1
|
Liang S, Zhang J, Huang S, Lan X, Wang W, Tang Y. Functionalized Gelatin Electrospun Nanofibrous Membranes in Food Packaging: Modification Strategies for Fulfilling Evolving Functional Requirements. Polymers (Basel) 2025; 17:1066. [PMID: 40284331 PMCID: PMC12030516 DOI: 10.3390/polym17081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Gelatin, known for its excellent biocompatibility, strong aggregative properties, and low cost, has been extensively investigated as a promising material for food packaging. Among various fabrication methods, electrospinning stands out due to its simplicity, cost-effectiveness, high process controllability, and ability to produce nanofiber membranes with enhanced properties. This review provides a comprehensive overview of the sources, properties, and applications of gelatin, along with the fundamental principles of electrospinning and its applications in food packaging. Additionally, the common types of electrospinning techniques used in food packaging are also covered. In recent years, increasing research efforts have focused on gelatin-based electrospun nanofiber membranes for food packaging applications. The functionalization of electrospinning gelatin-based nanofiber membrane was realized by incorporating various active substances or combining it with other techniques, fulfilling the new requirements of food packaging. In this review, gelatin-based electrospun nanofiber membranes for food packaging applications are overviewed, with a particular emphasis on various types of modifications for the membranes aimed at meeting diverse application demands. Finally, the future perspectives and challenges in the research of gelatin-based electrospun nanofiber membranes for food packaging are discussed.
Collapse
Affiliation(s)
- Shiyi Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shunfen Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingzi Lan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Kiefer R, Otero TF, Harjo M, Le QB. Chemically Polymerized Polypyrrole on Glucose-Porcine Skin Gelatin Nanofiber as Multifunctional Electrochemical Actuator-Sensor-Capacitor. Polymers (Basel) 2025; 17:631. [PMID: 40076123 PMCID: PMC11902419 DOI: 10.3390/polym17050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Multifunctional materials requiring low functional voltages are the main goal of new industrial smart technologies. Polypyrrole (PPy) was chemically synthesized by a simple dip-coating process on glucose-porcine skin gelatin nanofibers, accelerating mass production, here shown on nanofiber scaffolds (NFs) with those consisting of composites. The isometric and isotonic characterizations by electro-chemo-mechanical deformation (ECMD) of NFS-PPy are obtained from cyclic voltammetric and chronoamperometric responses in lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), lithium triflouromethanesulfonate (LiTF) and sodium perchlorate (NaClO4) in propylene carbonate (PC). The results indicate a prevalent anion-driven actuation of the linear actuator (expansion by oxidation and contraction by reduction). Different stress (4-2 kPa) and strain (0.7-0.4%) gradients are a function of the anion Van der Waals volume. During reversible actuation (expansion/contraction), the material stores/releases energy, obtaining greater specific capacitance, 68 F g-1, in LiTFSI solutions, keeping 82% of this capacity after 2000 cycles. The sensitivity (the slope of the linear sensing equation) is a characteristic of the exchanged anion. The reaction of the PPy-coated nanofiber is multifunctional, developing simultaneous actuation, sensing, and energy storage. The materials were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy.
Collapse
Affiliation(s)
- Rudolf Kiefer
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Toribio F. Otero
- Centre for Electrochemistry and Intelligent Materials (CEMI), Universidad Politécnica de Cartagena, Aulario II, Paseo Alfonso XIII, E-30203 Cartagena, Murcia, Spain;
| | - Madis Harjo
- Intelligent Materials and Systems Lab, Institute of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia;
| | - Quoc Bao Le
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, USA
| |
Collapse
|
3
|
Hajieghrary F, Ghanbarzadeh B, Pezeshki A, Dadashi S, Falcone PM. Development of Hybrid Electrospun Nanofibers: Improving Effects of Cellulose Nanofibers (CNFs) on Electrospinnability of Gelatin. Foods 2024; 13:2114. [PMID: 38998620 PMCID: PMC11241272 DOI: 10.3390/foods13132114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Cellulose nanofibers (CNFs) were used to improve the electrospinnability of the gelatin protein in a water/ethanol/acetic acid (3:2:3, v/v) solution. The effects of different concentrations of CNFs (0.5-4%) on the important physical properties of the gelatin solution (15%), including rheology, conductivity, and surface tension, were investigated. The apparent viscosity and shear-thinning behavior were increased by increasing the CNF concentration from 0 to 4% at a low shear rate (<10 s-1). CNFs also increased the electrical conductivity and surface tension of the gelatin solution. Scanning electron microscopy (SEM) images revealed uniformly ordered structures with good continuity without fracture or bead formation in all hybrid nanofibers. They also showed that the average diameters of fibers decreased from 216 nm in the pure gelatin nanofibers to 175.39 nm in the hybrid gelatin/CNF (4%) ones. Differential scanning calorimetry (DSC) results showed that CNFs increased Tg, and X-ray diffraction (XRD) analysis showed that the electrospinning process caused the formation of more amorphous structures in the gelatin/CNF hybrid nanofibers. The tensile test indicated that by adding 2% CNFs, the ultimate tensile strength (UTS) and strain at break (SB) of nanofiber mats increased from 4.26 to 10.5 MPa and 3.3% to 6.25%, respectively. The current study indicated that incorporating CNFs at the optimal concentration into a gelatin solution can improve the resulting hybrid nanofibers' morphology, average diameter, and mechanical properties.
Collapse
Affiliation(s)
- Farnaz Hajieghrary
- Department of Food Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran (A.P.); (S.D.)
| | - Babak Ghanbarzadeh
- Department of Food Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran (A.P.); (S.D.)
| | - Akram Pezeshki
- Department of Food Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran (A.P.); (S.D.)
| | - Saeed Dadashi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran (A.P.); (S.D.)
| | - Pasquale M. Falcone
- Department of Agricultural, Food, and Environmental Sciences, University Polytechnical of Marche, Brecce Bianche 10, 60131 Ancona, Italy
| |
Collapse
|
4
|
Ren Y, An J, Tian C, Shang L, Tao Y, Deng L. Air-Assisted Electrospinning of Dihydromyricetin-Loaded Dextran/Zein/Xylose Nanofibers and Effects of the Maillard Reaction on Fiber Properties. Molecules 2024; 29:3136. [PMID: 38999088 PMCID: PMC11243030 DOI: 10.3390/molecules29133136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Dihydromyricetin (DMY) has been encapsulated in delivery systems to address the solubility limitations of DMY in water and improve its bioavailability. Air-assisted electrospinning has been used as a novel technology to load DMY. To evaluate the impact of adding DMY to dextran/zein nanofibers and understand the effects of the Maillard reaction (MR) on the physical and functional properties of DMY-loaded nanofibers, dextran/zein/xylose nanofibers with 0%, 1%, 2%, 3%, and 4% DMY were fabricated, followed by MR crosslinking. Scanning electron microscopy (SEM) observations indicated that the addition of DMY and the MR did not affect the morphology of the nanofibers. X-ray diffraction (XRD) results indicated amorphous dispersion of DMY within the nanofibers and a decreased crystalline structure within the nanofibers following the MR, which might improve their molecular flexibility. The nanofibrous film formed after the MR exhibited both increased tensile strength and elastic modulus due to hydrogen bonding within the nanofibers and increased elongation at break attributed to the increased amorphization of the structure after crosslinking. The nanofibers were also found to exhibit improved heat stability after the MR. The antioxidant activity of the nanofibers indicated a dose-dependent effect of DMY on radical scavenging activity and reducing power. The maintenance of antioxidant activity of the nanofibers after the MR suggested heat stability of DMY during heat treatment. Overall, dextran/zein nanofibers with various DMY contents exhibited tunable physical properties and effective antioxidant activities, indicating that dextran/zein nanofibers offer a successful DMY delivery system, which can be further applied as an active package.
Collapse
Affiliation(s)
- Yupeng Ren
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (Y.R.); (J.A.); (C.T.)
| | - Jianhui An
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (Y.R.); (J.A.); (C.T.)
| | - Cheng Tian
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (Y.R.); (J.A.); (C.T.)
| | - Longchen Shang
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445000, China;
| | - Yexing Tao
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (Y.R.); (J.A.); (C.T.)
| | - Lingli Deng
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445000, China;
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
5
|
Ren Y, An J, Tian C, Shang L, Tao Y, Deng L. Tunable Physical Properties of Electro-Blown Spinning Dextran/Zein Nanofibers Cross-Linked by Maillard Reaction. Foods 2024; 13:2040. [PMID: 38998546 PMCID: PMC11241757 DOI: 10.3390/foods13132040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Electrospinning biopolymer nanofibers have emerged as promising candidates for food packaging applications. In this study, dextran/zein nanofibers were fabricated using electro-blown spinning and subsequently cross-linked via the Maillard reaction (MR) at 60 °C and 50% relative humidity. Compared to traditional electrospinning, the introduction of air-blowing improved the sample preparation speed by 10 times. SEM analysis revealed that the nanofiber morphology remained stable upon MR treatment for 24 h. FTIR spectroscopy confirmed that the MR led to a deformation in the protein conformation and an increase in hydrophilicity and elasticity in the nanofibers cross-linked for 6 h. MR treatment for 18 h considerably enhanced the hydrophobicity and elastic modulus owing to covalent bond formation. Thermal analysis indicated an improved thermal stability with increasing MR duration. Mechanical property analysis revealed an increase in elastic modulus and a decrease in elongation at break for the nanofibers cross-linked for more than 6 h, indicating a trade-off between rigidity and flexibility. Notably, the water vapor permeability of the nanofibers cross-linked for 6 and 18 h was remarkably higher, which can be ascribed to the fiber morphology retention upon water evaporation. Overall, MR-cross-linked dextran/zein/xylose nanofibers showed tunable properties, making them a suitable encapsulation system for bioactive compounds.
Collapse
Affiliation(s)
- Yupeng Ren
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Jianhui An
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Cheng Tian
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Longchen Shang
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445000, China
| | - Yexing Tao
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Lingli Deng
- Hubei Key Laboratory of Selenium Resource Research and Biological Application, Hubei Minzu University, Enshi 445000, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
6
|
Liu Y, Xia X, Li X, Wang F, Huang Y, Zhu B, Feng X, Wang Y. Design and characterization of edible chitooligosaccharide/fish skin gelatin nanofiber-based hydrogel with antibacterial and antioxidant characteristics. Int J Biol Macromol 2024; 262:130033. [PMID: 38342261 DOI: 10.1016/j.ijbiomac.2024.130033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Antibacterial and active packaging materials have gained significant research attention in response to the growing interest in food packaging. In this investigation, we developed hydrogel packaging materials with antibacterial and antioxidant properties by incorporating chitooligosaccharide (COS) and fish skin gelatin (FSG) nanofiber membranes, which readily absorbed water and exhibited swelling characteristics. The nanofiber membranes were fabricated by electrospinning technology, embedding COS within FSG, and subsequently crosslinked through the Maillard reaction facilitated by the addition of glucose. The behavior of conductivity, viscosity, and surface tension in the spinning solutions was analyzed to understand their variation patterns. Scanning electron microscopy (SEM) results revealed that the crosslinked COS/FSG nanofiber membranes possessed a uniform yet disordered fiber structure, with the diameter of the nanofibers increasing as the COS content increased. Remarkably, when the COS content reached 25 %, the COS/FSG nanofiber membranes (CF-C-25) exhibited a suitable fiber diameter of 437.16 ± 63.20 nm. Furthermore, the thermal crosslinking process involving glucose supplementation enhanced the hydrophobicity of CF-C-25. Upon hydration, the CF-H-25 hydrogel displayed a distinctive porous structure, exhibiting a remarkable swelling rate of 954 %. Notably, the inclusion of COS significantly augmented the antibacterial and antioxidant properties of the hydrogel-based nanofiber membranes. CF-H-25 demonstrated an impressive growth inhibition of 90.56 ± 5.91 % against E. coli, coupled with excellent antioxidant capabilities. In continuation, we performed a comprehensive analysis of the total colony count, pH, TVB-N, and TBA of crucian carp. The CF-H-25 hydrogel proved highly effective in extending the shelf life of crucian carp by 2-4 days, suggesting its potential application as an edible membrane for aquatic product packaging.
Collapse
Affiliation(s)
- Yanjing Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xiyue Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Fuming Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Yaping Huang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Botian Zhu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xuyang Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Ying Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China.
| |
Collapse
|
7
|
Han WH, Wang QY, Kang YY, Shi LR, Long Y, Zhou X, Hao CC. Cross-linking electrospinning. NANOSCALE 2023; 15:15513-15551. [PMID: 37740390 DOI: 10.1039/d3nr03956k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Although electrospinning (e-spinning) has witnessed rapid development in recent years, it has also been criticized by environmentalists due to the use of organic solvents. Therefore, aqueous e-spinning (green e-spinning) is considered a more attractive technique. However, considering the poor water resistance and mechanical properties of electrospun (e-spun) nanofibers, cross-linking is a perfect solution. In this review, we systematically discuss the cross-linking e-spinning system for the first time, including cross-linking strategies (in situ, liquid immersion, vapor, and spray cross-linking), cross-linking mechanism (physical and chemical cross-linking) of e-spun nanofibers, and the various applications (e.g., tissue engineering, drug delivery, water treatment, food packaging, and sensors) of cross-linked e-spun nanofibers. Among them, we highlight several cross-linking methods, including UV light cross-linking, electron beam cross-linking, glutaraldehyde (and other commonly used cross-linking agents) chemical cross-linking, thermal cross-linking, and enzymatic cross-linking. Finally, we confirm the significance of cross-linking e-spinning and reveal the problems in the construction of this system.
Collapse
Affiliation(s)
- Wei-Hua Han
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
- Shandong Engineering Research Center of Green and High-Value Marine Fine Chemical, Weifang University of Science and Technology, Weifang 262700, China
| | - Qing-Yu Wang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yuan-Yi Kang
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Li-Rui Shi
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yu Long
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xin Zhou
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Chun-Cheng Hao
- Institute of Advanced Electrical Materials, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
8
|
Wen Z, Chen Y, Liao P, Wang F, Zeng W, Liu S, Wu H, Wang N, Moroni L, Zhang M, Duan Y, Chen H. In Situ Precision Cell Electrospinning as an Efficient Stem Cell Delivery Approach for Cutaneous Wound Healing. Adv Healthc Mater 2023; 12:e2300970. [PMID: 37379527 DOI: 10.1002/adhm.202300970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/10/2023] [Indexed: 06/30/2023]
Abstract
Mesenchymal stem cell (MSC) therapies have been brought forward as a promising treatment modality for cutaneous wound healing. However, current approaches for stem cell delivery have many drawbacks, such as lack of targetability and cell loss, leading to poor efficacy of stem cell therapy. To overcome these problems, in the present study, an in situ cell electrospinning system is developed as an attractive approach for stem cell delivery. MSCs have a high cell viability of over 90% even with a high applied voltage of 15 kV post-cell electrospinning process. In addition, cell electrospinning does not show any negative effect on the surface marker expression and differentiation capacity of MSCs. In vivo studies demonstrate that in situ cell electrospinning treatment can promote cutaneous wound healing through direct deposition of bioactive fish gelatin fibers and MSCs onto wound sites, leading to a synergic therapeutic effect. The approach enhances extracellular matrix remodeling by increasing collagen deposition, promotes angiogenesis by increasing the expression of vascular endothelial growth factor (VEGF) and forming small blood vessels, and dramatically reduces the expression of interleukin-6 (IL-6) during wound healing. The use of in situ cell electrospinning system potentially provides a rapid, no touch, personalized treatment for cutaneous wound healing.
Collapse
Affiliation(s)
- Zhengbo Wen
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yuxin Chen
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Peilin Liao
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Fengyu Wang
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Weiping Zeng
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Haibing Wu
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Ning Wang
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration Department, Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Minmin Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, China
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, South China University of Technology, Guangzhou, 510006, China
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
9
|
Dechojarassri D, Kaneshige R, Tamura H, Furuike T. Preparation and Characterization of Crosslinked Electrospun Gelatin Fabrics via Maillard Reactions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16114078. [PMID: 37297211 DOI: 10.3390/ma16114078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In this study, nonwoven gelatin (Gel) fabrics crosslinked using N-acetyl-D-glucosamine (GlcNAc) were characterized and compared with those crosslinked using methylglyoxal (MG) and by thermal dehydration. We prepared Gel with 25% concentration along with Gel/GlcNAc and Gel/MG with a GlcNAc-to-Gel ratio of 5% and MG-to-Gel ratio of 0.6%. A high voltage of 23 kV, solution temperature of 45 °C, and distance of 10 cm between the tip and the collector were applied during electrospinning. The electrospun Gel fabrics were crosslinked by heat treatment at 140 and 150 °C for 1 d. The electrospun Gel/GlcNAc fabrics were treated at 100 and 150 °C for 2 d, while the Gel/MG fabrics were heat-treated for 1 d. The Gel/MG fabrics exhibited higher tensile strength and lower elongation than the Gel/GlcNAc fabrics. Overall, Gel/MG crosslinked at 150 °C for 1 d showed a significant enhancement in tensile strength, high hydrolytic degradation, and excellent biocompatibility, with cell viability percentages of 105 and 130% at 1 and 3 d, respectively. Therefore, MG is a promising Gel crosslinker.
Collapse
Affiliation(s)
- Duangkamol Dechojarassri
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Ryota Kaneshige
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
| | - Hiroshi Tamura
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Tetsuya Furuike
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka 564-8680, Japan
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| |
Collapse
|
10
|
Lorenz K, Preem L, Sagor K, Putrinš M, Tenson T, Kogermann K. Development of In Vitro and Ex Vivo Biofilm Models for the Assessment of Antibacterial Fibrous Electrospun Wound Dressings. Mol Pharm 2023; 20:1230-1246. [PMID: 36669095 PMCID: PMC9907351 DOI: 10.1021/acs.molpharmaceut.2c00902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/21/2023]
Abstract
Increasing evidence suggests that the chronicity of wounds is associated with the presence of bacterial biofilms. Therefore, novel wound care products are being developed, which can inhibit biofilm formation and/or treat already formed biofilms. A lack of standardized assays for the analysis of such novel antibacterial drug delivery systems enhances the need for appropriate tools and models for their characterization. Herein, we demonstrate that optimized and biorelevant in vitro and ex vivo wound infection and biofilm models offer a convenient approach for the testing of novel antibacterial wound dressings for their antibacterial and antibiofilm properties, allowing one to obtain qualitative and quantitative results. The in vitro model was developed using an electrospun (ES) thermally crosslinked gelatin-glucose (GEL-Glu) matrix and an ex vivo wound infection model using pig ear skin. Wound pathogens were used for colonization and biofilm development on the GEL-Glu matrix or pig skin with superficial burn wounds. The in vitro model allowed us to obtain more reproducible results compared with the ex vivo model, whereas the ex vivo model had the advantage that several pathogens preferred to form a biofilm on pig skin compared with the GEL-Glu matrix. The in vitro model functioned poorly for Staphylococcus epidermidis biofilm formation, but it worked well for Escherichia coli and Staphylococcus aureus, which were able to use the GEL-Glu matrix as a nutrient source and not only as a surface for biofilm growth. On the other hand, all tested pathogens were equally able to produce a biofilm on the surface of pig skin. The developed biofilm models enabled us to compare different ES dressings [pristine and chloramphenicol-loaded polycaprolactone (PCL) and PCL-poly(ethylene oxide) (PEO) (PCL/PEO) dressings] and understand their biofilm inhibition and treatment properties on various pathogens. Furthermore, we show that biofilms were formed on the wound surface as well as on a wound dressing, indicating that the demonstrated methods mimic well the in vivo situation. Colony forming unit (CFU) counting and live biofilm matrix as well as bacterial DNA staining together with microscopic imaging were performed for biofilm quantification and visualization, respectively. The results showed that both wound biofilm models (in vitro and ex vivo) enabled the evaluation of the desired antibiofilm properties, thus facilitating the design and development of more effective wound care products and screening of various formulations and active substances.
Collapse
Affiliation(s)
- Kairi Lorenz
- Institute
of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Liis Preem
- Institute
of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Kadi Sagor
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Marta Putrinš
- Institute
of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Tanel Tenson
- Institute
of Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Karin Kogermann
- Institute
of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| |
Collapse
|
11
|
Influence of the Maillard Reaction on Properties of Air-Assisted Electrospun Gelatin/Zein/Glucose Nanofibers. Foods 2023; 12:foods12030451. [PMID: 36765981 PMCID: PMC9914126 DOI: 10.3390/foods12030451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
To develop biodegradable, sustainable, and environment-friendly functional food-packaging materials, gelatin/zein/glucose nanofibers were fabricated through air-assisted electrospinning and then crosslinked by the Maillard reaction under mild conditions (60 °C and 50% relative humidity) in this study. Compared to traditional electrospinning, air-assisted electrospinning increased the yield of nanofibers by 10 times, and the average diameter from 263 nm to 664 nm, while the airflow facilitated uniform and smooth nanofiber formation. During the Maillard reaction in 0-5 days, the gelatin/zein/glucose showed no morphology change. Fourier transform infrared spectra analysis indicated that gelatin interacted with zein through hydrogen bonding and the occurrence of the Maillard reaction among the protein and glucose molecules. After four days of Maillard reaction, the nanofibers presented higher thermal stability, the most hydrophobic surface (water contact angle: 133.6°), and stiffer network structure (elastic modulus of 38.63 MPa, tensile strength of 0.85 MPa). Overall, Maillard-reaction-crosslinked gelatin/zein/glucose nanofibers showed favorable physical properties, which suggests their potential for application in food-active packaging.
Collapse
|
12
|
Li Y, Hu MX, Yan M, Guo YX, Ma XK, Han JZ, Qin YM. Intestinal models based on biomimetic scaffolds with an ECM micro-architecture and intestinal macro-elasticity: close to intestinal tissue and immune response analysis. Biomater Sci 2023; 11:567-582. [PMID: 36484321 DOI: 10.1039/d2bm01051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synergetic biological effect of scaffolds with biomimetic properties including the ECM micro-architecture and intestinal macro-mechanical properties on intestinal models in vitro remains unclear. Here, we investigate the profitable role of biomimetic scaffolds on 3D intestinal epithelium models. Gelatin/bacterial cellulose nanofiber composite scaffolds crosslinked by the Maillard reaction are tuned to mimic the chemical component, nanofibrous network, and crypt architecture of intestinal ECM collagen and the stability and mechanical properties of intestinal tissue. In particular, scaffolds with comparable elasticity and viscoelasticity of intestinal tissue possess the highest biocompatibility and best cell proliferation and differentiation ability, which makes the intestinal epithelium models closest to their counterpart intestinal tissues. The constructed duodenal epithelium models and colon epithelium models are utilized to assess the immunobiotics-host interactions, and both of them can sensitively respond to foreign microorganisms, but the secretion levels of cytokines are intestinal cell specific. The results demonstrate that probiotics alleviate the inflammation and cell apoptosis induced by Escherichia coli, indicating that probiotics can protect the intestinal epithelium from damage by inhibiting the adhesion and invasion of E. coli to intestinal cells. The designed biomimetic scaffolds can serve as powerful tools to construct in vitro intestinal epithelium models, providing a convenient platform to screen intestinal anti-inflammatory components and even to assess other physiological functions of the intestine.
Collapse
Affiliation(s)
- Yue Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Meng-Xin Hu
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Ming Yan
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ya-Xin Guo
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Xue-Ke Ma
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Jian-Zhong Han
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Yu-Mei Qin
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
13
|
Biodegradable gelatin/pullulan aerogel modified by a green strategy: Characterization and antimicrobial activity. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Etxabide A, Akbarinejad A, Chan EW, Guerrero P, de la Caba K, Travas-Sejdic J, Kilmartin PA. Effect of gelatin concentration, ribose and glycerol additions on the electrospinning process and physicochemical properties of gelatin nanofibers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Fabrication of Encapsulated Gemini Surfactants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196664. [PMID: 36235201 PMCID: PMC9573393 DOI: 10.3390/molecules27196664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
(1) Background: Encapsulation of surfactants is an innovative approach that allows not only protection of the active substance, but also its controlled and gradual release. This is primarily used to protect metallic surfaces against corrosion or to create biologically active surfaces. Gemini surfactants are known for their excellent anticorrosion, antimicrobial and surface properties; (2) Methods: In this study, we present an efficient methods of preparation of encapsulated gemini surfactants in form of alginate and gelatin capsules; (3) Results: The analysis of infrared spectra and images of the scanning electron microscope confirm the effectiveness of encapsulation; (4) Conclusions: Gemini surfactants in encapsulated form are promising candidates for corrosion inhibitors and antimicrobials with the possibility of protecting the active substance against environmental factors and the possibility of controlled outflow.
Collapse
|
16
|
Jia X, Li X, Zhao J, Kong B, Wang H, Liu Q, Wang H. Fabrication and characterization of crosslinked pea protein isolated/pullulan/allicin electrospun nanofiber films as potential active packaging material. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Yingying M, Xiu-Xia L, Luyun C, Jianrong L. pH-Sensitive ε-polylysine/polyaspartic acid/zein nanofiber membranes for the targeted release of polyphenols. Food Funct 2022; 13:6792-6801. [PMID: 35670545 DOI: 10.1039/d1fo03051e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this work, zein nanofiber membranes loaded with ε-polylysine-polyphenol-polyaspartic acid were prepared using electrospinning for the controlled delivery of polyphenols. The loading efficiency (LE) and loading capacity (LC) of polyphenols in ε-polylysine/polyaspartic acid hydrogels were determined. Characterization of the films was carried out using water contact angle (WCA) measurement, thermal analysis (DSC/TG), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The study showed that the embedding rates of all samples reached more than 80%. The structural characterization results showed that the nanofiber membranes loaded with hydrophobic polyphenols were more stable and no new compounds formed during electrostatic spinning. The in vitro release study of phlorotannin, kaempferol and tannic acid indicated that about 62.35%, 63.51% and 73.65% of polyphenol release occurred at pH 6.8 for 8 h. The result of cytotoxicity assay in human colon cancer cells (HT-29) showed good biocompatibility of the zein nanofiber membranes. The investigation suggested that polyphenols can be successfully entrapped in the ε-polylysine-polyaspartic acid-zein nanofiber membranes for targeted delivery.
Collapse
Affiliation(s)
- Ma Yingying
- College of Food Science and Technology, Bohai University, Songshan, Jinzhou, Liaoning, 121013, China.,National & Local Joint Engineering Research Center of Storage, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China.
| | - Li Xiu-Xia
- College of Food Science and Technology, Bohai University, Songshan, Jinzhou, Liaoning, 121013, China.,National & Local Joint Engineering Research Center of Storage, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China.
| | - Cai Luyun
- College of Food Science and Technology, Bohai University, Songshan, Jinzhou, Liaoning, 121013, China.,National & Local Joint Engineering Research Center of Storage, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China.
| | - Li Jianrong
- College of Food Science and Technology, Bohai University, Songshan, Jinzhou, Liaoning, 121013, China.,National & Local Joint Engineering Research Center of Storage, The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities. Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
18
|
Shen C, Deng Z, Rao J, Yang Z, Li Y, Wu D, Chen K. Characterization of glycosylated gelatin/pullulan nanofibers fabricated by multi-fluid mixing solution blow spinning. Int J Biol Macromol 2022; 214:512-521. [PMID: 35718154 DOI: 10.1016/j.ijbiomac.2022.06.082] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 01/22/2023]
Abstract
In this work, multi-fluid mixing solution blow spinning was applied to develop gelatin/pullulan composite nanofibers, and then the nanofibers were glycated to enhance the physical properties. The results show that the grafting degree of the nanofibers increased significantly from 17.5 % to 36.0 % as the glycation time increased, and the morphology results indicated that 72 h of glycation did not destroy the structure of the nanofibers. FTIR results show that the glycation consumed the the-NH2 groups, cleaved sugar units of polysaccharide, and affected the secondary structure of the protein. The glycation enhanced the thermal stability and improved the rigidity of the nanofibers. Besides, after 120 h of glycation, the water contact angle of nanofibers increased from 0° to 79.1°, and the water vapor transmission rates decreased from 12.49 to 8.97 g mm/m2 h kPa, indicating the enhanced hydrophobicity and barrier properties. In addition, the glycation improved the water stability of the nanofibers, which increased the applicability of the gelatin/pullulan nanofibers in food packaging. The present work provides a green and efficient method for improving the physical properties of gelatin/pullulan nanofibers.
Collapse
Affiliation(s)
- Chaoyi Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Zian Deng
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Jingshan Rao
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Zhichao Yang
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Di Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China.
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| |
Collapse
|
19
|
Bioactive gelatin cryogels with BMP‐2 biomimetic peptide and VEGF: A potential scaffold for synergistically induced osteogenesis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Klaas M, Möll K, Mäemets-Allas K, Loog M, Järvekülg M, Jaks V. Long-term maintenance of functional primary human hepatocytes in 3D gelatin matrices produced by solution blow spinning. Sci Rep 2021; 11:20165. [PMID: 34635750 PMCID: PMC8505433 DOI: 10.1038/s41598-021-99659-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Solution blow spinning (SBS) has recently emerged as a novel method that can produce nano- and microfiber structures suitable for tissue engineering. Gelatin is an excellent precursor for SBS as it is derived mainly from collagens that are abundant in natural extracellular matrices. Here we report, for the first time the successful generation of 3D thermally crosslinked preforms by using SBS from porcine gelatin. These SBS mats were shown to have three-dimensional fibrous porous structure similar to that of mammalian tissue extracellular matrix. In pharma industry, there is an urgent need for adequate 3D liver tissue models that could be used in high throughput setting for drug screening and to assess drug induced liver injury. We used SBS mats as culturing substrates for human hepatocytes to create an array of 3D human liver tissue equivalents in 96-well format. The SBS mats were highly cytocompatible, facilitated the induction of hepatocyte specific CYP gene expression in response to common medications, and supported the maintenance of hepatocyte differentiation and polarization status in long term cultures for more than 3 weeks. Together, our results show that SBS-generated gelatin scaffolds are a simple and efficient platform for use in vitro for drug testing applications.
Collapse
Affiliation(s)
- Mariliis Klaas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Kaidi Möll
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Kristina Mäemets-Allas
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Martin Järvekülg
- Laboratory of Physics of Nanostructures, Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411, Tartu, Estonia
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23b, 51010, Tartu, Estonia.
- Dermatology Clinic, Tartu University Hospital, Raja 31, 50417, Tartu, Estonia.
| |
Collapse
|
21
|
Kim M, Lee H, Krecker MC, Bukharina D, Nepal D, Bunning TJ, Tsukruk VV. Switchable Photonic Bio-Adhesive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103674. [PMID: 34476859 DOI: 10.1002/adma.202103674] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/25/2021] [Indexed: 06/13/2023]
Abstract
A soft photonic bio-adhesive material is designed with real-time colorimetrical monitoring of switchable adhesion by integrating a responsive bio-photonic matrix with mobile hydrogen-binding networking. Synergetic materials sequencing creates a unique iridescent appearance directly coupled with both adhesive ability and shearing strength, in a highly reversible manner. The responsive photonic materials, having a physically hydrogen-bonded chiral nematic organization, vary their adhesion strength due to a transition in cohesive and interfacial failure mechanism in humid surroundings. The bright color appearance shifts from blue to red to transparent and back due to a change in pitch length of the chiral helicoidal organization that also triggers coupled changes in both mechanical strength and interfacial adhesion. Such reversible strength-adhesion-iridescence triple-coupling phenomenon is further explored for design of super-strong switchable bio-adhesives for synthetic/biological surfaces with quick remotely triggered sticky-to-nonsticky transitions, removable conformal soft stickers, and wound dressings with visual monitoring of the healing process, to colorimetric stickers for contaminated respiratory masks.
Collapse
Affiliation(s)
- Minkyu Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hansol Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Michelle C Krecker
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Daria Bukharina
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dhriti Nepal
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Timothy J Bunning
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
22
|
Ehrmann A. Non-Toxic Crosslinking of Electrospun Gelatin Nanofibers for Tissue Engineering and Biomedicine-A Review. Polymers (Basel) 2021; 13:1973. [PMID: 34203958 PMCID: PMC8232702 DOI: 10.3390/polym13121973] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 02/04/2023] Open
Abstract
Electrospinning can be used to prepare nanofiber mats from diverse polymers, polymer blends, or polymers doped with other materials. Amongst this broad range of usable materials, biopolymers play an important role in biotechnological, biomedical, and other applications. However, several of them are water-soluble, necessitating a crosslinking step after electrospinning. While crosslinking with glutaraldehyde or other toxic chemicals is regularly reported in the literature, here, we concentrate on methods applying non-toxic or low-toxic chemicals, and enzymatic as well as physical methods. Making gelatin nanofibers non-water soluble by electrospinning them from a blend with non-water soluble polymers is another method described here. These possibilities are described together with the resulting physical properties, such as swelling behavior, mechanical strength, nanofiber morphology, or cell growth and proliferation on the crosslinked nanofiber mats. For most of these non-toxic crosslinking methods, the degree of crosslinking was found to be lower than for crosslinking with glutaraldehyde and other common toxic chemicals.
Collapse
Affiliation(s)
- Andrea Ehrmann
- Working Group Textile Technologies, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
23
|
Kwak HW, Park J, Yun H, Jeon K, Kang DW. Effect of crosslinkable sugar molecules on the physico-chemical and antioxidant properties of fish gelatin nanofibers. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Babayevska N, Przysiecka Ł, Nowaczyk G, Jarek M, Järvekülg M, Kangur T, Janiszewska E, Jurga S, Iatsunskyi I. Fabrication of Gelatin-ZnO Nanofibers for Antibacterial Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 14:E103. [PMID: 33383718 PMCID: PMC7795140 DOI: 10.3390/ma14010103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
In this study, GNF@ZnO composites (gelatin nanofibers (GNF) with zinc oxide (ZnO) nanoparticles (NPs)) as a novel antibacterial agent were obtained using a wet chemistry approach. The physicochemical characterization of ZnO nanoparticles (NPs) and GNF@ZnO composites, as well as the evaluation of their antibacterial activity toward Gram-positive (Staphyloccocus aureus and Bacillus pumilus) and Gram-negative (Escherichia coli and Pseudomonas fluorescens) bacteria were performed. ZnO NPs were synthesized using a facile sol-gel approach. Gelatin nanofibers (GNF) were obtained by an electrospinning technique. GNF@ZnO composites were obtained by adding previously produced GNF into a Zn2+ methanol solution during ZnO NPs synthesis. Crystal structure, phase, and elemental compositions, morphology, as well as photoluminescent properties of pristine ZnO NPs, pristine GNF, and GNF@ZnO composites were characterized using powder X-ray diffraction (XRD), FTIR analysis, transmission and scanning electron microscopies (TEM/SEM), and photoluminescence spectroscopy. SEM, EDX, as well as FTIR analyses, confirmed the adsorption of ZnO NPs on the GNF surface. The pristine ZnO NPs were highly crystalline and monodispersed with a size of approximately 7 nm and had a high surface area (83 m2/g). The thickness of the pristine gelatin nanofiber was around 1 µm. The antibacterial properties of GNF@ZnO composites were investigated by a disk diffusion assay on agar plates. Results show that both pristine ZnO NPs and their GNF-based composites have the strongest antibacterial properties against Pseudomonas fluorescence and Staphylococcus aureus, with the zone of inhibition above 10 mm. Right behind them is Escherichia coli with slightly less inhibition of bacterial growth. These properties of GNF@ZnO composites suggest their suitability for a range of antimicrobial uses, such as in the food industry or in biomedical applications.
Collapse
Affiliation(s)
- Nataliya Babayevska
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (Ł.P.); (G.N.); (M.J.); (S.J.)
| | - Łucja Przysiecka
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (Ł.P.); (G.N.); (M.J.); (S.J.)
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (Ł.P.); (G.N.); (M.J.); (S.J.)
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (Ł.P.); (G.N.); (M.J.); (S.J.)
| | - Martin Järvekülg
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411 Tartu, Estonia; (M.J.); (T.K.)
| | - Triin Kangur
- Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411 Tartu, Estonia; (M.J.); (T.K.)
| | - Ewa Janiszewska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland;
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (Ł.P.); (G.N.); (M.J.); (S.J.)
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland; (Ł.P.); (G.N.); (M.J.); (S.J.)
| |
Collapse
|
25
|
Qin Z, Jia X, Liu Q, Kong B, Wang H. Enhancing physical properties of chitosan/pullulan electrospinning nanofibers via green crosslinking strategies. Carbohydr Polym 2020; 247:116734. [DOI: 10.1016/j.carbpol.2020.116734] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 12/24/2022]
|
26
|
Rodríguez-Sánchez IJ, Fuenmayor CA, Clavijo-Grimaldo D, Zuluaga-Domínguez CM. Electrospinning of ultra-thin membranes with incorporation of antimicrobial agents for applications in active packaging: a review. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1785450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
| | - Carlos Alberto Fuenmayor
- Instituto de Ciencia y Tecnología de Alimentos, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| | - Dianney Clavijo-Grimaldo
- Departamento de Morfología, Facultad de Medicina, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| | - Carlos Mario Zuluaga-Domínguez
- Departamento de Desarrollo Rural y Agroalimentario, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Colombia
| |
Collapse
|
27
|
|
28
|
Conductive carbon nanofibers incorporated into collagen bio-scaffold assists myocardial injury repair. Int J Biol Macromol 2020; 163:1136-1146. [PMID: 32621929 DOI: 10.1016/j.ijbiomac.2020.06.259] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Currently, treatment of myocardial infarction considered as unmet clinical need. Nanomaterials have been used in the regeneration of tissues such as bone, dental and neural tissue in the body and have increased hope for revitalizing of damaged tissues. Conductive carbon base nanomaterials with its superior physicochemical properties have emerged as promising materials for cardiovascular application. In this study, we applied a biosynthetic collagen scaffold containing carbon nanofiber for regenerating of damaged heart tissue. The collagen-carbon nanofiber scaffold was fabricated and fully characterised. The scaffold was grafted on the affected area of myocardial ischemia, immediately after ligation of the left anterior descending artery in the wistar rat's model. After 4 weeks, histological analyses were performed for investigation of formation of immature cardio-myocytes, epicardial cells, and angiogenesis. Compared to untreated hearts, this scaffold significantly protects heart tissue against injury. This improvement is accompanied by a reduction in fibrosis and the increased formation of a blood vessel network and immature cardio-myocytes in the infarction heart. No toxicity detected with apoptotic and TUNEL assays. In conclusion, the mechanical support of the collagen scaffold with carbon nanofiber enhanced the regeneration of myocardial tissue.
Collapse
|
29
|
Latif I, Toda M, Ono T. Hermetically Packaged Microsensor for Quality Factor-Enhanced Photoacoustic Biosensing. PHOTOACOUSTICS 2020; 18:100189. [PMID: 32477865 PMCID: PMC7248651 DOI: 10.1016/j.pacs.2020.100189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/29/2020] [Accepted: 04/29/2020] [Indexed: 05/28/2023]
Abstract
The use of photoacoustics (PA) being a convenient non-invasive analysis tool is widespread in various biomedical fields. Despite significant advances in traditional PA cell systems, detection platforms capable of providing high signal-to-noise ratios and steady operation are yet to be developed for practical micro/nano biosensing applications. Microfabricated transducers offer orders of magnitude higher quality factors and greatly enhanced performance in extremely miniature dimensions that is unattainable with large-scale PA cells. In this work we exploit these attractive attributes of microfabrication technology and describe the first implementation of a vacuum-packaged microscale resonator in photoacoustic biosensing. Steady operation of this functional approach is demonstrated by detecting the minuscule PA signals from the variations of trace amounts of glucose in gelatin-based synthetic tissues. These results demonstrate the potential of the novel approach to broad photoacoustic applications, spanning from micro-biosensing modules to the analysis of solid and liquid analytes of interest in condense mediums.
Collapse
Affiliation(s)
- Imran Latif
- Department of Mechanical Systems Engineering, Tohoku University, Japan
| | - Masaya Toda
- Department of Mechanical Systems Engineering, Tohoku University, Japan
| | - Takahito Ono
- Department of Mechanical Systems Engineering, Tohoku University, Japan
- Micro System Integration Center, Tohoku University, Japan
| |
Collapse
|
30
|
Deng L, Li Y, Zhang A, Zhang H. Characterization and physical properties of electrospun gelatin nanofibrous films by incorporation of nano-hydroxyapatite. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105640] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Harjo M, Zondaka Z, Leemets K, Järvekülg M, Tamm T, Kiefer R. Polypyrrole‐coated fiber‐scaffolds: Concurrent linear actuation and sensing. J Appl Polym Sci 2019. [DOI: 10.1002/app.48533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Madis Harjo
- Intelligent Materials and Systems Laboratory, Faculty of Science and TechnologyUniversity of Tartu, Nooruse 1 50411 Tartu Estonia
| | - Zane Zondaka
- Intelligent Materials and Systems Laboratory, Faculty of Science and TechnologyUniversity of Tartu, Nooruse 1 50411 Tartu Estonia
| | - Kaur Leemets
- Intelligent Materials and Systems Laboratory, Faculty of Science and TechnologyUniversity of Tartu, Nooruse 1 50411 Tartu Estonia
| | - Martin Järvekülg
- Institute of Physics, Faculty of Science and TechnologyUniversity of Tartu W. Ostwaldi Street 1 50411 Tartu Estonia
| | - Tarmo Tamm
- Intelligent Materials and Systems Laboratory, Faculty of Science and TechnologyUniversity of Tartu, Nooruse 1 50411 Tartu Estonia
| | - Rudolf Kiefer
- Conducting Polymers in Composites and Applications Research Group, Faculty of Applied SciencesTon Duc Thang University Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
32
|
Harjo M, Torop J, Järvekülg M, Tamm T, Kiefer R. Electrochemomechanical Behavior of Polypyrrole-Coated Nanofiber Scaffolds in Cell Culture Medium. Polymers (Basel) 2019; 11:E1043. [PMID: 31200448 PMCID: PMC6630290 DOI: 10.3390/polym11061043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 11/16/2022] Open
Abstract
Glucose-gelatin nanofiber scaffolds were made conductive and electroactive by chemical (conductive fiber scaffolds, CFS) and additionally electrochemical polypyrrole deposition (doped with triflouromethanesulfonate CF3SO3-, CFS-PPyTF). Both materials were investigated in their linear actuation properties in cell culture medium (CCM), as they could be potential electro-mechanically activated cell growth substrates. Independent of the deposition conditions, both materials showed relatively stable cation-driven actuation in CCM, based on the flux of mainly Na+ ions from CCM. The surprising result was attributed to re-doping by sulfate anions in CCM, as also indicated by energy-dispersive X-ray (EDX) spectroscopy results. Overall, the electrochemically coated material outperformed the one with just chemical coating in conductivity, charge density and actuation response.
Collapse
Affiliation(s)
- Madis Harjo
- Intelligent Materials and Systems Lab, Faculty of Science and Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Janno Torop
- Intelligent Materials and Systems Lab, Faculty of Science and Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Martin Järvekülg
- Institute of Physics, Faculty of Science and Technology, University of Tartu, W. Ostwaldi Str 1, 50411 Tartu, Estonia.
| | - Tarmo Tamm
- Intelligent Materials and Systems Lab, Faculty of Science and Technology, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| | - Rudolf Kiefer
- Conducting polymers in composites and applications Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
| |
Collapse
|
33
|
Deng L, Li Y, Feng F, Zhang H. Study on wettability, mechanical property and biocompatibility of electrospun gelatin/zein nanofibers cross-linked by glucose. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.07.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: A systematic review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:941-954. [PMID: 30606606 DOI: 10.1016/j.msec.2018.11.081] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022]
Abstract
Biomaterials are of significant importance in biomedical applications as these biological macromolecules have moderately replaced classical tissue grafting techniques owing to its beneficial properties. Despite of its favourable advantages, poor mechanical and degradative properties of biomaterials are of great concern. To this regard, crosslinkers have emerged as a smart and promising tool to augment the biological functionality of biopolymers. Different crosslinkers have been extensively used in past decades to develop bone substitutes, but the implications of toxic response and adverse reactions are truly precarious after implantation. Traditional crosslinker like glutaraldehyde has been widely used in numerous bio-implants but the potential toxicity is largely being debated with many disproving views. As alternative, green chemicals, enzymatic and non-enzymatic chemicals, bi-functional epoxies, zero-length crosslinkers and physical crosslinkers have been introduced to achieve the desired properties of a bone substitute. In this review, systematic literature search was performed on PubMed database to identify the most commonly used crosslinkers for developing promising bone like materials. The relevant articles were identified, analysed and reviewed in this paper giving due importance to different crosslinking methodologies and comparing their effectiveness and efficacy in regard to material composition, scaffold production, crosslinker dosage, toxicity and immunogenicity. This review summarizes the recent developments in crosslinking mechanism with an emphasis placed on their ability to link proteins through bonding reactions. Finally, this study also covers the convergent and divergent methodologies of crosslinking strategies also giving special importance in retrieving the current limitations and future opportunities of crosslinking modalities in bone tissue engineering.
Collapse
|
35
|
Kchaou H, Benbettaïeb N, Jridi M, Abdelhedi O, Karbowiak T, Brachais CH, Léonard ML, Debeaufort F, Nasri M. Enhancement of structural, functional and antioxidant properties of fish gelatin films using Maillard reactions. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
In vitro assessment of ribose modified two-step etch-and-rinse dentine adhesive. Dent Mater 2018; 34:1175-1187. [PMID: 29779627 DOI: 10.1016/j.dental.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Collagen fibrils aid in anchoring resin composite restorations to the dentine substrate. The aim of the study was to investigate effect of non-enzymatic glycation on bond strength and durability of demineralized dentine specimens in a modified two-step etch-and-rinse dentine adhesive. METHODS Dentine surfaces were etched with 37% phosphoric acid, bonded with respective in vitro ethanol and acetone adhesives modified with (m/m, 0, 1%, 2% and 3% ribose), restored with restorative composite-resin, and sectioned into resin-dentine slabs and beams to be stored for 24h or 12 months in artificial saliva. Bond-strength testing was performed with bond failure analysis. Pentosidine assay was performed on demineralized ribose modified dentine specimens with HPLC sensitive fluorescent detection. The structural variations of ribose-modified dentine were analysed using TEM and human dental pulpal cells were used for cell viability. Three-point bending test of ribose-modified dentine beams were performed and depth of penetration of adhesives evaluated with micro-Raman spectroscopy. The MMP-2 and cathepsin K activities in ribose-treated dentine powder were also quantified using ELISA. Bond strength data was expressed using two-way ANOVA followed by Tukey's test. Paired T tests were used to analyse the specimens for pentosidine crosslinks. The modulus of elasticity and dentinal MMP-2 and cathepsin K concentrations was separately analyzed using one-way ANOVA. RESULTS The incorporation of RB in the experimental two-step etch-and-rinse adhesive at 1% improved the adhesive bond strength without adversely affecting the degree of polymerisation. The newly developed adhesive increases the resistance of dentine collagen to degradation by inhibiting endogenous matrix metalloproteinases and cysteine cathepsins. The application of RB to acid-etched dentine helps maintain the mechanical properties. SIGNIFICANCE The incorporation of 1%RB can be considered as a potential candidate stabilizing resin dentine bond.
Collapse
|
37
|
Duconseille A, Gaillard C, Santé-Lhoutellier V, Astruc T. Molecular and structural changes in gelatin evidenced by Raman microspectroscopy. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci Rep 2018; 8:1616. [PMID: 29371676 PMCID: PMC5785510 DOI: 10.1038/s41598-018-20006-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/11/2018] [Indexed: 02/08/2023] Open
Abstract
This comparative study aims to identify a biocompatible and effective crosslinker for preparing gelatin sponges. Glutaraldehyde (GTA), genipin (GP), 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC), and microbial transglutaminase (mTG) were used as crosslinking agents. The physical properties of the prepared samples were characterized, and material degradation was studied in vitro with various proteases and in vivo through subcutaneous implantation of the sponges in rats. Adipose-derived stromal stem cells (ADSCs) were cultured and inoculated onto the scaffolds to compare the cellular biocompatibility of the sponges. Cellular seeding efficiency and digestion time of the sponges were also evaluated. Cellular viability and proliferation in scaffolds were analyzed by fluorescence staining and MTT assay. All the samples exhibited high porosity, good swelling ratio, and hydrolysis properties; however, material strength, hydrolysis, and enzymolytic properties varied among the samples. GTA–sponge and GP–sponge possessed high compressive moduli, and EDC–sponge exhibited fast degradation performance. GTA and GP sponge implants exerted strong in vivo rejections, and the former showed poor cell growth. mTG–sponge exhibited the optimal comprehensive performance, with good porosity, compressive modulus, anti-degradation ability, and good biocompatibility. Hence, mTG–sponge can be used as a scaffold material for tissue engineering applications.
Collapse
|
39
|
Deng L, Kang X, Liu Y, Feng F, Zhang H. Characterization of gelatin/zein films fabricated by electrospinning vs solvent casting. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.08.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Kirdponpattara S, Phisalaphong M, Kongruang S. Gelatin-bacterial cellulose composite sponges thermally cross-linked with glucose for tissue engineering applications. Carbohydr Polym 2017; 177:361-368. [PMID: 28962780 DOI: 10.1016/j.carbpol.2017.08.094] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/07/2017] [Accepted: 08/19/2017] [Indexed: 01/22/2023]
Abstract
Freeze-drying and thermal cross-linking techniques were used to prepare gelatin-bacterial cellulose (GB) composite sponges for potential application as scaffolds in tissue engineering. To avoid the use of toxic and costly cross-linking agents, glucose was used to cross-link the gelatin via the Maillard reaction. The effects of the weight ratio of gelatin to bacterial cellulose (BC) and the cross-linking conditions (temperature and duration) on the GB sponges were examined. An open and highly interconnected porous structure was attained for the GB sponge with a gelatin:BC weight ratio of 25:75 that was cross-linked at 140°C for 3h. Its high porosity, good swelling properties, good structural stability in water, non-toxicity and good biocompatibility against Vero cell are promising for its application as a scaffold for tissue engineering.
Collapse
Affiliation(s)
- Suchata Kirdponpattara
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Wongsawang, Bangsue, Bangkok 10800, Thailand.
| | - Muenduen Phisalaphong
- Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand,.
| | - Sasithorn Kongruang
- Department of Biotechnology, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand,.
| |
Collapse
|
41
|
Long H, Ma K, Xiao Z, Ren X, Yang G. Preparation and characteristics of gelatin sponges crosslinked by microbial transglutaminase. PeerJ 2017; 5:e3665. [PMID: 28828260 PMCID: PMC5554441 DOI: 10.7717/peerj.3665] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/19/2017] [Indexed: 02/05/2023] Open
Abstract
Microbial transglutaminase (mTG) was used as a crosslinking agent in the preparation of gelatin sponges. The physical properties of the materials were evaluated by measuring their material porosity, water absorption, and elastic modulus. The stability of the sponges were assessed via hydrolysis and enzymolysis. To study the material degradation in vivo, subcutaneous implantations of sponges were performed on rats for 1–3 months, and the implanted sponges were analyzed. To evaluate the cell compatibility of the mTG crosslinked gelatin sponges (mTG sponges), adipose-derived stromal stem cells were cultured and inoculated into the scaffold. Cell proliferation and viability were measured using alamarBlue assay and LIVE/DEAD fluorescence staining, respectively. Cell adhesion on the sponges was observed by scanning electron microscopy (SEM). Results show that mTG sponges have uniform pore size, high porosity and water absorption, and good mechanical properties. In subcutaneous implantation, the material was partially degraded in the first month and completely absorbed in the third month. Cell experiments showed evident cell proliferation and high viability. Results also showed that the cells grew vigorously and adhered tightly to the sponge. In conclusion, mTG sponge has good biocompatibility and can be used in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haiyan Long
- Center of Engineering-Training, Chengdu Aeronautic Polytechnic, Chengdu, China
| | - Kunlong Ma
- Department of Orthopaedics, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Zhenghua Xiao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaomei Ren
- Department of Medical Information and Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu, China
| | - Gang Yang
- Department of Medical Information and Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Krishnakumar GS, Gostynska N, Campodoni E, Dapporto M, Montesi M, Panseri S, Tampieri A, Kon E, Marcacci M, Sprio S, Sandri M. Ribose mediated crosslinking of collagen-hydroxyapatite hybrid scaffolds for bone tissue regeneration using biomimetic strategies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:594-605. [DOI: 10.1016/j.msec.2017.03.255] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/25/2017] [Accepted: 03/26/2017] [Indexed: 01/27/2023]
|
43
|
Bazrafshan Z, Stylios GK. One-pot approach synthesizing and characterization of random copolymerization of ethyl acrylate-co-methyl methacrylate with broad range of glass transition temperature onto collagen. POLYM ENG SCI 2017. [DOI: 10.1002/pen.24688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zahra Bazrafshan
- Research Institute for flexible material; School of Textiles, Heriot-Watt University; Galashiels UK
| | - George K. Stylios
- Research Institute for flexible material; School of Textiles, Heriot-Watt University; Galashiels UK
| |
Collapse
|
44
|
Morsy R, Hosny M, Reicha F, Elnimr T. Developing a potential antibacterial long-term degradable electrospun gelatin-based composites mats for wound dressing applications. REACT FUNCT POLYM 2017. [DOI: 10.1016/j.reactfunctpolym.2017.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Palo M, Kogermann K, Laidmäe I, Meos A, Preis M, Heinämäki J, Sandler N. Development of Oromucosal Dosage Forms by Combining Electrospinning and Inkjet Printing. Mol Pharm 2017; 14:808-820. [PMID: 28195483 DOI: 10.1021/acs.molpharmaceut.6b01054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Printing technology has been shown to enable flexible fabrication of solid dosage forms for personalized drug therapy. Several methods can be applied for tailoring the properties of the printed pharmaceuticals. In this study, the use of electrospun fibrous substrates in the fabrication of inkjet-printed dosage forms was investigated. A single-drug formulation with lidocaine hydrochloride (LH) and a combination drug system containing LH and piroxicam (PRX) for oromucosal administration were prepared. The LH was deposited on the electrospun and cross-linked gelatin substrates by inkjet printing, whereas PRX was incorporated within the substrate fibers during electrospinning. The solid state analysis of the electrospun substrates showed that PRX was in an amorphous state within the fibers. Furthermore, the results indicated the entrapment and solidification of the dissolved LH within the fibrous gelatin matrix. The printed drug amount (2-3 mg) was in good correlation with the theoretical dose calculated based on the printing parameters. However, a noticeable degradation of the printed LH was detected after a few months. An immediate release (over 85% drug release after 8 min) of both drugs from the printed dosage forms was observed. In conclusion, the prepared electrospun gelatin scaffolds were shown to be suitable substrates for inkjet printing of oromucosal formulations. The combination of electrospinning and inkjet printing allowed the preparation of a dual drug system.
Collapse
Affiliation(s)
- Mirja Palo
- Institute of Pharmacy, Faculty of Medicine, University of Tartu , Nooruse 1, EE-50411 Tartu, Estonia.,Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University , Tykistökatu 6A, FI-20520 Turku, Finland
| | - Karin Kogermann
- Institute of Pharmacy, Faculty of Medicine, University of Tartu , Nooruse 1, EE-50411 Tartu, Estonia
| | - Ivo Laidmäe
- Institute of Pharmacy, Faculty of Medicine, University of Tartu , Nooruse 1, EE-50411 Tartu, Estonia
| | - Andres Meos
- Institute of Pharmacy, Faculty of Medicine, University of Tartu , Nooruse 1, EE-50411 Tartu, Estonia
| | - Maren Preis
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University , Tykistökatu 6A, FI-20520 Turku, Finland
| | - Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu , Nooruse 1, EE-50411 Tartu, Estonia
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University , Tykistökatu 6A, FI-20520 Turku, Finland
| |
Collapse
|
46
|
Jayamani J, Shanmugam G. Gelatin as a Potential Inhibitor of Insulin Amyloid Fibril Formation. ChemistrySelect 2016. [DOI: 10.1002/slct.201600692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jayaraman Jayamani
- Bioorganic Chemistry Laboratory; CSIR-Central Leather Research Institute, Adyar; Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus; Sardar Patel Road Chennai 600020 India
| | - Ganesh Shanmugam
- Bioorganic Chemistry Laboratory; CSIR-Central Leather Research Institute, Adyar; Chennai 600 020 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-CLRI Campus; Sardar Patel Road Chennai 600020 India
| |
Collapse
|
47
|
Boron nitride nanotubes included thermally cross-linked gelatin–glucose scaffolds show improved properties. Colloids Surf B Biointerfaces 2016; 138:41-9. [DOI: 10.1016/j.colsurfb.2015.11.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 12/26/2022]
|
48
|
Novel electrospun poly(glycerol sebacate)–zein fiber mats as candidate materials for cardiac tissue engineering. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2015.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Zhan J, Morsi Y, Ei-Hamshary H, Al-Deyab SS, Mo X. Preparation and characterization of electrospun in-situ cross-linked gelatin-graphite oxide nanofibers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:385-402. [PMID: 26733331 DOI: 10.1080/09205063.2015.1133156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrospun gelatin(Gel) nanofibers scaffold has such defects as poor mechanical property and quick degradation due to high solubility. In this study, the in situ cross-linked electrospinning technique was used for the production of gelatin nanofibers. Deionized water was chosen as the spinning solvent and graphite oxide (GO) was chosen as the enhancer. The morphological structure, porosity, thermal property, moisture absorption, and moisture retention performance, hydrolysis resistance, mechanical property, and biocompatibility of the produced nanofibers were investigated. Compared with in situ cross-linked gelatin nanofibers scaffold, in situ cross-linked Gel-GO nanofibers scaffold has the following features: (1) the hydrophilicity, moisture absorption, and moisture retention performance slightly reduce, while the hydrolysis resistance is improved; (2) the breaking strength, breaking elongation, and Young's modulus are significantly improved; (3) the porosity slightly reduces while the biocompatibility considerably increases. The in situ cross-linked Gel-GO nanofibers scaffold is likely to be applied in such fields as drug delivery and scaffold for skin tissue engineering.
Collapse
Affiliation(s)
- Jianchao Zhan
- a Chemical Engineering and Biotechnology , College of Chemistry, Donghua University , Shanghai , P.R. China.,b College of Materials and Textile Engineering , Jiaxing University , Zhejiang Province , P.R. China
| | - Yosry Morsi
- c Faculty of Engineering and Industrial Sciences , Swinburne University of Technology , Hawthorn , Australia
| | - Hany Ei-Hamshary
- d Department of Chemistry , College of Science, King Saud University , Riyadh , Kingdom of Saudi Arabia.,e Faculty of Science, Department of Chemistry , Tanta University , Tanta , Egypt
| | - Salem S Al-Deyab
- d Department of Chemistry , College of Science, King Saud University , Riyadh , Kingdom of Saudi Arabia
| | - Xiumei Mo
- a Chemical Engineering and Biotechnology , College of Chemistry, Donghua University , Shanghai , P.R. China
| |
Collapse
|
50
|
Qiang N, Tang S, Shi XJ, Li H, Ma YH, Tao HX, Lin Q. Synthesis of functional polyester for fabrication of nano-fibrous scaffolds and its effect on PC12 cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 27:191-201. [PMID: 26514960 DOI: 10.1080/09205063.2015.1114308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An ideal scaffold should mimic the advantageous characteristics of a natural extracellular matrix for cell attachment, proliferation, and differentiation. In this study, well-defined block copolymer with functional groups was synthesized. The structure of the block copolymer was characterized by nuclear magnetic resonance, gel permeation chromatography, and differential scanning calorimetry. Thermally induced phase separation was employed to fabricate nano-fibrous scaffolds based on the synthesized block copolymer. The scaffold, with fiber diameter ranging from 400 to 500 nm, was fabricated for in vitro culture of PC12 cells. The carboxyl groups on the side chain resulted in increased hydrophilicity of nano-fibrous scaffolds and enhanced cell proliferation. In addition, this scaffold structure was beneficial in directing the growth of regenerating axons in nerve tissue engineering. Results of 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay and scanning electron microscopy confirmed that the nano-fibrous scaffolds with functional groups were suitable for PC12 cells growth. Moreover, the carboxyl groups were suitable for coupling with biological signals. Thus, the nano-fibrous scaffolds have potential applications in tissue engineering.
Collapse
Affiliation(s)
- Na Qiang
- a Department of Chemical Engineering , Huizhou University , Huizhou , China
| | - Shuo Tang
- b Department of Orthopaedics , West China Hospital, Sichuan University , Chengdu , China.,c Department of Orthopaedics , Mianyang Center Hospital , Mianyang , China
| | - Xiao-jun Shi
- b Department of Orthopaedics , West China Hospital, Sichuan University , Chengdu , China
| | - Hao Li
- a Department of Chemical Engineering , Huizhou University , Huizhou , China
| | - Yi-hong Ma
- a Department of Chemical Engineering , Huizhou University , Huizhou , China
| | - Hai-xia Tao
- a Department of Chemical Engineering , Huizhou University , Huizhou , China
| | - Qiang Lin
- d Department of Orthopaedics , Guangdong Hospital of Traditional Chinese Medicine , Guangzhou , China
| |
Collapse
|