1
|
Gao D, Asghar S, Hu R, Chen S, Niu R, Liu J, Chen Z, Xiao Y. Recent advances in diverse nanosystems for nitric oxide delivery in cancer therapy. Acta Pharm Sin B 2022; 13:1498-1521. [PMID: 37139410 PMCID: PMC10149905 DOI: 10.1016/j.apsb.2022.11.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/26/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Gas therapy has been proven to be a promising and advantageous treatment option for cancers. Studies have shown that nitric oxide (NO) is one of the smallest structurally significant gas molecules with great potential to suppress cancer. However, there is controversy and concern about its use as it exhibits the opposite physiological effects based on its levels in the tumor. Therefore, the anti-cancer mechanism of NO is the key to cancer treatment, and rationally designed NO delivery systems are crucial to the success of NO biomedical applications. This review summarizes the endogenous production of NO, its physiological mechanisms of action, the application of NO in cancer treatment, and nano-delivery systems for delivering NO donors. Moreover, it briefly reviews challenges in delivering NO from different nanoparticles and the issues associated with its combination treatment strategies. The advantages and challenges of various NO delivery platforms are recapitulated for possible transformation into clinical applications.
Collapse
Affiliation(s)
- Dan Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Rongfeng Hu
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China
| | - Su Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ruixin Niu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Liu
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin 214499, China
- Corresponding authors. Tel./fax: +86 510 86700000 (Jia Liu); +86 25 85811050 (Zhipeng Chen); +86 25 83271079 (Yanyu Xiao).
| | - Zhipeng Chen
- Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Corresponding authors. Tel./fax: +86 510 86700000 (Jia Liu); +86 25 85811050 (Zhipeng Chen); +86 25 83271079 (Yanyu Xiao).
| | - Yanyu Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Corresponding authors. Tel./fax: +86 510 86700000 (Jia Liu); +86 25 85811050 (Zhipeng Chen); +86 25 83271079 (Yanyu Xiao).
| |
Collapse
|
2
|
Advances in inorganic-based colloidal nanovehicles functionalized for nitric oxide delivery. Colloids Surf B Biointerfaces 2020; 199:111508. [PMID: 33340932 DOI: 10.1016/j.colsurfb.2020.111508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 01/25/2023]
Abstract
Nitric oxide (NO) is an important pharmaceutical agent of considerable therapeutic interest ascribed to its vasodilative, tumoricidal and antibacterial effects. Rapid development of functional nanomaterials has provided opportunities for us to achieve controllable exogenous delivery of NO. In the current review, a variety of functionalized colloidal nanovehicles that have been developed to date for nitric oxide delivery are reported. Specifically, we focus on inorganic nanomaterials such as semiconductor quantum dots, silica nanoparticles, upconversion nanomaterials, carbon/graphene nanodots, gold nanoparticles, iron oxide nanoparticles as the functional or/and supporting materials to carry NO donors. N-diazeniumdiolates, S-nitrosothiols, nitrosyl metal complexes and organic nitrates as main types of NO donors have their own unique properties and molecular structures. Conjugating the NO donors of different forms with appropriate nanomaterials results in NO delivery nanovehicles capable of releasing NO in a dose-controllable or/and on-demand manner. We also consider the therapeutic applications of those NO delivery nanovehicles, especially their applications for cancer therapy. In the end, we discuss possible future directions for developing exogenous NO delivery systems with more desired structure and improved performance. This review aims to offer the readers an overall view of the advances in functionalized colloidal nanovehicles for NO delivery. It will be attractive to scientists and researchers in the areas of material science, nanotechnology, biomedical engineering, chemical biology, etc.
Collapse
|
3
|
Yang L, Feura ES, Ahonen MJR, Schoenfisch MH. Nitric Oxide-Releasing Macromolecular Scaffolds for Antibacterial Applications. Adv Healthc Mater 2018; 7:e1800155. [PMID: 29756275 PMCID: PMC6159924 DOI: 10.1002/adhm.201800155] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/26/2018] [Indexed: 01/03/2023]
Abstract
Exogenous nitric oxide (NO) represents an attractive antibacterial agent because of its ability to both disperse and directly kill bacterial biofilms while avoiding resistance. Due to the challenges associated with administering gaseous NO, NO-releasing macromolecular scaffolds are developed to facilitate NO delivery. This progress report describes the rational design and application of NO-releasing macromolecular scaffolds as antibacterial therapeutics. Special consideration is given to the role of the physicochemical properties of the NO storage vehicles on antibacterial or anti-biofilm activity.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Evan S. Feura
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mona Jasmine R. Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
4
|
Seabra AB, Durán N. Nitric oxide donors for prostate and bladder cancers: Current state and challenges. Eur J Pharmacol 2018; 826:158-168. [PMID: 29501865 DOI: 10.1016/j.ejphar.2018.02.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/27/2022]
Abstract
Nitric oxide (NO) is an endogenous molecule that plays pivotal physiological and pathophysiological roles, particularly in cancer biology. Generally, low concentrations of NO (pico- to nanomolar range) lead to tumor promotion. In contrast, high NO concentrations (micromolar range) have pro-apoptotic functions, leading to tumor suppression, and in this case, NO is involved in immune surveillance. Under oxidative stress, inducible NO synthase (iNOS) produces high NO concentrations for antineoplastic activities. Prostate and bladder cancers are the most commonly detected cancers in men, and are related to cancer death in males. This review summarizes the state of the art of NO/NO donors in combating prostate and bladder cancers, highlighting the importance of NO donors in cancer treatment, and the limitations and challenges to be overcome. In addition, the combination of NO donors with classical therapies (radio- or chemotherapy) in the treatment of prostate and bladder cancers is also presented and discussed. The combination of NO donors with conventional anticancer drugs is reported to inhibit tumor growth, since NO is able to sensitize tumor cells, enhancing the efficacy of the traditional drugs. Although important progress has been made, more studies are still necessary to definitely translate the administration of NO donors to clinical sets. The purpose of this review is to inspire new avenues in this topic.
Collapse
Affiliation(s)
- Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil; NanoBioss Lab., Chemistry Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil; Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Santo André, SP, Brazil.
| | - Nelson Durán
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, SP, Brazil; NanoBioss Lab., Chemistry Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil; Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Santo André, SP, Brazil; Chemistry Institute, Biol. Chem. Lab., Universidade Estadual de Campinas, CP 6154, CEP 13083-970, Campinas, SP, Brazil
| |
Collapse
|
5
|
Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing. Chem Rev 2017; 117:12942-13038. [DOI: 10.1021/acs.chemrev.7b00088] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuaidi Zhang
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Ren Geryak
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Jeffrey Geldmeier
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Sunghan Kim
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Vladimir V. Tsukruk
- School of Materials Science
and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
6
|
Ravikumar G, Bagheri M, Saini DK, Chakrapani H. FLUORO/NO: A Nitric Oxide Donor with a Fluorescence Reporter. Chembiochem 2017; 18:1529-1534. [DOI: 10.1002/cbic.201700155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Govindan Ravikumar
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| | - Meisam Bagheri
- Department of Molecular Reproduction; Development and Genetics; Indian Institute of Science; Bangalore 560012 Karanataka India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction; Development and Genetics; Indian Institute of Science; Bangalore 560012 Karanataka India
| | - Harinath Chakrapani
- Department of Chemistry; Indian Institute of Science Education and Research; Dr. Homi Bhabha Road Pune 411008 Maharashtra India
| |
Collapse
|
7
|
Polat F, Diler SB, Azazi İ, Öden A. T-786C, G894T, and intron 4 VNTR (4a/b) polymorphisms of the endothelial nitric oxide synthase gene in bladder cancer cases. Asian Pac J Cancer Prev 2015; 16:2199-202. [PMID: 25824737 DOI: 10.7314/apjcp.2015.16.6.2199] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The aim of the present study was to determine whether endothelial nitric oxide synthase (eNOS) gene polymorphisms play a role in development of bladder cancer in the Turkish population. The study was performed on 75 patients (64 men, 11 women) with bladder cancer and 143 healthy individuals (107 men, 36 women) with any kind of cancer history. Three eNOS gene polymorphisms (T-786C promoter region, G894T and intron 4 VNTR 4a/b) were determined with polymerase chain reaction and restriction fragment lenght polymorphism methods. In our study, GT and TT genotypes for eNOS G894T polymorphism were found to significantly vary among patients with bladder cancer and control group (OR: 0.185, CI: 0.078-0.439, p=0.0001 and OR: 0.324, CI: 0.106-0.990, p=0.026). Also, the frequency of the 894T allele was significantly higher in patients with bladder cancer (51%). No association was identified for eNOS T-786C and intron 4 VNTR 4a/b polymorphisms between patients with bladder cancer and control groups in our Turkish population.
Collapse
Affiliation(s)
- Fikriye Polat
- Department of Primary Education, Elementary Sciences Education, Faculty of Education, Kocaeli University, Kocaeli, Turkey E-mail :
| | | | | | | |
Collapse
|
8
|
Abstract
Recent progress in quantum dot (QD) based chemo- and biosensors for various applications is summarized.
Collapse
Affiliation(s)
- Lei Cui
- College of Science
- School of Environment and Architecture
- University of Shanghai for Science and Technology
- Shanghai 200293
- PR China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- East China University of Science and Technology (ECUST)
- Shanghai 200237
- PR China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals
- East China University of Science and Technology (ECUST)
- Shanghai 200237
- PR China
| |
Collapse
|