerged to prevent and treat viral infections. Antiviral drugs are an essential drug group considering their prescription and consumption rates for different diseases and indications. Therefore, it is crucial to develop accurate and precise analytical methods to detect antiviral drugs in various matrices. Chromatographic techniques are used frequently for the quantification purpose since they allow simultaneous determination of antivirals. Electrochemical methods have also gained importance since the analysis can be performed quickly without the need for pretreatment. Spectrophotometric and spectrofluorimetric methods are used because they are simple, inexpensive, and less time-consuming methods. The purpose of this review is to present an overview of the analysis of currently used antiviral drugs from 2010 to 2021. Since studies on antiviral drugs are numerous, selected publications were reviewed in this article. The analysis of antiviral drugs was divided into three main groups: chromatographic, spectrometric, and electrochemical methods which were applied to different matrices, including pharmaceutical, biological, and environmental samples.
Collapse
Affiliation(s)
- Ozge Selcuk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yeliz Demir
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Cem Erkmen
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sercan Yıldırım
- Department of Analytical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| | - Bengi Uslu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
10
|
DNA/Au-Pt bimetallic nanoparticles/graphene oxide-chitosan composites modified pencil graphite electrode used as an electrochemical biosensor for sub-picomolar detection of anti-HIV drug zidovudine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Topal BD, Sener CE, Kaya B, Ozkan SA. Nano-sized Metal and Metal Oxide Modified Electrodes for Pharmaceuticals Analysis. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200513110313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
:
The electrochemical analysis offers a number of important advantages such as providing
information on pharmaceuticals analysis and their in vivo redox processes and pharmacological activity.
The interest in developing electrochemical sensing devices for use in clinical assays is growing rapidly.
Metallic nanoparticles can be synthesized and modified with various chemical functional groups,
which allow them to be conjugated with antibodies, ligands, and drugs of interest.
:
In this article, the novel developments to enhance the performance of sensor modified with metal nanoparticles
of pharmaceuticals were reviewed. A discussion of the properties of metal nanostructures
and their application in drug analysis is presented. Their application as a modifier agent in determining
low levels of drugs in pharmaceutical dosage forms and biological samples is discussed. It has been
found that the electrocatalytic effect of the electrode, sensitivity and selectivity were increased using
various working electrodes modified with nano-sized metal, metal oxide and metal/metal oxide
particles.
Collapse
Affiliation(s)
- Burcu Dogan Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| | - Ceren Elif Sener
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| | - Basak Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| | - Sibel Aysıl Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| |
Collapse
|
12
|
Ghanizadeh Gerayeli F, Hosseini F, Bagheri Z, Savardashtaki A, Shabaninejad Z, Amani AM, Najafipour S. Colorimetric Sensor Based on β-Cyclodextrin-Functionalized Silver Nanoparticles for Zidovudine Sensitive Determination. Int J Anal Chem 2020; 2020:5054864. [PMID: 32612657 PMCID: PMC7317308 DOI: 10.1155/2020/5054864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/24/2022] Open
Abstract
Zidovudine (ZDV) is an antiviral drug against HIV that was approved by the FDA on March, 1987. It is a reverse transcriptase inhibitor. This type of drug stops the reproduction of DNA and decreases the amount of the virus in the patients' blood. Due to the ability of forming various molecular bonds, silver nanoparticles (AgNPs) are widely used for the detection of large range of agents, including drugs. In this study, we synthesized AgNP-modified β-cyclodextrin (β-CD) using green synthesis for the sensitive and selective zidovudine (ZDV) determination. Characterization of nanoparticles was done using different methods including infrared (IR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), and also, X-ray diffraction (XRD) patterns. The AgNP λ-max peak was at approximately 405 nm. In the presence of ZDV, yellow solution was turned to red color, and surface plasmon absorption band was dramatically centered at 560 nm. ZDV was determined in the range of 50-500 μM, and the detection limit value was obtained as 42 μM. The sensor was used to determine ZDV in tablets with good recovery.
Collapse
Affiliation(s)
- Farhad Ghanizadeh Gerayeli
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hosseini
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zohreh Bagheri
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sohrab Najafipour
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Non Communicable Diseases Research Center, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
13
|
Takalani F, Kumar P, Kondiah PPD, Choonara YE, Pillay V. Lipid-drug conjugates and associated carrier strategies for enhanced antiretroviral drug delivery. Pharm Dev Technol 2019; 25:267-280. [PMID: 31744408 DOI: 10.1080/10837450.2019.1694037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mortality rate of patients infected with HIV-1 has been significantly reduced by using HAART. However, the virus to date has not been eradicated. Transmission of HIV-1 infection through sexual intercourse remains an ongoing challenge, with increased risk of infection occurring in women. Interestingly, ARV drugs can be chemically linked with lipids to produce lipid-drug conjugates (LDCs). This alters pharmacokinetic properties of ARV drugs and thereby resulting in improved effectiveness. Although LDCs can be administered without a delivery carrier, they are usually incorporated into suitable delivery systems such as lipid nanoparticles, polymeric nanoparticles, micelles, liposomes, emulsions, and carbon nanotubes. Given that LDCs have the potential to improve oral bioavailability, lipophilicity, toxicity, and drug targeting, it is of our great interest to review strategies of lipid-drug conjugation together with their delivery systems for enhanced antiretroviral efficacy.
Collapse
Affiliation(s)
- Funanani Takalani
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
14
|
Abstract
Background:
The determination of drugs in pharmaceutical formulations and human biologic fluids is
important for pharmaceutical and medical sciences. Successful analysis requires low sensitivity, high selectivity
and minimum interference effects. Current analytical methods can detect drugs at very low levels but these methods
require long sample preparation steps, extraction prior to analysis, highly trained technical staff and high-cost
instruments. Biosensors offer several advantages such as short analysis time, high sensitivity, real-time analysis,
low-cost instruments, and short pretreatment steps over traditional techniques. Biosensors allow quantification not
only of the active component in pharmaceutical formulations, but also the degradation products and metabolites in
biological fluids. The present review gives comprehensive information on the application of biosensors for drug
discovery and analysis. Moreover, this review focuses on the fabrication of these biosensors.
Methods:
Biosensors can be classified as the utilized bioreceptor and the signal transduction mechanism. The classification
based on signal transductions includes electrochemical optical, thermal or acoustic. Electrochemical and
optic transducers are mostly utilized transducers used for drug analysis. There are many biological recognition elements,
such as enzymes, antibodies, cells that have been used in fabricating of biosensors. Aptamers and antibodies
are the most widely used recognition elements for the screening of the drugs. Electrochemical sensors and biosensors
have several advantages such as low detection limits, a wide linear response range, good stability and reproducibility.
Optical biosensors have several advantages such as direct, real-time and label-free detection of many
biological and chemical substances, high specificity, sensitivity, small size and low cost. Modified electrodes enhance
sensitivity of the electrodes to develop a new biosensor with desired features. Chemically modified electrodes
have gained attention in drug analysis owing to low background current, wide potential window range, simple
surface renewal, low detection limit and low cost. Modified electrodes produced by modifying of a solid surface
electrode via different materials (carbonaceous materials, metal nanoparticles, polymer, biomolecules) immobilization.
Recent advances in nanotechnology offer opportunities to design and construct biosensors. Unique features
of nanomaterials provide many advantages in the fabrication of biosensors. Nanomaterials have controllable
chemical structures, large surface to volume ratios, functional groups on their surface. To develop proteininorganic
hybrid nanomaterials, four preparation methods have been used. These methods are immobilization, conjugation,
crosslinking and self-assembly. In the present manuscript, applications of different biosensors, fabricated
by using several materials, for drug analysis are reviewed. The biosensing strategies are investigated and discussed
in detail.
Results:
Several analytical techniques such as chromatography, spectroscopy, radiometry, immunoassays and electrochemistry
have been used for drug analysis and quantification. Methods based on chromatography require timeconsuming
procedure, long sample-preparation steps, expensive instruments and trained staff. Compared to chromatographic
methods, immunoassays have simple protocols and lower cost. Electrochemical measurements have
many advantages over traditional chemical analyses and give information about drug quantity, metabolic fate of
drugs, and pharmacological activity. Moreover, the electroanalytical methods are useful to determine drugs sensitively
and selectivity. Additionally, these methods decrease analysis cost and require low-cost instruments and
simple sample pretreatment steps.
Conclusion:
In recent years, drug analyses are performed using traditional techniques. These techniques have a
good detection limit, but they have some limitations such as long analysis time, expensive device and experienced
personnel requirement. Increased demand for practical and low-cost analytical techniques biosensor has gained interest
for drug determinations in medical sciences. Biosensors are unique and successful devices when compared to
traditional techniques. For drug determination, different electrode modification materials and different biorecognition
elements are used for biosensor construction. Several biosensor construction strategies have been developed to
enhance the biosensor performance. With the considerable progress in electrode surface modification, promotes the
selectivity of the biosensor, decreases the production cost and provides miniaturization. In the next years, advances
in technology will provide low cost, sensitive, selective biosensors for drug analysis in drug formulations and biological
samples.
Collapse
Affiliation(s)
- Elif Burcu Aydin
- Namik Kemal University, Scientific and Technological Research Center, Tekirdag, Turkey
| | - Muhammet Aydin
- Namik Kemal University, Scientific and Technological Research Center, Tekirdag, Turkey
| | - Mustafa Kemal Sezginturk
- Canakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Canakkale, Turkey
| |
Collapse
|
15
|
Srivastava M, Tiwari P, Mall VK, Srivastava SK, Prakash R. Voltammetric determination of the antimalarial drug chloroquine using a glassy carbon electrode modified with reduced graphene oxide on WS2 quantum dots. Mikrochim Acta 2019; 186:415. [DOI: 10.1007/s00604-019-3525-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
|
16
|
Electrochemical Detection for Uric Acid Based on β-Lactoglobulin-Functionalized Multiwall Carbon Nanotubes Synthesis with PtNPs Nanocomposite. MATERIALS 2019; 12:ma12020214. [PMID: 30634585 PMCID: PMC6356623 DOI: 10.3390/ma12020214] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 01/24/2023]
Abstract
In this work, a simple and highly selective electrochemical biosensor for determination of uric acid (UA) is synthesized by using β-lactoglobulin (BLG)-functionalized multiwall carbon nanotubes (MWCNTs) and a platinum nanoparticles (PtNPs) nanocomposite. Urate oxidase (UOx) can oxidize uric acid to hydrogen peroxide and allantoin, which provides a good opportunity for electrochemical detection for UA. Under the optimized conditions, the current changes by the UOx/Bull Serum Albumin (BSA)/BLG-MWCNTs-PtNPs/Glassy Carbon (GC) electrode with the electrochemical method was proportional to the concentration of UA. According to experiments, we obtained a linear response with a concentration range from 0.02 to 0.5 mM and achieved a high sensitivity of 31.131 μA mM−1 and a low detection limit (0.8 μΜ). Meanwhile, nanoparticles improved the performance of the biosensor and combined with BLG not only prevented the accumulation of composite nanomaterials, but also provided immobilization of uricase through electrostatic adsorption. This improves the stability and gives the constructed electrode sensing interface superior performance in UA detection.
Collapse
|
17
|
Moazeni M, Karimzadeh F, Kermanpur A. Peptide modified paper based impedimetric immunoassay with nanocomposite electrodes as a point-of-care testing of Alpha-fetoprotein in human serum. Biosens Bioelectron 2018; 117:748-757. [DOI: 10.1016/j.bios.2018.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 11/15/2022]
|
18
|
Kurbanoglu S, Ozkan SA. Electrochemical carbon based nanosensors: A promising tool in pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2017; 147:439-457. [PMID: 28780997 DOI: 10.1016/j.jpba.2017.06.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022]
Abstract
Nanotechnology has become very popular in the sensor fields in recent times. It is thought that the utilization of such technologies, as well as the use of nanosized materials, could well have beneficial effects for the performance of sensors. Nano-sized materials have been shown to have a number of novel and interesting physical and chemical properties. Low-dimensional nanometer-sized materials and systems have defined a new research area in condensed-matter physics within past decades. Apart from the aforesaid categories of materials, there exist various materials of different types for fabricating nanosensors. Carbon is called as a unique element, due to its magnificent applications in many areas. Carbon is an astonishing element that can be found many forms including graphite, diamond, fullerenes, and graphene. This review provides an overview of some of the important and recent developments brought about by the application of carbon based nanostructures to nanotechnology for both chemical and biological sensor development and their application in pharmaceutical and biomedical area.
Collapse
Affiliation(s)
- Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Tandogan, Ankara, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06100, Tandogan, Ankara, Turkey.
| |
Collapse
|
19
|
Shoja Y, Rafati AA, Ghodsi J. Enzymatic biosensor based on entrapment of d-amino acid oxidase on gold nanofilm/MWCNTs nanocomposite modified glassy carbon electrode by sol-gel network: Analytical applications for d-alanine in human serum. Enzyme Microb Technol 2017; 100:20-27. [PMID: 28284308 DOI: 10.1016/j.enzmictec.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 10/20/2022]
Abstract
Sensing and determination of d-alanine is studied by using an enzymatic biosensor which was constructed on the basis of d-amino acid oxidase (DAAO) immobilization by sol-gel film onto glassy carbon electrode surface modified with nanocomposite of gold nanofilm (Au-NF) and multiwalled carbon nanotubes (MWCNTs). The Au-NF/MWCNT nanocomposite was prepared by applying the potentiostatic technique for electrodeposition of Au-NF on the MWCNT immobilized on glassy carbon electrode surface. The modified electrode is investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), linear sweep voltammetry (LSV) and cyclic voltammetry(CV) techniques. The linear sweep voltammetry was used for determination of d-alanine and the results showed an excellent linear relationship between biosensor response and d-alanine concentration ranging from 0.25μM to 4.5μM with correction coefficient of 0.999 (n=20). Detection limit for the fabricated sensor was calculated about 20nM (for S/N=3) and sensitivity was about 56.1μAμM-1cm-2. The developed biosensor exhibited rapid and accurate response to d-alanine, a good stability (4 weeks) and an average recovery of 98.9% in human serum samples.
Collapse
Affiliation(s)
- Yalda Shoja
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Amir Abbas Rafati
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran.
| | - Javad Ghodsi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| |
Collapse
|
20
|
Lifson MA, Ozen MO, Inci F, Wang S, Inan H, Baday M, Henrich TJ, Demirci U. Advances in biosensing strategies for HIV-1 detection, diagnosis, and therapeutic monitoring. Adv Drug Deliv Rev 2016; 103:90-104. [PMID: 27262924 PMCID: PMC4943868 DOI: 10.1016/j.addr.2016.05.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 is a major global epidemic that requires sophisticated clinical management. There have been remarkable efforts to develop new strategies for detecting and treating HIV-1, as it has been challenging to translate them into resource-limited settings. Significant research efforts have been recently devoted to developing point-of-care (POC) diagnostics that can monitor HIV-1 viral load with high sensitivity by leveraging micro- and nano-scale technologies. These POC devices can be applied to monitoring of antiretroviral therapy, during mother-to-child transmission, and identification of latent HIV-1 reservoirs. In this review, we discuss current challenges in HIV-1 diagnosis and therapy in resource-limited settings and present emerging technologies that aim to address these challenges using innovative solutions.
Collapse
Affiliation(s)
- Mark A Lifson
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mehmet Ozgun Ozen
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fatih Inci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - ShuQi Wang
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China; Institute for Translational Medicine, Zhejiang University, Hangzhou, China
| | - Hakan Inan
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA; Medicine Faculty, Zirve University, Gaziantep, Turkey
| | - Murat Baday
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Timothy J Henrich
- Division of Experimental Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Radiology Department, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
21
|
Afraz A, Hajian A, Niknam Z, Mosayebi E, Yusefi A, Sillanpää M. Amin-functionalized magnetic-silica core-shell nanoparticles for removal of Hg2+ from aqueous solution. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1193815] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ahmadreza Afraz
- Young Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Hajian
- Freiburg Materials Research Center, FMF, University of Freiburg, Freiburg, Germany
| | - Zahra Niknam
- Young Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Elham Mosayebi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Amin Yusefi
- Young Researchers and Elite club, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mika Sillanpää
- Laboratory of Green Chemistry, Lappeenranta University of Technology, Mikkeli, Finland
| |
Collapse
|
22
|
Electropolymerization of Ni–LD metallopolymers on gold nanoparticles enriched multi-walled carbon nanotubes as nano-structure electrocatalyst for efficient voltammetric sertraline detection in human serum. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.03.117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
23
|
Tiwari JN, Vij V, Kemp KC, Kim KS. Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. ACS NANO 2016; 10:46-80. [PMID: 26579616 DOI: 10.1021/acsnano.5b05690] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The study of electrochemical behavior of bioactive molecules has become one of the most rapidly developing scientific fields. Biotechnology and biomedical engineering fields have a vested interest in constructing more precise and accurate voltammetric/amperometric biosensors. One rapidly growing area of biosensor design involves incorporation of carbon-based nanomaterials in working electrodes, such as one-dimensional carbon nanotubes, two-dimensional graphene, and graphene oxide. In this review article, we give a brief overview describing the voltammetric techniques and how these techniques are applied in biosensing, as well as the details surrounding important biosensing concepts of sensitivity and limits of detection. Building on these important concepts, we show how the sensitivity and limit of detection can be tuned by including carbon-based nanomaterials in the fabrication of biosensors. The sensing of biomolecules including glucose, dopamine, proteins, enzymes, uric acid, DNA, RNA, and H2O2 traditionally employs enzymes in detection; however, these enzymes denature easily, and as such, enzymeless methods are highly desired. Here we draw an important distinction between enzymeless and enzyme-containing carbon-nanomaterial-based biosensors. The review ends with an outlook of future concepts that can be employed in biosensor fabrication, as well as limitations of already proposed materials and how such sensing can be enhanced. As such, this review can act as a roadmap to guide researchers toward concepts that can be employed in the design of next generation biosensors, while also highlighting the current advancements in the field.
Collapse
Affiliation(s)
- Jitendra N Tiwari
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Varun Vij
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - K Christian Kemp
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 689-798, Korea
| |
Collapse
|
24
|
Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:835-45. [DOI: 10.1016/j.msec.2015.09.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/27/2015] [Accepted: 09/07/2015] [Indexed: 11/19/2022]
|
25
|
Tiwari P, Kumar A, Prakash R. Electrochemical detection of azidothymidine on modified probes based on chitosan stabilised silver nanoparticles hybrid material. RSC Adv 2015. [DOI: 10.1039/c5ra15908c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Silver nanoparticle stabilized by chitosan is synthesized for modification of sensing probe for AZT estimation in human plasma.
Collapse
Affiliation(s)
- Preeti Tiwari
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Ashish Kumar
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Rajiv Prakash
- School of Materials Science and Technology
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| |
Collapse
|
26
|
Electrosynthesis of high-density polythiophene nanotube arrays and their application for sensing of riboflavin. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.08.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Electrodeposition of Pt Nanoparticles on New Porous Graphitic Carbon Nanostructures Prepared from Biomass for Fuel Cell and Methanol Sensing Applications. Electrocatalysis (N Y) 2014. [DOI: 10.1007/s12678-014-0234-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Afraz A, Rafati AA, Najafi M. Optimization of modified carbon paste electrode with multiwalled carbon nanotube/ionic liquid/cauliflower-like gold nanostructures for simultaneous determination of ascorbic acid, dopamine and uric acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 44:58-68. [PMID: 25280680 DOI: 10.1016/j.msec.2014.07.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/17/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022]
Abstract
We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNTs) and an ionic liquid (IL). Electrochemical studies by using a D-optimal mixture design in Design-Expert software revealed an optimized composition of 60% graphite, 14.2% paraffin, 10.8% MWCNT and 15% IL. The optimal modified CPE shows good electrochemical properties that are well matched with model prediction parameters. In the next step, the optimized CPE was modified with gold nanostructures by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electrochemical impedance spectroscopy. It gives three sharp and well-separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA). The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.3 to 285, 0.08 to 200, and 0.1 to 450 μM, respectively, and with 120, 30 and 30 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine.
Collapse
Affiliation(s)
- Ahmadreza Afraz
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran
| | - Amir Abbas Rafati
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamedan, Iran.
| | - Mojgan Najafi
- Department of Materials Engineering, Hamedan University of Technology (HUT), 65169 Hamedan, Iran
| |
Collapse
|
29
|
Rafati AA, Afraz A, Hajian A, Assari P. Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1293-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|