1
|
Analysis of the Calcium Phosphate-Based Hybrid Layer Formed on a Ti-6Al-7Nb Alloy to Enhance the Ossseointegration Process. MATERIALS 2020; 13:ma13235468. [PMID: 33266319 PMCID: PMC7729568 DOI: 10.3390/ma13235468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022]
Abstract
This paper reports on hybrid, bioactive ceramic Ca-P-based coating formation on a Ti-6Al-7Nb alloy substrate to enhance the osseointegration process. The Ti alloy was anodized in a Ca3(PO4)2 suspension and then the additional layer was formed by the sol-gel technique to obtain a mixture of the calcium phosphate compounds. The oxide layer was porous and additional ceramic particles were formed after sol-gel treatment (scanning electron microscopy analysis coupled with energy-dispersive x-ray spectroscopy). The ceramic particles were formed on some parts of the oxide layer and did not completely fill the pores. The layer thickness of the anodized Ti alloy was comprised between 3.01 and 5.03 µm and increased to 7.52–12.30 µm after the formation of an additional layer. Post-treatment of the anodized Ti alloys caused a decrease in surface roughness, and the layer became strongly hydrophilic. Crystalline phase analysis (X-ray diffraction, XRD) showed that the hybrid layer was composed of TiO2 (anatase), Ca3(PO4)2, Ca10(PO4)6(OH)2 and a partially amorphous phase; thus, the layer was also analyzed by Raman spectroscopy. The hybrid layer showed worse adhesion to the substrate than the anodized layer only; however, the coating was not brittle, and the first delamination of the layer was determined at 1.84 ± 0.11 N during scratch-test measurement. The hybrid coating was favorable for collagen type I and lactoferrin adsorption, strongly influencing the proliferation of osteoblast-like MG-63 cells. The coatings were cytocompatible and may find applications in formation of the functional layers on long-term implants’ surface after.
Collapse
|
2
|
Effect of V2O5 Additive on Micro-Arc Oxidation Coatings Fabricated on Magnesium Alloys with Different Loading Voltages. METALS 2020. [DOI: 10.3390/met10091146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Effect of V2O5 additive in silicate-containing electrolyte on AZ91D magnesium alloys treated by micro-arc oxidation (MAO) technology under different loading voltages was investigated. The results showed that vanadium was well up-taken into the coating chemically. Moreover, a new phase of MgV2O4 with spinel structure was obtained in MAO coatings due to V2O5 added into the electrolyte. The MgV2O4 phase was responsible for the coatings exhibiting brown color and also was beneficial to improving the anti-corrosion property. In spotting tests, the corrosion resistances of coatings prepared under the high voltage are about 6–9 times higher than those of the low voltage because of the thicker coatings of the former. In potentiodynamic polarization tests, the coatings’ corrosion resistances were improved with the addition of V2O5, which was more significant under the low voltage than that under the high voltage. When the concentration of V2O5 was 0.2 g/L, the corrosion current density of the coating was the lowest, which means that the coating’s corrosion resistance under the low voltage is the best. Hence, it is necessary to carry out targeted design of the coating’s microstructure according to the different applications.
Collapse
|
3
|
Synthesis of bioactive glass-based coating by plasma electrolytic oxidation: Untangling a new deposition pathway toward titanium implant surfaces. J Colloid Interface Sci 2020; 579:680-698. [PMID: 32652323 DOI: 10.1016/j.jcis.2020.06.102] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
HYPOTHESIS Although bioactive glass (BG) particle coatings were previously developed by different methods, poor particle adhesion to surfaces and reduced biological effects because of glass crystallization have limited their biomedical applications. To overcome this problem, we have untangled, for the first time, plasma electrolytic oxidation (PEO) as a new pathway for the synthesis of bioactive glass-based coating (PEO-BG) on titanium (Ti) materials. EXPERIMENTS Electrolyte solution with bioactive elements (Na2SiO3-5H2O, C4H6O4Ca, NaNO3, and C3H7Na2O6P) was used as a precursor source to obtain a 45S5 bioglass-like composition on a Ti surface by PEO. Subsequently, the PEO-BG coating was investigated with respect to its surface, mechanical, tribological, electrochemical, microbiological, and biological properties, compared with those of machined and sandblasted/acid-etched control surfaces. FINDINGS PEO treatment produced a coating with complex surface topography, Ti crystalline phases, superhydrophilic status, chemical composition, and oxide layer similar to that of 45S5-BG (~45.0Si, 24.5 Ca, 24.5Na, 6.0P w/v%). PEO-BG enhanced Ti mechanical and tribological properties with higher corrosion resistance. Furthermore, PEO-BG had a positive influence in polymicrobial biofilms, by reducing pathogenic bacterial associated with biofilm-related infections. PEO-BG also showed higher adsorption of blood plasma proteins without cytotoxic effects on human cells, and thus may be considered a promising biocompatible approach for biomedical implants.
Collapse
|
4
|
Kazek-Kęsik A, Nosol A, Płonka J, Śmiga-Matuszowicz M, Student S, Brzychczy-Włoch M, Krok-Borkowicz M, Pamuła E, Simka W. Physico-chemical and biological evaluation of doxycycline loaded into hybrid oxide-polymer layer on Ti-Mo alloy. Bioact Mater 2020; 5:553-563. [PMID: 32373761 PMCID: PMC7191259 DOI: 10.1016/j.bioactmat.2020.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/26/2020] [Accepted: 04/11/2020] [Indexed: 01/18/2023] Open
Abstract
Oxide-polymer coatings were formed on the surface of the vanadium-free Ti–15Mo titanium alloy. The Ti alloy surface was modified by the plasma electrolytic oxidation process, and then, the polymer layer of a poly (D, l-lactide-co-glycolide) with doxycycline was formed. The polymer evenly covered the porous oxide layer and filled some of the pores. However, the microstructure of the polymer surface was completely different from that of the PEO layer. The surface morphology, roughness and microstructure of the polymer layer were examined by scanning electron microscopy (SEM) and a confocal microscope. The results confirmed the effectiveness of polymer and doxycycline deposition in their stable chemical forms. The drug analysis was performed by high-performance liquid chromatography. The 1H NMR technique was used to monitor the course of hydrolytic degradation of PLGA. It was shown that the PLGA layer is hydrolysed within a few weeks, and the polyglycolidyl part of the copolymer is hydrolysed to glycolic acid as first and much faster than the polylactide one to lactic acid. This paper presents influence of different microstructures on the biological properties of modified titanium alloys. Cytocompatibility and bacterial adhesion tests were evaluated using osteoblast-like MG-63 cells and using the reference S. aureus and S. epidermidis strains. The results showed that the optimum concentration of doxycycline was found to inhibit the growth of the bacteria and that the layer is still cytocompatible. Formation of the oxide-polymer layer containing doxycycline is presented. Changes in the doxycycline structure and the evaluation of their stability was analyzed using the HPLC. Thickness of the polymer layer was determined using the confocal microscopy. The coatings showed the antibacterial properties and were cytocompatible with osteoblast-ike MG-63 cells.
Collapse
Affiliation(s)
- Alicja Kazek-Kęsik
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100, Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Street, 44-100, Gliwice, Poland
| | - Agnieszka Nosol
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100, Gliwice, Poland
| | - Joanna Płonka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100, Gliwice, Poland
| | - Monika Śmiga-Matuszowicz
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9 Street, 44-100, Gliwice, Poland
| | - Sebastian Student
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Street, 44-100, Gliwice, Poland.,Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16 Street, 44-100, Gliwice, Poland
| | - Monika Brzychczy-Włoch
- Department of Microbiology, Jagiellonian University Medical College, Czysta 18 Street, 31-121, Krakow, Poland
| | - Małgorzata Krok-Borkowicz
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-059, Krakow, Poland
| | - Elżbieta Pamuła
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-059, Krakow, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100, Gliwice, Poland
| |
Collapse
|
5
|
Leśniak K, Płonka J, Śmiga-Matuszowicz M, Brzychczy-Włoch M, Kazek-Kęsik A. Functionalization of PEO layer formed on Ti-15Mo for biomedical application. J Biomed Mater Res B Appl Biomater 2019; 108:1568-1579. [PMID: 31643133 DOI: 10.1002/jbm.b.34504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/13/2019] [Accepted: 10/06/2019] [Indexed: 01/18/2023]
Abstract
In the present work, deposition of poly(sebacic anhydride) PSBA loaded by amoxicillin, cefazolin, or vancomycin on a previously anodized Ti-15Mo surface is presented. PSBA loaded by the drug was deposited so as not to lose the functionality of the porous oxide layer microstructure. The morphology was evaluated using scanning electron microscopy, surface roughness, and wettability. The drug concentration was evaluated using high-performance liquid chromatography. It was determined that the drugs were loaded into coatings in the range of 35.2-122.87 μg/cm2 of Ti sample. The drugs released more than 16% after 0.5 hr of the hybrid coating immersion in artificial saliva. After 3 days, the PSBA coatings were degraded by 51.3 mol %, and after 7 days by 77.8 mol %, which makes it possible to load the material by different, biologically active substances. An antimicrobial investigation of Staphylococcus aureus (DSM 24167) and Staphylococcus epidermidis (ATCC 700296) confirmed the activity of the hybrid layers against the pathogens. Hybrid layer with vancomycin best inhibits the adhesion of the bacteria, whereas coatings with amoxicillin and cefazolin showed a much better bactericidal activity. In this article, the difference in the obtained results is discussed, as well as the possibility of the application of this functional material in biomedicine.
Collapse
Affiliation(s)
- Katarzyna Leśniak
- Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Gliwice, Poland
| | - Joanna Płonka
- Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Gliwice, Poland
| | - Monika Śmiga-Matuszowicz
- Faculty of Chemistry, Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
| | | | - Alicja Kazek-Kęsik
- Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
6
|
Abstract
In this paper, binary β type Ti-23 at.% Mo alloys were obtained by arc melting as well as by mechanical alloying and powder metallurgical process with cold powder compaction and sintering or, interchangeably, hot pressing. The influence of the synthesis method on the microstructure and properties of bulk alloys were studied. The produced materials were characterized by an X-ray diffraction technique, scanning electron microscopy and chemical composition determination. Young’s modulus was evaluated with nanoindentation testing method based on the Oliver and Pharr approach. The mechanically alloyed Ti-23 at.% Mo powders, after inductively hot-pressed at 800 °C for 5 min, allowed the formation of single Ti(β) phase alloy. In this case, Young’s modulus and Vickers hardness were 127 GPa and 454 HV0.3, respectively. Among the examined materials, the porous (55%) single-phase scaffold showed the lowest indentation modulus (69.5 GPa). Analytical approach performed in this work focuses also on the surface properties. The estimation includes the corrosion resistance analyzed in the potentiodynamic test, and also some wettability properties as a contact angle, and surface free energy values measured in glycerol and diiodomethane testing fluids. Additionally, surface modification of processed material by micro-arc oxidation and electrophoretic deposition on the chosen samples was investigated. Proposed procedures led to the formation of apatite and fluorapatite layers, which influence both the corrosion resistance and surface wetting properties in comparison to unmodified samples. The realized research shows that a single-phase ultrafine-grained Ti-23 at.% Mo alloy for medical implant applications can be synthesized at a temperature lower than the transition point by the application of hot pressing of mechanically alloyed powders. The material processing, that includes starting powder preparation, bulk alloy transformation, and additional surface treatment functionalization, affect final properties by the obtained phase composition and internal structure.
Collapse
|
7
|
Nagay BE, Dini C, Cordeiro JM, Ricomini-Filho AP, de Avila ED, Rangel EC, da Cruz NC, Barão VAR. Visible-Light-Induced Photocatalytic and Antibacterial Activity of TiO 2 Codoped with Nitrogen and Bismuth: New Perspectives to Control Implant-Biofilm-Related Diseases. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18186-18202. [PMID: 31038914 DOI: 10.1021/acsami.9b03311] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biofilm-associated diseases are one of the main causes of implant failure. Currently, the development of implant surface treatment goes beyond the osseointegration process and focuses on the creation of surfaces with antimicrobial action and with the possibility to be re-activated (i.e., light source activation). Titanium dioxide (TiO2), an excellent photocatalyst used for photocatalytic antibacterial applications, could be a great alternative, but its efficiency is limited to the ultraviolet (UV) range of the electromagnetic spectrum. Since UV radiation has carcinogenic potential, we created a functional TiO2 coating codoped with nitrogen and bismuth via the plasma electrolytic oxidation (PEO) of titanium to achieve an antibacterial effect under visible light with re-activation potential. A complex surface topography was demonstrated by scanning electron microscopy and three-dimensional confocal laser scanning microscopy. Additionally, PEO-treated surfaces showed greater hydrophilicity and albumin adsorption compared to control, untreated titanium. Bismuth incorporation shifted the band gap of TiO2 to the visible region and facilitated higher degradation of methyl orange (MO) in the dark, with a greater reduction in the concentration of MO after visible-light irradiation even after 72 h of aging. These results were consistent with the in vitro antibacterial effect, where samples with nitrogen and bismuth in their composition showed the greatest bacterial reduction after 24 h of dual-species biofilm formation ( Streptococcus sanguinis and Actinomyces naeslundii) in darkness with a superior effect at 30 min of visible-light irradiation. In addition, such a coating presents reusable photocatalytic potential and good biocompatibility by presenting a noncytotoxicity effect on human gingival fibroblast cells. Therefore, nitrogen and bismuth incorporation into TiO2 via PEO can be considered a promising alternative for dental implant application with antibacterial properties in darkness, with a stronger effect after visible-light application.
Collapse
Affiliation(s)
| | | | | | | | - Erica D de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara , São Paulo State University (UNESP) , R. Humaitá, 1680 , Araraquara , São Paulo 14801-903 , Brazil
| | - Elidiane C Rangel
- Laboratory of Technological Plasmas, Institute of Science and Technology , São Paulo State University (UNESP) , Av. Três de Março, 511 , Sorocaba , São Paulo 18087-180 , Brazil
| | - Nilson C da Cruz
- Laboratory of Technological Plasmas, Institute of Science and Technology , São Paulo State University (UNESP) , Av. Três de Março, 511 , Sorocaba , São Paulo 18087-180 , Brazil
| | | |
Collapse
|
8
|
Kazek-Kęsik A, Nosol A, Płonka J, Śmiga-Matuszowicz M, Gołda-Cępa M, Krok-Borkowicz M, Brzychczy-Włoch M, Pamuła E, Simka W. PLGA-amoxicillin-loaded layer formed on anodized Ti alloy as a hybrid material for dental implant applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:998-1008. [PMID: 30423788 DOI: 10.1016/j.msec.2018.10.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/14/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022]
Abstract
In this paper, the preparation of a functional hybrid coating loaded with a drug (amoxicillin) on a promising titanium alloy - Ti-15Mo alloy is presented. The titanium alloy surface was anodized in solution with bioactive compounds to obtain a porous oxide layer favorable for MG-63 osteoblast-like cell adhesion. Then, a poly(lactide-co-glycolide) (PLGA) loaded with amoxicillin layer was formed using a dip-coating technique to cover the oxide layer, without filling in all of the pores. The morphology of the surface was evaluated using scanning electron microscopy supported by 3D Roughness Reconstruction software. The surface treatment of the Ti-15Mo alloy surface caused the surface roughness to increase up to 1.71 μm. The anodization process caused the Ti-15Mo alloy surface to become slightly more hydrophilic; however, the formation of the PLGA layer loaded with drug increased the contact angle to 96.5° ± 2.2°, respectively. After 4 weeks of polymer layer degradation, the registered signals on the 1H NMR spectrum were identical to the signals registered for lactic acid (LAc), which confirms that the polymer layer was degraded within a short period of time. The concentration of drug released into the artificial saliva was investigated using high-performance liquid chromatography (HPLC) up to 12 h of coatings immersion. During the first hour of coating degradation in artificial saliva, and the concentration of the drug (13 μg/ml) was enough to inhibit bacterial growth of S. aureus and S. epidermidis. These results were confirmed by agar plate diffusion method and evaluation of the minimal inhibitory concentration (MIC). The cytocompatibility of the materials was determined using the osteoblast-like cells MG-63, and the viability and cell morphology (live/dead staining) were also evaluated. The results showed that amoxicillin influences the osteoblast-like MG-63 cells' behavior during cell culture, especially for the first few hours. The influence on the type of surface treatment on MG-63 cell behavior during 7 days of culture is discussed in this paper. To the best of our knowledge, this is the first time that a fast-degrading layer with amoxicillin has been deposited on previously anodized Ti surface. The formation of functional coating may find application as a cytocompatible coating to prevent bacterial adhesion on long-term implant surfaces.
Collapse
Affiliation(s)
- Alicja Kazek-Kęsik
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland.
| | - Agnieszka Nosol
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland
| | - Joanna Płonka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland
| | - Monika Śmiga-Matuszowicz
- Faculty of Chemistry, Silesian University of Technology, M. Strzody 9 Street, 44-100 Gliwice, Poland
| | - Monika Gołda-Cępa
- Faculty of Chemistry, Jagiellonian University, Gronostajowa Street 2, 30-387 Krakow, Poland
| | - Małgorzata Krok-Borkowicz
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland
| | - Monika Brzychczy-Włoch
- Department of Microbiology, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Krakow, Poland
| | - Elżbieta Pamuła
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-059 Krakow, Poland
| | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego Street 6, 44-100 Gliwice, Poland
| |
Collapse
|
9
|
The Influence of the Electrolyte Nature and PEO Process Parameters on Properties of Anodized Ti-15Mo Alloy Intended for Biomedical Applications. METALS 2018. [DOI: 10.3390/met8050370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Influence of Alkali Treatment on Anodized Titanium Alloys in Wollastonite Suspension. METALS 2017. [DOI: 10.3390/met7090322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Effect of phosphate additives on the microstructure, bioactivity, and degradability of microarc oxidation coatings on Mg-Zn-Ca-Mn alloy. Biointerphases 2016; 11:031006. [PMID: 27440396 DOI: 10.1116/1.4959127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Calcium phosphate coatings were prepared on the surface of self-designed Mg-Zn-Ca-Mn alloy using microarc oxidization technology. To characterize the microstructures, cross-section morphologies, and compositions of the coatings, the authors used scanning electron microscopy equipped with an energy-disperse spectrometer, x-ray diffraction, and Fourier transform infrared spectroscopy. Potentiodynamic polarization in the simulated body fluid (SBF) was used to evaluate the corrosion behaviors of the samples. An SBF immersion test was used to evaluate the coating bioactivity and degradability. After the immersion tests, some bonelike apatite formed on the coating surfaces indicate that bioactivity of the coatings is excellent. The coating prepared in electrolyte containing (NaPO3)6 had slower degradation rate after immersion test for 21 days.
Collapse
|
12
|
Kazek-Kęsik A, Krok-Borkowicz M, Dercz G, Donesz-Sikorska A, Pamuła E, Simka W. Multilayer coatings formed on titanium alloy surfaces by plasma electrolytic oxidation-electrophoretic deposition methods. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.02.193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:927-42. [DOI: 10.1016/j.msec.2016.01.063] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 02/06/2023]
|
14
|
Yeung WK, Sukhorukova IV, Shtansky DV, Levashov EA, Zhitnyak IY, Gloushankova NA, Kiryukhantsev-Korneev PV, Petrzhik MI, Matthews A, Yerokhin A. Characteristics and in vitro response of thin hydroxyapatite-titania films produced by plasma electrolytic oxidation of Ti alloys in electrolytes with particle additions. RSC Adv 2016; 6:12688-12698. [PMID: 27019704 PMCID: PMC4786953 DOI: 10.1039/c5ra22178a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/18/2016] [Indexed: 12/03/2022] Open
Abstract
Enhanced incorporation of hydroxyapatite nanoparticles in porous titania coating formed by plasma electrolytic oxidation significantly increases surface osteogenic activity.
The enhancement of the biological properties of Ti by surface doping with hydroxyapatite (HA) is of great significance, especially for orthodontic applications. This study addressed the effects of HA particle size in the electrolyte suspension on the characteristics and biological properties of thin titania-based coatings produced on Ti–6Al–4V alloy by plasma electrolytic oxidation (PEO). Detailed morphological investigation of the coatings formed by a single-stage PEO process with two-step control of the electrical parameters was performed using the Minkowski functionals approach. The surface chemistry was studied by glow discharge optical emission spectroscopy and Fourier transform infrared spectroscopy, whereas mechanical properties were evaluated using scratch tests. The biological assessment included in vitro evaluation of the coating bioactivity in simulated body fluid (SBF) as well as studies of spreading, proliferation and osteoblastic differentiation of MC3T3-E1 cells. The results demonstrated that both HA micro- and nanoparticles were successfully incorporated in the coatings but had different effects on their surface morphology and elemental distributions. The micro-particles formed an irregular surface morphology featuring interpenetrated networks of fine pores and coating material, whereas the nanoparticles penetrated deeper into the coating matrix which retained major morphological features of the porous TiO2 coating. All coatings suffered cohesive failure in scratch tests, but no adhesive failure was observed; moreover doping with HA increased the coating scratch resistance. In vitro tests in SBF revealed enhanced bioactivity of both HA-doped PEO coatings; furthermore, the cell proliferation/morphometric tests showed their good biocompatibility. Fluorescence microscopy revealed a well-organised actin cytoskeleton and focal adhesions in MC3T3-E1 cells cultivated on these substrates. The cell alkaline phosphatase activity in the presence of ascorbic acid and β-glycerophosphate was significantly increased, especially in HA nanoparticle-doped coatings.
Collapse
Affiliation(s)
- W K Yeung
- University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK. ; ; Tel: +44 (0)1142 225970
| | - I V Sukhorukova
- National University of Science and Technology 'MISiS', Leninsky prospect 4, Moscow 119049, Russia
| | - D V Shtansky
- National University of Science and Technology 'MISiS', Leninsky prospect 4, Moscow 119049, Russia
| | - E A Levashov
- National University of Science and Technology 'MISiS', Leninsky prospect 4, Moscow 119049, Russia
| | - I Y Zhitnyak
- N.N. Blokhin Russian Cancer Research Centre, Kashirskoe shosse 24, Moscow 115478, Russia
| | - N A Gloushankova
- N.N. Blokhin Russian Cancer Research Centre, Kashirskoe shosse 24, Moscow 115478, Russia
| | | | - M I Petrzhik
- National University of Science and Technology 'MISiS', Leninsky prospect 4, Moscow 119049, Russia
| | - A Matthews
- University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK. ; ; Tel: +44 (0)1142 225970; University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - A Yerokhin
- University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK. ; ; Tel: +44 (0)1142 225970; National University of Science and Technology 'MISiS', Leninsky prospect 4, Moscow 119049, Russia
| |
Collapse
|
15
|
Zhang L, Huang X, Han Y. Formation mechanism and cytocompatibility of nano-shaped calcium silicate hydrate/calcium titanium silicate/TiO2 composite coatings on titanium. J Mater Chem B 2016; 4:6734-6745. [DOI: 10.1039/c6tb01699e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared with as-MAOed TiO2, the triple-layered coating (HT2h) comprised of an outer layer of nanoleaf Ca3Si6O15(H2O)7, a middle layer of nanograined Ca(Si1.9Ti0.1)O5 and an inner layer of microporous TiO2 can significantly improve the behaviors of osteoblasts.
Collapse
Affiliation(s)
- Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Xiaoyan Huang
- State-key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|
16
|
Kazek-Kęsik A, Krok-Borkowicz M, Pamuła E, Simka W. Electrochemical and biological characterization of coatings formed on Ti–15Mo alloy by plasma electrolytic oxidation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:172-81. [DOI: 10.1016/j.msec.2014.07.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/02/2014] [Accepted: 07/03/2014] [Indexed: 01/17/2023]
|