1
|
Gachi MZ, Solouk A, Shafieian M, Daemi H. Chemical structure of antibiotics determines their release rate from drug-loaded poly(vinyl alcohol)/sodium sulfated alginate nanofibrous wound dressings. Int J Biol Macromol 2025; 307:141669. [PMID: 40032114 DOI: 10.1016/j.ijbiomac.2025.141669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/16/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Antibiotics are widely used for treatment of infected wounds; however, their application through a local and controlled release system may cause more effectiveness and fewer side-effects. In this study, we fabricated drug-loaded poly(vinyl alcohol)/sodium sulfated alginate (PVA/SSA) nanofibrous mats incorporating cationic antibiotic drugs, i.e., salts of gentamicin, tetracycline, ciprofloxacin and minocycline, and examined their physicochemical and biological properties. The results of FTIR spectroscopy showed that cationic drugs have different interactions with carboxylate and sulfate functional groups of SSA depending on their chemical structure. Furthermore, the results of viscometry and conductivity analyses of the solutions revealed that the solutions with drugs with more electrical charge or/and higher functional groups resulted in a lower viscosity and conductivity compared to other drugs, due to the ability to form more hydrogen bonds. The release profiles of drug-loaded nanofibrous mats showed a burst release and then, a sustained release for 5 days, where the burst release of tetracycline (30.0 ± 0.3 %) from crosslinked mats was noticeably lower than other drugs. Biological assays confirmed the cytocompatibility, antibacterial activity and non-hemolytic behavior of all drug-loaded mats. Finally, ciprofloxacin-loaded nanofibrous mat was used as wound dressing for full-thickness wounds on rats and its efficacy was confirmed.
Collapse
Affiliation(s)
- Maryam Zare Gachi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Mehdi Shafieian
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Biomaterials, ZFZ Chemical Company, Tehran, Iran.
| |
Collapse
|
2
|
de Lafuente Y, Quarta E, Magi MS, Apas AL, Pagani J, Palena MC, Páez PL, Sonvico F, Jimenez-Kairuz AF. Polyelectrolyte Complex Dry Powder Formulations of Tobramycin with Hyaluronic Acid and Sodium Hyaluronate for Inhalation Therapy in Cystic Fibrosis-Associated Infections. Antibiotics (Basel) 2025; 14:169. [PMID: 40001413 PMCID: PMC11851662 DOI: 10.3390/antibiotics14020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Pulmonary delivered tobramycin (TOB) is a standard treatment for Pseudomonas aeruginosa lung infections, that, along with Staphylococcus aureus, is one of the most common bacteria causing recurring infections in CF patients. However, the only available formulation on the market containing tobramycin, TOBI®, is sold at a price that makes the access to the treatment difficult. Therefore, this work focuses on the development and characterization of an ionic complex between a polyelectrolyte, hyaluronic acid (HA) and its salt, sodium hyaluronate (NaHA), and TOB to be formulated as an inhalable dry powder. Methods: The solid state complex obtained by spray drying technique was physicochemically characterized by infrared spectroscopy, thermal analysis and X-ray diffraction, confirming an ionic interaction for both complexes. Results: The powder density, geometric size, and morphology along with the aerodynamic performance showed suitable properties for the powder formulations to reach the deep lung. Moisture uptake was found to be low, with the complex HA-TOB remaining physicochemically unchanged, while the NaHA-TOB required significant protection against humidity. The biopharmaceutical in vitro experiments showed a rapid dissolution which can have a positively impact in reducing side effects, while the drug release study demonstrated a reversible polyelectrolyte-drug interaction. Microbiological experiments against P. aeruginosa and S. aureus showed improved bacterial growth inhibition and bactericidal efficacy, as well as better inhibition and eradication of biofilms when compared with to TOB. Conclusions: A simple polyelectrolyte-drug complex technique represents a promising strategy for the development of antimicrobial dry powder formulations for pulmonary delivery in the treatment of cystic fibrosis (CF) lung infections.
Collapse
Affiliation(s)
- Yanina de Lafuente
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000HUA, Argentina; (Y.d.L.); (M.S.M.); (A.L.A.); (J.P.); (M.C.P.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Eride Quarta
- Department of Food and Drug Science, University of Parma, Parco Area Delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.)
| | - María S. Magi
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000HUA, Argentina; (Y.d.L.); (M.S.M.); (A.L.A.); (J.P.); (M.C.P.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Ana L. Apas
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000HUA, Argentina; (Y.d.L.); (M.S.M.); (A.L.A.); (J.P.); (M.C.P.); (P.L.P.)
| | - Joaquín Pagani
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000HUA, Argentina; (Y.d.L.); (M.S.M.); (A.L.A.); (J.P.); (M.C.P.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - María C. Palena
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000HUA, Argentina; (Y.d.L.); (M.S.M.); (A.L.A.); (J.P.); (M.C.P.); (P.L.P.)
| | - Paulina L. Páez
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000HUA, Argentina; (Y.d.L.); (M.S.M.); (A.L.A.); (J.P.); (M.C.P.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Fabio Sonvico
- Department of Food and Drug Science, University of Parma, Parco Area Delle Scienze 27/A, 43124 Parma, Italy; (E.Q.); (F.S.)
| | - Alvaro F. Jimenez-Kairuz
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba (UNC), Córdoba X5000HUA, Argentina; (Y.d.L.); (M.S.M.); (A.L.A.); (J.P.); (M.C.P.); (P.L.P.)
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNC), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| |
Collapse
|
3
|
Maloney Norcross SE, Levin LPK, Hickey AJ, Hill DB. Biopolymeric Inhalable Dry Powders for Pulmonary Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1628. [PMID: 39770469 PMCID: PMC11728674 DOI: 10.3390/ph17121628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/16/2025] Open
Abstract
Natural and synthetic biopolymers are gaining popularity in the development of inhaled drug formulations. Their highly tunable properties and ability to sustain drug release allow for the incorporation of attributes not achieved in dry powder inhaler formulations composed only of micronized drugs, standard excipients, and/or carriers. There are multiple physiological barriers to the penetration of inhaled drugs to the epithelial surface, such as the periciliary layer mucus mesh, pulmonary macrophages, and inflammation and mucus compositional changes resulting from respiratory diseases. Biopolymers may facilitate transport to the epithelial surface despite such barriers. A variety of categories of biopolymers have been assessed for their potential in inhaled drug formulations throughout the research literature, ranging from natural biopolymers (e.g., chitosan, alginate, hyaluronic acid) to those synthesized in a laboratory setting (e.g., polycaprolactone, poly(lactic-co-glycolic acid)) with varying structures and compositions. To date, no biopolymers have been approved as a commercial dry powder inhaler product. However, advances may be possible in the treatment of respiratory diseases and infections upon further investigation and evaluation. Herein, this review will provide a thorough foundation of reported research utilizing biopolymers in dry powder inhaler formulations. Furthermore, insight and considerations for the future development of dry powder formulations will be proposed.
Collapse
Affiliation(s)
- Sara E. Maloney Norcross
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, Durham, NC 27709, USA
| | - Leanna P. K. Levin
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, Durham, NC 27709, USA
| | - Anthony J. Hickey
- Technology Advancement and Commercialization, RTI International, Research Triangle Park, Durham, NC 27709, USA
| | - David B. Hill
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Marsico Lung Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Bayona Solano JE, Sánchez DA, Tonetto GM. Valorization of levulinic acid by esterification with 1-octanol using a novel biocatalyst derived from Araujia sericifera. J Biotechnol 2024; 395:100-109. [PMID: 39326561 DOI: 10.1016/j.jbiotec.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Levulinic acid, which can be obtained from biomass, has sparked great interest as a biologically-based chemical building block with wide versatility and potential. Its esterification with alcohols of different chain lengths is a promising valorization process for obtaining esters with various applications in the areas of biofuels/biolubricants, food and cosmetics, among others. In this work, the enzymatic esterification of levulinic acid and 1-octanol using a biocatalyst derived from Araujia sericifera latex was studied in systems with and without solvent. The influence of the molar ratio between alcohol and acid (ranging from 2:1-1:9), the biocatalyst loading (between 7.5 % and 17.5 % relative to the acid), the volume of n-heptane used as reaction solvent (from 0 to 4 ml), and the reaction time (6 hours) were investigated. The activity and stability of the biocatalyst in successive uses were also analyzed. A conversion of 49 % was achieved when the reaction was carried out in a solvent-free system, using an alcohol/acid molar ratio of 1:7 and after 5 h of reaction. On the other hand, the conversion was 65.1 % when the reaction was conducted in a system containing 1 ml of n-heptane as solvent, an alcohol/acid molar ratio of 1:8, and 5 h of reaction. In both cases, a temperature as low as 30 °C and an agitation speed of 300 RPM were used.
Collapse
Affiliation(s)
- Jaime E Bayona Solano
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Avda. Alem 1253, Bahía Blanca 8000, Argentina; Planta Piloto de Ingeniería Química - PLAPIQUI (UNS - CONICET), Camino La Carrindanga Km 7, CC 717, Bahía Blanca 8000, Argentina.
| | - Daniel A Sánchez
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Avda. Alem 1253, Bahía Blanca 8000, Argentina; Planta Piloto de Ingeniería Química - PLAPIQUI (UNS - CONICET), Camino La Carrindanga Km 7, CC 717, Bahía Blanca 8000, Argentina.
| | - Gabriela M Tonetto
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Avda. Alem 1253, Bahía Blanca 8000, Argentina; Planta Piloto de Ingeniería Química - PLAPIQUI (UNS - CONICET), Camino La Carrindanga Km 7, CC 717, Bahía Blanca 8000, Argentina.
| |
Collapse
|
5
|
Ceschan NE, Scioli-Montoto S, Sbaraglini ML, Ruiz ME, Smyth HD, Bucalá V, Ramírez-Rigo MV. Nebulization of a polyelectrolyte-drug system for systemic hypertension treatment. Eur J Pharm Sci 2022; 170:106108. [DOI: 10.1016/j.ejps.2021.106108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 11/03/2022]
|
6
|
Mali AJ, Joshi PA, Bothiraja C, Pawar AP. Fabrication and application of dimyristoyl phosphatidylcholine biomaterial-based nanocochleates dry powder inhaler for controlled release resveratrol delivery. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00189-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Resveratrol, a bioactive phytoconstituent, is used to treat chronic respiratory diseases. However, its clinical application was hampered due to its poor bioavailability. In the present study, controlled release of resveratrol loaded nanocochleate-based dry powder inhaler was investigated to improve its biopharmaceutical properties for pulmonary drug delivery. The in vivo toxicity study was performed in the healthy male albino Wistar rats by intracheal administration.
Results
Resveratrol loaded nanocochleate-based dry powder inhaler was prepared by lyophilizing the resveratrol loaded dimyristoylphosphatidylcholine sodium and calcium ion-based nanocochleates using mannitol as cryoprotectant. Resveratrol loaded nanocochleates showed a particle size and encapsulation efficiency of 329.18 ± 9.43 nm and 76.35 ± 3.65%, respectively. Resveratrol loaded nanocochleate-based dry powder exhibited a particle size of 102.21 ± 9.83 μm and satisfactory flowability with initial burst release followed by extended release up to 96 h. The in vitro drug deposition pattern using multistage cascade impactor showed 1.28-fold improvement in fine particle dose, and the in vivo toxicity potential by histopathological study in albino rats revealed safety of formulation.
Conclusions
Resveratrol loaded nanocochleate-based dry powder inhaler could serve as an efficient delivery system for the treatment of chronic respiratory diseases.
Graphical abstract
Collapse
|
7
|
Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Cid AG, Ramírez-Rigo MV, Palena MC, Gonzo EE, Jimenez-Kairuz AF, Bermúdez JM. Dual Release Model to Evaluate Dissolution Profiles from Swellable Drug Polyelectrolyte Matrices. Curr Drug Deliv 2020; 17:511-522. [DOI: 10.2174/1567201817666200512093115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/25/2019] [Accepted: 03/31/2020] [Indexed: 11/22/2022]
Abstract
Background:
Mathematical modeling in modified drug release is an important tool that allows
predicting the release rate of drugs in their surrounding environment and elucidates the transport
mechanisms involved in the process.
Objective:
The aim of this work was to develop a mathematical model that allows evaluating the release
profile of drugs from polymeric carriers in which the swelling phenomenon is present.
Methods:
Swellable matrices based on ionic complexes of alginic acid or carboxymethylcellulose with
ciprofloxacin were prepared and the effect of adding the polymer sodium salt on the swelling process
and the drug release was evaluated. Experimental data from the ciprofloxacin release profiles were
mathematically adjusted, considering the mechanisms involved in each stage of the release process.
Results:
A proposed model, named “Dual Release” model, was able to properly fit the experimental
data of matrices presenting the swelling phenomenon, characterized by an inflection point in their release
profile. This entails applying the extended model of Korsmeyer-Peppas to estimate the percentage
of drug released from the first experimental point up to the inflection point and then a model called
Lumped until the final time, allowing to adequately represent the complete range of the drug release
profile. Different parameters of pharmaceutical relevance were calculated using the proposed model to
compare the profiles of the studied matrices.
Conclusion:
The “Dual Release” model proposed in this article can be used to predict the behavior of
complex systems in which different mechanisms are involved in the release process.
Collapse
Affiliation(s)
- Alicia Graciela Cid
- Instituto de Investigaciones para la Industria Quimica, Consejo Nacional de Investigaciones Científicas y Tecnicas - Universidad Nacional de Salta, Salta, Argentina
| | | | - María Celeste Palena
- Departamento de Ciencias Farmaceuticas, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Elio Emilio Gonzo
- Instituto de Investigaciones para la Industria Quimica, Consejo Nacional de Investigaciones Científicas y Tecnicas - Universidad Nacional de Salta, Salta, Argentina
| | - Alvaro Federico Jimenez-Kairuz
- Departamento de Ciencias Farmaceuticas, Facultad de Ciencias Quimicas, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - José María Bermúdez
- Instituto de Investigaciones para la Industria Quimica, Consejo Nacional de Investigaciones Científicas y Tecnicas - Universidad Nacional de Salta, Salta, Argentina
| |
Collapse
|
9
|
Ceschan NE, Rosas MD, Olivera ME, Dugour AV, Figueroa JM, Bucalá V, Ramírez-Rigo MV. Development of a Carrier-Free Dry Powder Ofloxacin Formulation With Enhanced Aerosolization Properties. J Pharm Sci 2020; 109:2787-2797. [PMID: 32505450 DOI: 10.1016/j.xphs.2020.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB) is a serious infectious disease that affects more than new 10 million patients each year. Many of these cases are resistant to first-line drugs so second-line ones, like fluoroquinolones, need to be incorporated into the therapeutic. Ofloxacin (OF) is a fluoroquinolone which demonstrates high antibiotic activity against the bacteria that causes TB (M. tuberculosis). In this work, ionic complexes, composed by hyaluronic acid (HA) and OF, with different neutralization degrees, were prepared and processed by spray drying (SD) to obtain powders for inhalatory administration. Combining a formulation with high neutralization degree, high SD atomization air flowrate and the use of a high-performance collection cyclone, very good process yields were obtained. Carrier-free formulations with a loading of 0.39-0.46 gOF/gpowder showed excellent emitted, fine particle, and respirable fractions for capsule loadings of 25 and 100 mg. The ionic complexes demonstrated higher mucoadhesion than pure OF and HA. The best formulation did not affect CALU-3 cell viability up to a dose 6.5 times higher than the MIC90 reported to treat multi-drug resistant TB.
Collapse
Affiliation(s)
- Nazareth Eliana Ceschan
- Planta Piloto de Ingeniería Química (PLAPIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina.
| | - Melany Denise Rosas
- Planta Piloto de Ingeniería Química (PLAPIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| | - María Eugenia Olivera
- Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina; Unidad de Tecnología Farmacéutica (UNITEFA-CONICET), Córdoba, Argentina
| | - Andrea Vanesa Dugour
- Centro de Biología Respiratoria (CEBIR), Fundación Pablo Cassará, Saladillo 2452, C1440FFX Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Manuel Figueroa
- Centro de Biología Respiratoria (CEBIR), Fundación Pablo Cassará, Saladillo 2452, C1440FFX Ciudad Autónoma de Buenos Aires, Argentina
| | - Verónica Bucalá
- Planta Piloto de Ingeniería Química (PLAPIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - María Verónica Ramírez-Rigo
- Planta Piloto de Ingeniería Química (PLAPIQUI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| |
Collapse
|
10
|
Nazemi Z, Nourbakhsh MS, Kiani S, Heydari Y, Ashtiani MK, Daemi H, Baharvand H. Co-delivery of minocycline and paclitaxel from injectable hydrogel for treatment of spinal cord injury. J Control Release 2020; 321:145-158. [PMID: 32035190 DOI: 10.1016/j.jconrel.2020.02.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Spinal cord injury (SCI) induces pathological and inflammatory responses that create an inhibitory environment at the site of trauma, resulting in axonal degeneration and functional disability. Combination therapies targeting multiple aspects of the injury, will likely be more effective than single therapies to facilitate tissue regeneration after SCI. In this study, we designed a dual-delivery system consisting of a neuroprotective drug, minocycline hydrochloride (MH), and a neuroregenerative drug, paclitaxel (PTX), to enhance tissue regeneration in a rat hemisection model of SCI. For this purpose, PTX-encapsulated poly (lactic-co-glycolic acid) PLGA microspheres along with MH were incorporated into the alginate hydrogel. A prolonged and sustained release of MH and PTX from the alginate hydrogel was obtained over eight weeks. The obtained hydrogels loaded with a combination of both drugs or each of them alone, along with the blank hydrogel (devoid of any drugs) were injected into the lesion site after SCI (at the acute phase). Histological assessments showed that the dual-drug treatment reduced inflammation after seven days. Moreover, a decrease in the scar tissue, as well as an increase in neuronal regeneration was observed after 28 days in rats treated with dual-drug delivery system. Over time, a fast and sustained functional improvement was achieved in animals that received dual-drug treatment compared with other experimental groups. This study provides a novel dual-drug delivery system that can be developed to test for a variety of SCI models or neurological disorders.
Collapse
Affiliation(s)
- Zahra Nazemi
- Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran
| | - Mohammad Sadegh Nourbakhsh
- Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran; Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran.
| | - Sahar Kiani
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Yasaman Heydari
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
11
|
Gonzalez MA, Ramírez Rigo MV, Gonzalez Vidal NL. Orphan Formulations in Pediatric Schistosomiasis Treatment: Development and Characterization of Praziquantel Nanoparticle-Loaded Powders for Reconstitution. AAPS PharmSciTech 2019; 20:318. [PMID: 31620905 DOI: 10.1208/s12249-019-1548-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/23/2019] [Indexed: 11/30/2022] Open
Abstract
Praziquantel is a broad spectrum antihelmintic agent and represents the drug of choice for the treatment of schistosomiasis. However, its low aqueous solubility and strong bitter taste highly affect the bioavailability and compliance in pediatric patients. Thus, the purpose of this study was to develop a dry nanosuspension, by a combination of high-pressure homogenization and spray drying, intended for redispersion in a pleasant taste vehicle for extemporaneous use. Three formulations, varying stabilizers to drug ratio, were developed and characterized in terms of particle size distribution, crystallinity, morphology, in vitro dissolution, and sedimentation-redispersibility behavior. A significant reduction in particle size was achieved after the high-pressure homogenization process, and the nanoparticles were further microencapsulated by spray drying technique. The redispersed dried powders exhibited a conserved particle size distribution (in the nanometric range) and certain crystallinity extent, with satisfactory redispersion ability. Besides, the enhancement of the dissolution performance obtained after comminution was conserved, even after drying and redispersion of the extemporaneous powdered formulation. In conclusion, the developed nanoparticle-loaded powders comprise an interesting tool for the administration of praziquantel to preschool-age children.
Collapse
|
12
|
Natalini P, Razuc M, Sørli J, Bucalá V, Ramírez-Rigo M. The influence of surfactant on the properties of albendazole-bile salts particles designed for lung delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Development of porous spray-dried inhalable particles using an organic solvent-free technique. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.10.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Razuc M, Piña J, Ramírez-Rigo MV. Optimization of Ciprofloxacin Hydrochloride Spray-Dried Microparticles for Pulmonary Delivery Using Design of Experiments. AAPS PharmSciTech 2018; 19:3085-3096. [PMID: 30105497 DOI: 10.1208/s12249-018-1137-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/27/2018] [Indexed: 01/04/2023] Open
Abstract
Ciprofloxacin is a broad-spectrum antibiotic for treatment of pulmonary diseases such as chronic obstructive pulmonary disease and cystic fibrosis. The purpose of this work was to rationally study the spray drying of ciprofloxacin in order to identify the formulation and operating conditions that lead to a product with aerodynamic properties appropriate for dry powder inhalation. A 24 - 1 fractional factorial design was applied to investigate the effect of selected variables (i.e., ciprofloxacin hydrochloride (CIP) concentration, drying air inlet temperature, feed flow rate, and atomization air flow rate) on several product and process parameters (i.e., particle size, aerodynamic diameter, moisture content, densities, porosity, powder flowability, outlet temperature, and process yield) and to determine an optimal condition. The studied factors had a significant effect on the evaluated responses (higher p value 0.0017), except for the moisture content (p value > 0.05). The optimal formulation and operating conditions were as follows: CIP concentration 10 mg/mL, drying air inlet temperature 110°C, feed volumetric flow rate 3.0 mL/min, and atomization air volumetric flow rate 473 L/h. The product obtained under this set had a particle size that guarantees access to the lung, a moisture content acceptable for dry powder inhalation, fair flowability, and high process yield. The PDRX and SEM analysis of the optimal product showed a crystalline structure and round and dimpled particles. Moreover, the product was obtained by a simple and green spray drying method.
Collapse
|
15
|
Ceschan NE, Bucalá V, Mateos MV, Smyth HDC, Ramírez-Rigo MV. Carrier free indomethacin microparticles for dry powder inhalation. Int J Pharm 2018; 549:169-178. [PMID: 30071308 DOI: 10.1016/j.ijpharm.2018.07.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 11/28/2022]
Abstract
The present studies were designed to evaluate inhalatory microparticles carrying indomethacin (IN) for potential local (specific and non-specific bronchial inflammatory asthma responses) and systemic treatments (joint inflammation, rheumatoid arthritis and osteoarthritis pain) by optimizing microparticle properties, characterizing their lung deposition, drug release, evaluating cytotoxicity and also pharmacological effect in vitro. The acidic groups of IN were complexed with the cationic groups of the polyelectrolyte polylysine in order to increase the drug water compatibility. The polylysine/indomethacin ratio was fixed and the pH was adjusted in different formulations. Microparticles were obtained by spray drying using a relatively high atomization air flowrate (742 L/min) and a high-performance cyclone in order to optimize the production of microparticles with adequate attributes for inhalatory delivery. The produced microparticles exhibited high process yield and IN loading, volumetric mean diameters smaller than 5 μm and narrow particle size distributions. According to demonstrated aerosolization performance, the powders were suitable for inhalatory indomethacin local and systemic treatments. Emitted fraction was higher than 90%, the MMAD was around 3 μm and the GSD lower than 3. The respirable fraction for particles with aerodynamic diameters smaller than 5 μm was around 29% while for particles with aerodynamic diameters smaller than 3 μm the value was around 17%. The addition of lactose as carrier worsened the aerodynamic performance of the microparticles. The developed powdered systems got wet and dissolved quickly and presented higher release rates respect to pure IN in simulated lung physiological conditions. Furthermore, the assays performed in RAW 264.7 cell line showed that the microparticles exhibited the same anti-inflammatory capability as the pure drug. The developed particles did not affect the RAW 264.7 cell viability. In conclusion, a promising powder formulation for DPIs has been developed to treat, locally and systemically, inflammatory diseases.
Collapse
Affiliation(s)
- Nazareth Eliana Ceschan
- Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Verónica Bucalá
- Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca, Argentina
| | - Melina Valeria Mateos
- Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina; Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca, Argentina
| | - Hugh David Charles Smyth
- College of Pharmacy, The University of Texas at Austin, 2409 West University Avenue, Austin, TX, United States
| | - María Verónica Ramírez-Rigo
- Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
16
|
Gallo L, Bucalá V, Ramírez-Rigo MV. Formulation and Characterization of Polysaccharide Microparticles for Pulmonary Delivery of Sodium Cromoglycate. AAPS PharmSciTech 2017; 18:1634-1645. [PMID: 27659025 DOI: 10.1208/s12249-016-0633-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/10/2016] [Indexed: 01/03/2023] Open
Abstract
Sodium cromoglycate (SC) is an antiasthmatic and antiallergenic drug commonly used for chronic inhalation therapy; however, many daily intakes are required due to the fast drug clearance from airways. For these reasons, SC polymeric particles for inhalatory administration with adequate aerosolization and mucoadhesive properties were designed to prolong the drug residence time in the site of action. Sodium carboxymethylcellulose (CMCNa), sodium hyaluronate, and sodium alginate were selected to co-process SC by spray drying. The influence of these polysaccharides on the spray drying process and powder quality was evaluated (among others, morphology, size, moisture content, hygroscopicity, flowability, densities, liquid sorption, and stability). In vitro aerosolization, drug release, and mucoadhesion performance were also studied. Particularly, a novel method to comparatively evaluate the interaction between formulations and mucin solution (mucoadhesion test) was proposed as a rapid methodology to measure adhesion properties of inhalable particles, being the results as indicative of clearance probability. Among all the studied formulations, the powder based on SC and CMCNa exhibited the best mucoadhesion and aerosolization performance, the highest process yield and adequate moisture content, hygroscopicity, and stability. SC-CMCNa formulation arose as a promising inhalatory system to reduce the daily intakes and to increase the patient compliance.
Collapse
|
17
|
Impact of feed counterion addition and cyclone type on aerodynamic behavior of alginic-atenolol microparticles produced by spray drying. Eur J Pharm Biopharm 2016; 109:72-80. [DOI: 10.1016/j.ejpb.2016.09.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 09/19/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
|
18
|
Ceschan NE, Bucalá V, Ramírez-Rigo MV. Polymeric microparticles containing indomethacin for inhalatory administration. POWDER TECHNOL 2015. [DOI: 10.1016/j.powtec.2015.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Kutscher M, Cheow WS, Werner V, Lorenz U, Ohlsen K, Meinel L, Hadinoto K, Germershaus O. Influence of salt type and ionic strength on self-assembly of dextran sulfate-ciprofloxacin nanoplexes. Int J Pharm 2015; 486:21-9. [DOI: 10.1016/j.ijpharm.2015.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/09/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022]
|