1
|
Carayon I, Szarlej P, Gnatowski P, Piłat E, Sienkiewicz M, Glinka M, Karczewski J, Kucińska-Lipka J. Polyurethane based hybrid ciprofloxacin-releasing wound dressings designed for skin engineering purpose. Adv Med Sci 2022; 67:269-282. [PMID: 35841880 DOI: 10.1016/j.advms.2022.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Even in the 21st century, chronic wounds still pose a major challenge due to potentially inappropriate treatment options, so the latest wound dressings are hybrid systems that enable clinical management, such as a hybrid of hydrogels, antibiotics and polymers. These wound dressings are mainly used for chronic and complex wounds, which can easily be infected by bacteria. MATERIALS AND METHODS Six Composite Porous Matrices (CPMs) based on polyurethane (PUR) in alliance with polylactide (PLAs) and poly(vinyl alcohol) (PVA) were prepared and analyzed using optical microscopy. Three different types of hydrogels and their Ciprofloxacin (Cipro) modified variants' ratios were prepared and analyzed using FTIR, SEM and EDX techniques. Six Hybrid Cipro-Releasing Hydrogel Wound Dressings (H-CRWDs) were also prepared and underwent short-term degradation, Cipro release, microbiology and cell viability measurements. RESULTS Average porosity of CPMs was in the range of 69-81%. The pore size of the obtained CPMs was optimal for skin regeneration. Short-term degradation studies revealed degradability in physiological conditions regardless of sample type. A meaningful release was also observed even in short time (21.76 ± 0.64 μg/mL after 15 min). Microbiological tests showed visible inhibition zones. Cell viability tests proved that the obtained H-CRWDs were biocompatible (over 85% of cells). CONCLUSIONS A promising hybrid wound dressing was labeled. Simple and cost-effective methods were used to obtain microbiologically active and biocompatible dressings. The results were of importance for the design and development of acceptable solutions in the management of chronic wounds of high potential for infection.
Collapse
Affiliation(s)
- Iga Carayon
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Paweł Szarlej
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Przemysław Gnatowski
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Edyta Piłat
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Maciej Sienkiewicz
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Marta Glinka
- Department of Analytical Chemistry, Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jakub Karczewski
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gdansk, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
2
|
Xu W, Zhang Z, Lu H, Wu Y, Liu J, Liu S, Yang W. Biocompatible Polyurethane Conduit Grafted with Vascular Endothelial Growth Factor-Loaded Hydrogel Repairs the Peripheral Nerve Defect in Rats. Macromol Biosci 2021; 22:e2100397. [PMID: 34863047 DOI: 10.1002/mabi.202100397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Artificial nerve guidance conduits (NGCs) can be potentially used to address the problems of peripheral nerve defects. The biomaterial polyurethane (PU) has already been used to construct NGCs. However, the use of a combination of PU-based NGCs and other bioactive cues, such as extracellular matrix proteins and growth factors, has not been reported yet. A PU conduit grafted with a vascular endothelial growth factor (VEGF)-loaded hydrogel (abbreviated as PU/Gel/VEGF conduit) is fabricated. The leachate generated during the use of the PU/Gel/VEGF conduit could facilitate the proliferation, migration, and expression of the neural marker S100β in RSC96 cells (in vitro). The walking track and target muscle are analyzed, and it is observed that PU/Gel/VEGF conduits promote the functional recovery of the injured side. Various histological staining analyses are carried out, and the results reveal that the PU/Gel/VEGF conduit effectively improves the extent of nerve regeneration achieved. The number of blood vessels developed during the regeneration of the axons in the PU/Gel/VEGF group (attributable to the pro-angiogenic effect of the functional NGC) is higher than the number of blood vessels developed in the PU/Gel conduit. Overall, the results indicate that PU/Gel/VEGF conduits could promote the process of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Wanlin Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Zhen Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Hao Lu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yifan Wu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Jia Liu
- School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengwen Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Wenjun Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| |
Collapse
|
3
|
Abstract
The fabrication of robots and their embedded systems is challenging due to the complexity of the interacting components. The integration of additive manufacturing (AM) to robotics has made advancements in robotics manufacturing through sophisticated and state-of-the-art AM technologies and materials. With the emergence of 3D printing, 3D printing materials are also being considered and engineered for specific applications. This study reviews different 3D printing materials for 3D printing embedded robotics. Materials such as polyethylene glycol diacrylate (PEGDA), acrylonitrile butadiene styrene (ABS), flexible photopolymers, silicone, and elastomer-based materials were found to be the most used 3D printing materials due to their suitability for robotic applications. This review paper revealed that the key areas requiring more research are material formulations for improved mechanical properties, cost, and the inclusion of materials for specific applications. Future perspectives are also provided.
Collapse
|
4
|
Zhao X, Hu DA, Wu D, He F, Wang H, Huang L, Shi D, Liu Q, Ni N, Pakvasa M, Zhang Y, Fu K, Qin KH, Li AJ, Hagag O, Wang EJ, Sabharwal M, Wagstaff W, Reid RR, Lee MJ, Wolf JM, El Dafrawy M, Hynes K, Strelzow J, Ho SH, He TC, Athiviraham A. Applications of Biocompatible Scaffold Materials in Stem Cell-Based Cartilage Tissue Engineering. Front Bioeng Biotechnol 2021; 9:603444. [PMID: 33842441 PMCID: PMC8026885 DOI: 10.3389/fbioe.2021.603444] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Cartilage, especially articular cartilage, is a unique connective tissue consisting of chondrocytes and cartilage matrix that covers the surface of joints. It plays a critical role in maintaining joint durability and mobility by providing nearly frictionless articulation for mechanical load transmission between joints. Damage to the articular cartilage frequently results from sport-related injuries, systemic diseases, degeneration, trauma, or tumors. Failure to treat impaired cartilage may lead to osteoarthritis, affecting more than 25% of the adult population globally. Articular cartilage has a very low intrinsic self-repair capacity due to the limited proliferative ability of adult chondrocytes, lack of vascularization and innervation, slow matrix turnover, and low supply of progenitor cells. Furthermore, articular chondrocytes are encapsulated in low-nutrient, low-oxygen environment. While cartilage restoration techniques such as osteochondral transplantation, autologous chondrocyte implantation (ACI), and microfracture have been used to repair certain cartilage defects, the clinical outcomes are often mixed and undesirable. Cartilage tissue engineering (CTE) may hold promise to facilitate cartilage repair. Ideally, the prerequisites for successful CTE should include the use of effective chondrogenic factors, an ample supply of chondrogenic progenitors, and the employment of cell-friendly, biocompatible scaffold materials. Significant progress has been made on the above three fronts in past decade, which has been further facilitated by the advent of 3D bio-printing. In this review, we briefly discuss potential sources of chondrogenic progenitors. We then primarily focus on currently available chondrocyte-friendly scaffold materials, along with 3D bioprinting techniques, for their potential roles in effective CTE. It is hoped that this review will serve as a primer to bring cartilage biologists, synthetic chemists, biomechanical engineers, and 3D-bioprinting technologists together to expedite CTE process for eventual clinical applications.
Collapse
Affiliation(s)
- Xia Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Daniel A. Hu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Di Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Fang He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Linjuan Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Nephrology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Deyao Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Orthopaedic Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Liu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Spine Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Ni
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Ministry of Education Key Laboratory of Diagnostic Medicine, The School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Mikhail Pakvasa
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Yongtao Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kai Fu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Departments of Neurosurgery, The Affiliated Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kevin H. Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Alexander J. Li
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Ofir Hagag
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Eric J. Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Maya Sabharwal
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
- Department of Surgery, Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, United States
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Mostafa El Dafrawy
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Kelly Hynes
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, United States
| |
Collapse
|
5
|
Microstructure and Mechanical Properties of PU/PLDL Sponges Intended for Grafting Injured Spinal Cord. Polymers (Basel) 2020; 12:polym12112693. [PMID: 33207553 PMCID: PMC7697813 DOI: 10.3390/polym12112693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022] Open
Abstract
Highly porous, elastic, and degradable polyurethane and polyurethane/polylactide (PU/PLDL) sponges, in various shapes and sizes, with open interconnected pores, and porosity up to 90% have been manufactured. They have been intended for gap filling in the injured spinal cord. The porosity of the sponges depended on the content of polylactide, i.e., it decreased with the increase of polylactide content. The rise of polylactide content caused an increase of Young modulus and rigidity as well as a more complex morphology of the polyurethane/polylactide blends. The mechanical properties, in vitro toxicity, and degradation in artificial cerebrospinal fluid were tested. Sponges underwent continuous degradation with varying degradation rates depending on the polymer composition. In vitro cell studies with fibroblast cultures proved the biocompatibility of the polymers. Based on the obtained results, the designed PU/PLDL sponges appeared to be promising candidates for bridging gaps within injured spinal cord in further in vitro and in vivo studies.
Collapse
|
6
|
Naureen B, Haseeb ASMA, Basirun WJ, Muhamad F. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111228. [PMID: 33254956 DOI: 10.1016/j.msec.2020.111228] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Organ repair, regeneration, and transplantation are constantly in demand due to various acute, chronic, congenital, and infectious diseases. Apart from traditional remedies, tissue engineering (TE) is among the most effective methods for the repair of damaged tissues via merging the cells, growth factors, and scaffolds. With regards to TE scaffold fabrication technology, polyurethane (PU), a high-performance medical grade synthetic polymer and bioactive material has gained significant attention. PU possesses exclusive biocompatibility, biodegradability, and modifiable chemical, mechanical and thermal properties, owing to its unique structure-properties relationship. During the past few decades, PU TE scaffold bioactive properties have been incorporated or enhanced with biodegradable, electroactive, surface-functionalised, ayurvedic products, ceramics, glass, growth factors, metals, and natural polymers, resulting in the formation of modified polyurethanes (MPUs). This review focuses on the recent advances of PU/MPU scaffolds, especially on the biomedical applications in soft and hard tissue engineering and regenerative medicine. The scientific issues with regards to the PU/MPU scaffolds, such as biodegradation, electroactivity, surface functionalisation, and incorporation of active moieties are also highlighted along with some suggestions for future work.
Collapse
Affiliation(s)
- Bushra Naureen
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - A S M A Haseeb
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - W J Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Nanotechnology and catalyst (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Sadeghi-Soureh S, Jafari R, Gholikhani-Darbroud R, Pilehvar-Soltanahmadi Y. Potential of Chrysin‐loaded PCL/gelatin nanofibers for modulation of macrophage functional polarity towards anti-inflammatory/pro-regenerative phenotype. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Jaswal R, Shrestha S, Shrestha BK, Kumar D, Park CH, Kim CS. Nanographene enfolded AuNPs sophisticatedly synchronized polycaprolactone based electrospun nanofibre scaffold for peripheral nerve regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111213. [PMID: 32806222 DOI: 10.1016/j.msec.2020.111213] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/15/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Herein, we report the bioactivity of monodispersed nanosized reduced graphene oxide (RGO) enfolded gold nanoparticles (AuNPs) engineered polycaprolactone (PCL) based electrospun composite scaffolds. The 2D patterns of PCL based nanofibers prepared by the homogenous distribution of RGO-AuNPs exhibited unique topological and biological features such as mechanical properties, porous structure, large surface area, high electrical conductivity, biodegradability, and resemble the natural extracellular matrix (ECM) that supports the adhesion, growth, proliferation, and differentiation of stem cells. The prepared composite nanofibers based scaffolds containing RGO-AuNPs accelerated neuronal cell functions and confirmed that the optimized concentration showed cytocompatibility to PC12 and S42 cells. The 0.0005 wt% loading of RGO-AuNPs on PCL has a huge impact on neurite growth which leads to an almost one-fold increase in neurite length growth. The present study provides a new strategic design of highly efficient scaffolds that have a significant direct impact on cell activity and could be a potential bioimplant for peripheral nerve repair.
Collapse
Affiliation(s)
- Richa Jaswal
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, South Korea
| | - Sita Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea
| | - Bishnu Kumar Shrestha
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea.
| | - Dinesh Kumar
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea.
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, South Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, South Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, South Korea.
| |
Collapse
|
9
|
Electrospinning of polyurethane/graphene oxide for skin wound dressing and its in vitro characterization. J Biomater Appl 2020; 35:135-145. [DOI: 10.1177/0885328220916866] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrospinning polyurethane has been utilized as skin wound dressing for protecting skin wounds from infection and thus facilitating their healings, but also limited by its imperfect biocompatibility, mechanical and antibacterial properties. This paper presents our study on the addition of graphene oxide to electrospinning polyurethane for improved properties, as well as its in vitro characterization. Polyurethane/graphene oxide wound dressing was electrospun with varying amount of graphene oxide (from 0.0% to 2.0%); and in vitro tests was carried out to characterize the wound dressing properties and performance from the structural, mechanical, and biological perspectives. Scanning electron microscopy and Fourier-transform infrared spectroscopy were used to confirm the interaction between graphene oxide particles and polyurethane fibers, while the scanning electron microscopy images further illustrated that the wound dressing was of a porous structure with fibre diameters depending on the amount of graphene oxide added; specifically, 20 to 180 nm were for composite polyurethane/graphene oxide fibers and 600 to 900 nm for pure polyurethane. Our results also revealed that the hydrophilicity and swelling properties of the wound dressing could be regulated by the amount of graphene oxide added to the polyurethane/graphene oxide composites. Mechanical, antibacterial, and cytotoxicity properties of the composite polyurethane/graphene oxide wound dressing were examined with the results illustrating that the addition of graphene oxide could improve the properties of the electrospun wound dressing. Combined together, our study illustrates that electrospinning polyurethane/graphene oxide composite is promising as skin wound dressing.
Collapse
|
10
|
Marycz K, Smieszek A, Targonska S, Walsh SA, Szustakiewicz K, Wiglusz RJ. Three dimensional (3D) printed polylactic acid with nano-hydroxyapatite doped with europium(III) ions (nHAp/PLLA@Eu 3+) composite for osteochondral defect regeneration and theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110634. [PMID: 32204070 DOI: 10.1016/j.msec.2020.110634] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
In the current research previously developed composites composed from poly (l-lactide) (PLLA) and nano-hydroxyapatite (10 wt% nHAp/PLLA) were functionalized with different concentrations of europium (III) (Eu3+). The aim of this study was to determine whether Eu3+ ions doped within the 10 wt% nHAp/PLLA scaffolds will improve the bioactivity of composites. Therefore, first set of experiments was designed to evaluate the effect of Eu3+ ions on morphology, viability, proliferation and metabolism of progenitor cells isolated from adipose tissue (hASC). Three different concentration were tested i.e. 1 mol%, 3 mol% and 5%mol. We identified the 10 wt% nHAp/PLLA@3 mol% Eu3+ scaffolds as the most cytocompatible. Further, we investigated the influence of the composites doped with 3 mol% Eu3+ ions on differentiation of hASC toward bone and cartilage forming cells. Our results showed that 10 wt% nHAp/PLLA@3 mol% Eu3+ scaffolds promotes osteogenesis and chondrogenesis of hASCs what was associated with improved synthesis and secretion of extracellular matrix proteins specific for bone and articular cartilage tissue. We also proved that obtained biomaterials have bio-imaging function and their integration with bone can be monitored using micro computed tomography (μCT).
Collapse
Affiliation(s)
- Krzysztof Marycz
- University of Environmental and Life Sciences Wroclaw, The Department of Experimental Biology, The Faculty of Biology and Animal Science, 38 C Chelmonskiego St., 50-630 Wroclaw, Poland; Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Smieszek
- University of Environmental and Life Sciences Wroclaw, The Department of Experimental Biology, The Faculty of Biology and Animal Science, 38 C Chelmonskiego St., 50-630 Wroclaw, Poland
| | - Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland
| | - Susan A Walsh
- Small Animal Imaging Core, University of Iowa Carver College of Medicine, Iowa City, IA, United States of America
| | - Konrad Szustakiewicz
- Polymer Engineering and Technology Division, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, PL-50-422 Wroclaw, Poland; Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950 Wroclaw, Poland.
| |
Collapse
|
11
|
Marycz K, Alicka M, Kornicka-Garbowska K, Polnar J, Lis-Bartos A, Wiglusz RJ, Roecken M, Nedelec JM. Promotion through external magnetic field of osteogenic differentiation potential in adipose-derived mesenchymal stem cells: Design of polyurethane/poly(lactic) acid sponges doped with iron oxide nanoparticles. J Biomed Mater Res B Appl Biomater 2019; 108:1398-1411. [PMID: 31513334 DOI: 10.1002/jbm.b.34488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 12/28/2022]
Abstract
Recently, iron oxide nanoparticles (IONPs) have gathered special attention in regenerative medicine. Owing to their magnetic and bioactive properties, IONPs are utilized in the fabrication of novel biomaterials. Yet, there was no report regarding thermoplastic polyurethane (TPU) and poly(lactic acid) (PLA) polymer doped with IONPs on osteogenic differentiation of mesenchymal stem cells. Thus the objectives of presented study was to: (a) fabricate magnetic TPU + PLA sponges doped with iron (III) oxide Fe2 O3 nanoparticles; (b) investigate the effects of biomaterial and its exposition to static magnetic field (MF) on osteogenic differentiation, proliferation, and apoptosis in adipose-derived mesenchymal stem cells (ASCs). TPU + PLA sponges were prepared using solvent casting technique while incorporation of the Fe2 O3 nanoparticles was performed with solution cast method. RT-PCR was applied to evaluate expression of osteogenic-related genes and integrin's in cells cultured on fabricated materials with or without the stimulation of static MF. MF stimulation enhanced the expression of osteopontin and collagen type I while decreased expression of bone morphogenetic protein 2 in tested magnetic materials-TPU + PLA/1% Fe2 O3 and TPU + PLA/5% Fe2 O3 . Therefore, TPU + PLA sponges doped with IONPs and exposure to MF resulted in improved osteogenic differentiation of ASC.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland.,Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, Gießen, Germany
| | - Michalina Alicka
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Joanna Polnar
- Faculty of Materials Science and Ceramics, Department of Ceramics and Refractories, AGH University of Science and Technology, Krakow, Poland
| | - Anna Lis-Bartos
- Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, AGH University of Science and Technology, Krakow, Poland
| | - Rafał J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland
| | - Michael Roecken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, Gießen, Germany
| | - Jean-Marie Nedelec
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, Clermont-Ferrand, France
| |
Collapse
|
12
|
Rivera-Izquierdo M, Cabeza L, Láinez-Ramos-Bossini A, Quesada R, Perazzoli G, Alvarez P, Prados J, Melguizo C. An updated review of adipose derived-mesenchymal stem cells and their applications in musculoskeletal disorders. Expert Opin Biol Ther 2019; 19:233-248. [PMID: 30653367 DOI: 10.1080/14712598.2019.1563069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Adipose-derived mesenchymal stem cells (ASCs) represent a new therapeutic strategy in biomedicine with many potential applications, especially in musculoskeletal disorders. Preclinical and clinical studies based on the administration of ASCs support their efficacy in bone regeneration, joint repair, tendon injury and skeletal muscle alterations. Many of these novel treatments may improve patients' quality of life and prognosis. However, several concerns about the use of stem cells remain unsolved, particularly regarding their safety and side effects. The present work aims to review the nature, clinical trials and patents involving the use of ASCs in musculoskeletal disorders. AREAS COVERED In this article, we describe ASCs' isolation, culture and differentiation in vivo and in vitro, advances on ASCs' applications in bone, cartilage, muscle and tendon repair, and patents involving the use of ASCs. EXPERT OPINION The use of ASCs in musculoskeletal disorders presents significant therapeutic advantages, including limited autoimmune response, potential cell expansion ex vivo, high plasticity to differentiate into several mesodermal cell lineages, and additional effects of therapeutic interest such as secretion of neurotrophic factors and anti-inflammatory properties. For these reasons, ASCs are promising therapeutic agents for clinical applications in musculoskeletal disorders.
Collapse
Affiliation(s)
- Mario Rivera-Izquierdo
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
| | - Laura Cabeza
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
| | - Antonio Láinez-Ramos-Bossini
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
- d Department of Radiology , Hospital Universitario Virgen de las Nieves , Granada , Spain
| | - Raul Quesada
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
| | - Gloria Perazzoli
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
| | - Pablo Alvarez
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
| | - Jose Prados
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
| | - Consolación Melguizo
- a Department of Anatomy and Embryology, Faculty of Medicine , University of Granada , Granada , Spain
- b Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM) , University of Granada , Granada , Spain
- c Biosanitary Institute of Granada (IBS GRANADA) , SAS -Universidad de Granada , Granada , Spain
| |
Collapse
|
13
|
Marycz K, Smieszek A, Trynda J, Sobierajska P, Targonska S, Grosman L, Wiglusz RJ. Nanocrystalline Hydroxyapatite Loaded with Resveratrol in Colloidal Suspension Improves Viability, Metabolic Activity and Mitochondrial Potential in Human Adipose-Derived Mesenchymal Stromal Stem Cells (hASCs). Polymers (Basel) 2019; 11:E92. [PMID: 30960076 PMCID: PMC6402024 DOI: 10.3390/polym11010092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 12/22/2022] Open
Abstract
In response to the demand for new multifunctional materials characterized by high biocompatibility, hydrogel (HG) nanocomposites as a platform for bioactive compound delivery have been developed and fabricated. A specific crosslinking/copolymerization chemistry was used to construct hydrogels with a controlled network organization. The hydrogels were prepared using 3,6-anhydro-α-l-galacto-β-d-galactan (galactose hydrogel) together with resveratrol (trans-3,5,4'-trihydroxystilbene) and calcium hydroxyapatite nanoparticles. The resveratrol was introduced in three different concentrations of 0.1, 0.5, and 1 mM. Nanosized calcium hydroxyapatite was synthesized by a microwave-assisted hydrothermal technique, annealed at 500 °C for 3 h, and introduced at a concentration 10% (m/v). The morphology and structural properties of Ca10(PO₄)₆(OH)₂ and its composite were determined by using XRPD (X-ray powder diffraction) techniques, as well as the absorption and IR (infrared) spectroscopy. The average nanoparticle size was 35 nm. The water affinity, morphology, organic compound release profile, and cytocompatibility of the obtained materials were studied in detail. The designed hydrogels were shown to be materials of biological relevance and of great pharmacological potential as carriers for bioactive compound delivery. Their cytocompatibility was tested using a model of human multipotent stromal cells isolated from adipose tissue (hASCs). The biomaterials increased the proliferative activity and viability of hASCs, as well as reduced markers of oxidative stress. In light of the obtained results, it has been thought that the designed materials meet the requirements of the tissue engineering triad, and may find application in regenerative medicine, especially for personalized therapies.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland.
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Agnieszka Smieszek
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland.
| | - Justyna Trynda
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland.
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
| | - Sara Targonska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
| | - Lukasz Grosman
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland.
- Centre for Advanced Materials and Smart Structures, Polish Academy of Sciences, Okolna 2, 50-950 Wroclaw, Poland.
| |
Collapse
|
14
|
Savaris M, Garcia CSC, Roesch-Ely M, Henriques JAP, Dos Santos V, Brandalise RN. Polyurethane/poly(d,l-lactic acid) scaffolds based on supercritical fluid technology for biomedical applications: Studies with L929 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:539-551. [PMID: 30606564 DOI: 10.1016/j.msec.2018.11.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 10/11/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Biomaterials can be applied in tissue engineering as scaffolds that resemble the extracellular matrix functioning as a temporary structure for cell proliferation and reconstruction of new organs and tissues. To evaluate the potential use of scaffolds as a biomaterial, this work proposes the development and characterization of polyurethane (PU), poly(D,L-lactic acid) (PDLLA) and polyurethane/poly(d,l-lactic acid) (PU/PDLLA) scaffolds produced by gas foaming technique. The neat polymers and the blends were characterized, in film form, by gel permeation chromatography (GPC), thermogravimetry (TG), differential scanning calorimetry (DSC) and field emission gun scanning electron microscopy (FEG-SEM). After supercritical fluid technology, in scaffolds form, the samples were characterized by FEG-SEM, pore size, density, cytotoxicity and cell adhesion. For film characterization the PU/PDLLA sample presented intermediate characteristics compared to the neat polymers, exhibiting the behavior of both polymers in the sample without phase separation in the FEG-SEM micrograph and bimodal molar weight distribution by GPC. The scaffolds showed interconnectivity and pore size of 141 μm ± 108 μm for PUsc and 52 μm ± 32 μm for PDLLAsc. The PU/PDLLAsc exhibited a bimodal structure in which the PU in the mixture revealed pores of 75 μm ± 57 μm, while for PDLLA, the pore size was 19 μm ± 12 μm. In vitro tests confirmed the adhesion of L929 cells to PUsc, PDLLAsc and PU/PDLLAsc, showing no cytotoxic effect. Finally, it can be concluded that it is possible to produce PU, PDLLA and PU/PDLLA scaffolds by supercritical fluid, which may be applied as biomaterials.
Collapse
Affiliation(s)
- Michele Savaris
- Center for Exact Sciences and Technology, University of Caxias do Sul, RS, Brazil
| | | | | | | | - Venina Dos Santos
- Center for Exact Sciences and Technology, University of Caxias do Sul, RS, Brazil.
| | - Rosmary N Brandalise
- Center for Exact Sciences and Technology, University of Caxias do Sul, RS, Brazil
| |
Collapse
|
15
|
Arteshi Y, Aghanejad A, Davaran S, Omidi Y. Biocompatible and electroconductive polyaniline-based biomaterials for electrical stimulation. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Lis-Bartos A, Smieszek A, Frańczyk K, Marycz K. Fabrication, Characterization, and Cytotoxicity of Thermoplastic Polyurethane/Poly(lactic acid) Material Using Human Adipose Derived Mesenchymal Stromal Stem Cells (hASCs). Polymers (Basel) 2018; 10:E1073. [PMID: 30960998 PMCID: PMC6403585 DOI: 10.3390/polym10101073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022] Open
Abstract
Thermoplastic polyurethane (TPU) and poly(lactic acid) are types of biocompatible and degradable synthetic polymers required for biomedical applications. Physically blended (TPU+PLA) tissue engineering matrices were produced via solvent casting technique. The following types of polymer blend were prepared: (TPU+PLA) 7:3, (TPU+PLA) 6:4, (TPU+PLA) 4:6, and (TPU+PLA) 3:7. Various methods were employed to characterize the properties of these polymers: surface properties such as morphology (scanning electron microscopy), wettability (goniometry), and roughness (profilometric analysis). Analyses of hydrophilic and hydrophobic properties, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) of the obtained polymer blends were conducted. Tensile tests demonstrated that the blends exhibited a wide range of mechanical properties. Cytotoxicity of polymers was tested using human multipotent stromal cells derived from adipose tissue (hASC). In vitro assays revealed that (TPU+PLA) 3:7 matrices were the most cytocompatible biomaterials. Cells cultured on (TPU+PLA) 3:7 had proper morphology, growth pattern, and were distinguished by increased proliferative and metabolic activity. Additionally, it appeared that (TPU+PLA) 3:7 biomaterials showed antiapoptotic properties. hASC cultured on these matrices had reduced expression of Bax-α and increased expression of Bcl-2. This study demonstrated the feasibility of producing a biocompatible scaffold form based on (TPU+PLA) blends that have potential to be applied in tissue engineering.
Collapse
Affiliation(s)
- Anna Lis-Bartos
- AGH University of Science and Technology, Department of Biomaterials and Composites, Faculty of Materials Science and Science and Ceramics, Krakow 30-059, Poland.
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland.
| | - Agnieszka Smieszek
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland.
| | - Kinga Frańczyk
- AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Krakow 30-059, Poland.
| | - Krzysztof Marycz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland.
- Faculty of Veterinary Medicine, Equine Clinic-Equine Surgery, Justus-Liebig-University, Gießen 35392, Germany.
| |
Collapse
|
17
|
Pouladzadeh F, Katbab AA, Haghighipour N, Kashi E. Carbon nanotube loaded electrospun scaffolds based on thermoplastic urethane (TPU) with enhanced proliferation and neural differentiation of rat mesenchymal stem cells: The role of state of electrical conductivity. Eur Polym J 2018; 105:286-296. [DOI: 10.1016/j.eurpolymj.2018.05.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Komez A, Buyuksungur S, Hasirci V, Hasirci N. Effect of chemical structure on properties of polyurethanes: Temperature responsiveness and biocompatibility. J BIOACT COMPAT POL 2018. [DOI: 10.1177/0883911518783233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polyurethanes are known as one of the most biocompatible and inherently blood-compatible materials and have a wide range of applications in the medical field due to their controllable structure and properties. Durability, elasticity, elastomeric structure, fatigue resistance, versatility, and easy acceptance by the biological media after the application makes these polymers preferable in medical area. In this study, polyurethane films were prepared using poly(propylene-ethylene glycol) and either toluene-2,4-diisocyanate or 4,4′-methylenediphenyl diisocyanate without adding any other ingredients such as solvent, catalyst, or chain extender to prevent negative effects of leachable molecules. Mechanical tests were performed at room temperature while swelling tests were conducted in water and phosphate-buffered saline at 4°C, 25°C, and 37°C. Temperature responsiveness was observed for the samples synthesized using toluene-2,4-diisocyanate and poly(propylene-ethylene glycol). These samples had more than 100% swelling at 4°C and about 4% swelling at 25°C and 37°C. Cytocompatibility tests were performed by culturing the samples and their extracts with mouse fibroblast cells (L929). Viability of human umbilical vein endothelial cells was studied to examine the compatibility of the films for blood contacting devices. Both toluene-2,4-diisocyanate and 4,4-methylenediphenyl diisocyanate–based polyurethane films showed no cytotoxic effect and good biocompatibility. Oxygen plasma treatment enhanced hydrophilicity of the films. After plasma treatment, human umbilical vein endothelial cell attachment on toluene-2,4-diisocyanate–based polyurethane films improved and 4,4-methylenediphenyl diisocyanate–based polyurethane films maintained their high cell affinity. Polyurethanes presenting temperature responsiveness, high biocompatibility, and high affinity for human umbilical vein endothelial cells were synthesized in medical purity and in a reaction media involving only diisocyanate and diol components without addition of any solvent, chain extender, or catalyst. Polyurethanes with these properties and as produced in this study are reported for the first time in the literature.
Collapse
Affiliation(s)
- Aylin Komez
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
| | - Senem Buyuksungur
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
| | - Vasif Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Department of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
| | - Nesrin Hasirci
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University (METU), Ankara, Turkey
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- Department of Chemistry, Middle East Technical University (METU), Ankara, Turkey
| |
Collapse
|
19
|
Zhang R, Guo J, Liu Y, Chen S, Zhang S, Yu Y. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers. Carbohydr Polym 2018; 189:72-78. [DOI: 10.1016/j.carbpol.2018.02.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 11/16/2022]
|
20
|
Sultan M. Hydroxyapatite/polyurethane composites as promising biomaterials. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0502-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Ayyar M, Mani MP, Jaganathan SK, Rathinasamy R, Khudzari AZ, Krishnasamy NP. Surface, thermal and hemocompatible properties of novel single stage electrospun nanocomposites comprising polyurethane blended with bio oilTM. AN ACAD BRAS CIENC 2017; 89:2411-2422. [PMID: 29091109 DOI: 10.1590/0001-3765201720170230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/12/2017] [Indexed: 11/22/2022] Open
Abstract
In this work, the physicochemical and blood compatibility properties of prepared PU/Bio oil nanocomposites were investigated. Scanning electron microscope (SEM) studies revealed the reduction of mean fiber diameter (709 ± 211 nm) compared to the pristine PU (969 nm ± 217 nm). Fourier transform infrared spectroscopy (FTIR) analysis exposed the characteristic peaks of pristine PU. Composite peak intensities were decreased insinuating the interaction of the bio oilTM with the PU. Contact angle analysis portrayed the hydrophobic nature of the fabricated patch compared to pristine PU. Thermal gravimetric analysis (TGA) depicted the better thermal stability of the novel nanocomposite patch and its different thermal behavior in contrast with the pristine PU. Atomic force microscopy (AFM) analysis revealed the increase in the surface roughness of the composite patch. Activated partial thromboplastin time (APTT) and prothrombin time (PT) signified the novel nanocomposite patch ability in reducing the thrombogenicity and promoting the anticoagulant nature. Finally the hemolytic percentage of the fabricated composite was in the acceptable range revealing its safety and compatibility with the red blood cells. To reinstate, the fabricated patch renders promising physicochemical and blood compatible nature making it a new putative candidate for wound healing application.
Collapse
Affiliation(s)
- Manikandan Ayyar
- Department of Chemistry, Bharath University, Chennai 600073, Tamil Nadu, India
| | - Mohan Prasath Mani
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor Bahru, Malaysia
| | - Saravana Kumar Jaganathan
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,IJNUTM Cardiovascular Engineering Centre, Department of Clinical Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor Bahru, Malaysia
| | - Rajasekar Rathinasamy
- Department of Mechanical Engineering, Kongu Engineering college, Perunduari 638052, Tamil Nadu, India
| | - Ahmad Zahran Khudzari
- IJNUTM Cardiovascular Engineering Centre, Department of Clinical Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor Bahru, Malaysia
| | | |
Collapse
|
22
|
Andriani Y, Chua JMW, Chua BYJ, Phang IY, Shyh-Chang N, Tan WS. Polyurethane acrylates as effective substrates for sustained in vitro culture of human myotubes. Acta Biomater 2017; 57:115-126. [PMID: 28435079 DOI: 10.1016/j.actbio.2017.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 12/23/2022]
Abstract
Muscular disease has debilitating effects with severe damage leading to death. Our knowledge of muscle biology, disease and treatment is largely derived from non-human cell models, even though non-human cells are known to differ from human cells in their biochemical responses. Attempts to develop highly sought after in vitro human cell models have been plagued by early cell delamination and difficulties in achieving human myotube culture in vitro. In this work, we developed polyurethane acrylate (PUA) materials to support long-term in vitro culture of human skeletal muscle tissue. Using a constant base with modulated crosslink density we were able to vary the material modulus while keeping surface chemistry and roughness constant. While previous studies have focused on materials that mimic soft muscle tissue with stiffness ca. 12kPa, we investigated materials with tendon-like surface moduli in the higher 150MPa to 2.4GPa range, which has remained unexplored. We found that PUA of an optimal modulus within this range can support human myoblast proliferation, terminal differentiation and sustenance beyond 35days, without use of any extracellular protein coating. Results show that PUA materials can serve as effective substrates for successful development of human skeletal muscle cell models and are suitable for long-term in vitro studies. STATEMENT OF SIGNIFICANCE We developed polyurethane acrylates (PUA) to modulate the human skeletal muscle cell growth and maturation in vitro by controlling surface chemistry, morphology and tuning material's stiffness. PUA was able to maintain muscle cell viability for over a month without any detectable signs of material degradation. The best performing PUA prevented premature cell detachment from the substrate which often hampered long-term muscle cell studies. It also supported muscle cell maturation up to the late stages of differentiation. The significance of these findings lies in the possibility to advance studies on muscle cell biology, disease and therapy by using human muscle cells instead of relying on the widely used animal-based in vitro models.
Collapse
|
23
|
Marycz K, Kornicka K, Grzesiak J, Tomaszewski KA, Szarek D, Kopacz P. The Impact of Oxidative Stress Factors on the Viability, Senescence, and Methylation Status of Olfactory Bulb-Derived Glial Cells Isolated from Human Cadaver Donors. Cells Tissues Organs 2017; 204:105-118. [PMID: 28700993 DOI: 10.1159/000472707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 11/19/2022] Open
Abstract
The olfactory bulb (OB) is a unique structure in the central nervous system that retains the ability to create new neuronal connections. Glial cells isolated from the OB have been recently considered as a novel and promising tool to establish an effective therapy for central nervous system injuries. Due to the hindered access to autologous tissue for cell isolation, an allogeneic source of tissues obtained postmortem has been proposed. In this study, we focused on the morphological and molecular characteristics of human OB-derived glial cells isolated postmortem, at different time points after a donor's death. We evaluated the proliferative activity of the isolated cells, and investigated the ultrastructure of the mitochondria, the accumulation of intracellular reactive oxygen species, and the activity of superoxide dismutase. The data obtained clearly indicate that the duration of ischemia is crucial for the viability/senescence rate of OB-derived glial cells. The OB can be isolated during autopsy and still stand as a source of viable glial cells, but ischemia duration is a major factor limiting its potential usefulness in therapies.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Department of Experimental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
24
|
Degradability of cross-linked polyurethanes based on synthetic polyhydroxybutyrate and modified with polylactide. CHEMICAL PAPERS 2017; 71:2243-2251. [PMID: 29104353 PMCID: PMC5655605 DOI: 10.1007/s11696-017-0218-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/02/2017] [Indexed: 02/02/2023]
Abstract
In many areas of application of conventional non-degradable cross-linked polyurethanes (PUR), there is a need for their degradation under the influence of specific environmental factors. It is practiced by incorporation of sensitive to degradation compounds (usually of natural origin) into the polyurethane structure, or by mixing them with polyurethanes. Cross-linked polyurethanes (with 10 and 30%wt amount of synthetic poly([R,S]-3-hydroxybutyrate) (R,S-PHB) in soft segments) and their physical blends with poly([d,l]-lactide) (PDLLA) were investigated and then degraded under hydrolytic (phosphate buffer solution) and oxidative (CoCl2/H2O2) conditions. The rate of degradation was monitored by changes of samples mass, morphology of surface and their thermal properties. Despite the small weight losses of samples, the changes of thermal properties of polymers and topography of their surface indicated that they were susceptible to gradual degradation under oxidative and hydrolytic conditions. Blends of PDLLA and polyurethane with 30 wt% of R,S-PHB in soft segments and PUR/PDLLA blends absorbed more
water and degraded faster than polyurethane with low amount of R,S-PHB.
Collapse
|
25
|
Śmieszek A, Stręk Z, Kornicka K, Grzesiak J, Weiss C, Marycz K. Antioxidant and Anti-Senescence Effect of Metformin on Mouse Olfactory Ensheathing Cells (mOECs) May Be Associated with Increased Brain-Derived Neurotrophic Factor Levels-An Ex Vivo Study. Int J Mol Sci 2017; 18:ijms18040872. [PMID: 28425952 PMCID: PMC5412453 DOI: 10.3390/ijms18040872] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
Abstract
Metformin, the popular anti-diabetic drug was shown to exert multiple biological effects. The most recent metformin gained attention as an agent that mobilizes endogenous progenitor cells and enhances regenerative potential of organisms, for example by promoting neurogenesis. In the present study, we examined the role of metformin on mouse olfactory ensheathing cells (mOECs) derived from animals receiving metformin for eight weeks at a concentration equal to 2.8 mg/day. The mOECs expanded ex vivo were characterized in terms of their cellular phenotype, morphology, proliferative activity, viability and accumulation of oxidative stress factors. Moreover, we determined the mRNA and protein levels of brain-derived neurotrophic factor (BDNF), distinguishing the secretion of BDNF by mOECs in cultures and circulating serum levels of BDNF. The mOECs used in the experiment were glial fibrillary acidic protein (GFAP) and p75 neurotrophin receptor (p75NTR) positive and exhibited both astrocyte-like and non-myelin Schwann cell-like morphologies. Our results revealed that the proliferation of OECs derived from mice treated with metformin was lowered, when compared to control group. Simultaneously, we noted increased cell viability, reduced expression of markers associated with cellular senescence and a decreased amount of reactive oxygen species. We observed increased mRNA expression of BDNF and its down-stream genes. Obtained results indicate that metformin may exert antioxidant, anti-apoptotic and senolytic action on OECs expanded ex vivo.
Collapse
Affiliation(s)
- Agnieszka Śmieszek
- Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland.
| | - Zuzanna Stręk
- Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland.
| | - Katarzyna Kornicka
- Department of Experimental Biology and Electron Microscope Facility, The Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland.
| | - Jakub Grzesiak
- Wroclaw Research Centre EIT+, Stablowicka 147, 54-066 Wroclaw, Poland.
| | - Christine Weiss
- PferdePraxis Dr. Med. Vet. Daniel Weiss, Postmatte 14, CH-8807 Freienbach, Switzerland.
| | - Krzysztof Marycz
- Wroclaw Research Centre EIT+, Stablowicka 147, 54-066 Wroclaw, Poland.
| |
Collapse
|
26
|
Li + activated nanohydroxyapatite doped with Eu 3+ ions enhances proliferative activity and viability of human stem progenitor cells of adipose tissue and olfactory ensheathing cells. Further perspective of nHAP:Li +, Eu 3+ application in theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:151-162. [PMID: 28575969 DOI: 10.1016/j.msec.2017.04.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/30/2023]
Abstract
Spinal cord injuries (SCI) often require simultaneous regeneration of nerve tissue and bone. Hydroxyapatites are described as bioresorbable materials with proper biocompatibility and osteoconductivity, therefore its application for spinal surgery is considered. In this paper, we present repeatable method for developing nanocrystalline calcium hydroxyapatites structurally modified with Li+ ions (nHAP:Li+). Obtained biomaterials were profoundly characterized in terms of their physicochemical properties. Moreover, we have shown that nHAP:Li+ doped with europium (Eu3+) may serve as a theranostic agent, what additionally extend its potential usage for SCI treatment. The biocompatibility of nHAP:Li+ was determined using human olfactory ensheathing cells (hOECs) and adipose tissue-derived multipotent stromal cells (hASCs). Both population of cells are eagerly applied for cell-based therapies in SCI, mainly due to their paracrine activity. The extensive in vitro studies showed that nHAP:Li+ promotes the cells proliferation, viability and cell-cell interactions. Obtained results provides encouraging approach that may have potential application in regenerative medicine and that could fulfil the promise of personalized medicine - important in SCI treatment.
Collapse
|
27
|
Chen Q, Mangadlao JD, Wallat J, De Leon A, Pokorski JK, Advincula RC. 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4015-4023. [PMID: 28026926 DOI: 10.1021/acsami.6b11793] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Blending thermoplastic polyurethane (TPU) with poly(lactic acid) (PLA) is a proven method to achieve a much more mechanically robust material, whereas the addition of graphene oxide (GO) is increasingly applied in polymer nanocomposites to tailor further their properties. On the other hand, additive manufacturing has high flexibility of structure design which can significantly expand the application of materials in many fields. This study demonstrates the fused deposition modeling (FDM) 3D printing of TPU/PLA/GO nanocomposites and its potential application as biocompatible materials. Nanocomposites are prepared by solvent-based mixing process and extruded into filaments for FDM printing. The addition of GO largely enhanced the mechanical property and thermal stability of the nanocomposites. Interestingly, we found that the mechanical response is highly dependent on printing orientation. Furthermore, the 3D printed nanocomposites exhibit good biocompatibility with NIH3T3 cells, indicating promise as biomaterials scaffold for tissue engineering applications.
Collapse
Affiliation(s)
- Qiyi Chen
- Department of Macromolecular Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Joey Dacula Mangadlao
- Department of Macromolecular Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Jaqueline Wallat
- Department of Macromolecular Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Al De Leon
- Department of Macromolecular Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Jonathan K Pokorski
- Department of Macromolecular Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Rigoberto C Advincula
- Department of Macromolecular Science and Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| |
Collapse
|
28
|
Kornicka K, Nawrocka D, Lis-Bartos A, Marędziak M, Marycz K. Polyurethane–polylactide-based material doped with resveratrol decreases senescence and oxidative stress of adipose-derived mesenchymal stromal stem cell (ASCs). RSC Adv 2017. [DOI: 10.1039/c7ra02334k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to evaluate the influence of resveratrol (RES)-doped polyurethane (TPU)–polylactide (PLA) biomaterials on the senescence and oxidative stress factor of adipose-derived stem cells (ASCs) for tissue engineering.
Collapse
Affiliation(s)
- K. Kornicka
- Department of Experimental Biology
- University of Environmental and Life Sciences
- Wrocław
- Poland
- Wroclaw Research Centre EIT+
| | - D. Nawrocka
- Department of Experimental Biology
- University of Environmental and Life Sciences
- Wrocław
- Poland
| | - A. Lis-Bartos
- Department of Biomaterials
- AGH University of Science and Technology
- Kraków
- Poland
| | - M. Marędziak
- Faculty of Veterinary Medicine
- University of Environmental and Life Sciences
- Wrocław
- Poland
| | - K. Marycz
- Department of Experimental Biology
- University of Environmental and Life Sciences
- Wrocław
- Poland
- Wroclaw Research Centre EIT+
| |
Collapse
|
29
|
Arévalo F, Uscategui YL, Diaz L, Cobo M, Valero MF. Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J Biomater Appl 2016; 31:708-720. [PMID: 27789793 DOI: 10.1177/0885328216664448] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the present study, polyurethane materials were obtained from castor oil, polycaprolactone and isophorone diisocyanate by incorporating different concentrations of chitosan (0.5, 1.0 and 2.0% w/w) as an additive to improve the mechanical properties and the biological activity of polyurethanes. The polyurethanes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, stress/strain fracture tests and swelling analysis, and the hydrophilic character of the surface was determined by contact angle trials. The objectives of the study were to evaluate the effect of the incorporation of chitosan on the changes of the physico-chemical and mechanical properties and the in vitro biological activity of the polyurethanes. It was found that the incorporation of chitosan enhances the ultimate tensile strength of the polyurethanes and does not affect the strain at fracture in polyurethanes with 5% w/w of polycaprolactone and concentrations of chitosan ranging from 0 to 2% w/w. In addition, PCL5-Q-PU formulations and their degradation products did not affect cell viability of L929 mouse fibroblast and 3T3, respectively. Polyurethane formulations showed antibacterial activities against Staphylococcus aureus and Escherichia coli bacteria. The results of this study have highlighted the potential biomedical application of this polyurethanes related to soft and cardiovascular tissues.
Collapse
Affiliation(s)
- Fabian Arévalo
- Research Group of Energy, Materials and Ambient (GEMA), Chemical Engineering Program, Universidad de La Sabana, Chía, Colombia
| | - Yomaira L Uscategui
- Research Group of Energy, Materials and Ambient (GEMA), Chemical Engineering Program, Universidad de La Sabana, Chía, Colombia
| | - Luis Diaz
- Research Group of Energy, Materials and Ambient (GEMA), Chemical Engineering Program, Universidad de La Sabana, Chía, Colombia
| | - Martha Cobo
- Research Group of Energy, Materials and Ambient (GEMA), Chemical Engineering Program, Universidad de La Sabana, Chía, Colombia
| | - Manuel F Valero
- Research Group of Energy, Materials and Ambient (GEMA), Chemical Engineering Program, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
30
|
Marycz K, Marędziak M, Grzesiak J, Lis A, Śmieszek A. Biphasic Polyurethane/Polylactide Sponges Doped with Nano-Hydroxyapatite (nHAp) Combined with Human Adipose-Derived Mesenchymal Stromal Stem Cells for Regenerative Medicine Applications. Polymers (Basel) 2016; 8:E339. [PMID: 30974633 PMCID: PMC6432500 DOI: 10.3390/polym8100339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/22/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
Cartilage and bone tissue injuries are common targets in regenerative medicine. The degeneration of cartilage tissue results in tissue loss with a limited ability to regenerate. However, the application of mesenchymal stem cells in the course of such condition makes it possible to manage this disorder by improving the structure of the remaining tissue and even stimulating its regeneration. Nevertheless, in the case of significant tissue loss, standard local injection of cell suspensions is insufficient, due to the low engraftment of transplanted cells. Introduction of mesenchymal stem cells on the surface of a compatible biomaterial can be a promising tool for inducing the regeneration by both retaining the cells at the desired site and filling the tissue gap. In order to obtain such a cell-biomaterial hybrid, we developed complex, biphasic polymer blend biomaterials composed of various polyurethane (PU)-to-polylactide (PLA) ratios, and doped with different concentrations of nano-hydroxyapatite (nHAp). We have determined the optimal blend composition and nano-hydroxyapatite concentration for adipose mesenchymal stem cells cultured on the biomaterial. We applied biological in vitro techniques, including cell viability assay, determination of oxidative stress factors level, osteogenic and chondrogenic differentiation potentials as well as cell proteomic analysis. We have shown that the optimal composition of biphasic scaffold was 20:80 of PU:PLA with 20% of nHAp for osteogenic differentiation, and 80:20 of PU:PLA with 10% of nHAp for chondrogenic differentiation, which suggest the optimal composition of final biphasic implant for regenerative medicine applications.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Electron Microscopy Laboratory, Wroclaw University of Environmental and Life Sciences, Wroclaw 51-631, Poland.
| | - Monika Marędziak
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland.
| | - Jakub Grzesiak
- Electron Microscopy Laboratory, Wroclaw Research Centre EIT+, Wroclaw 54-066, Poland.
| | - Anna Lis
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow 30-059, Poland.
| | - Agnieszka Śmieszek
- Electron Microscopy Laboratory, Wroclaw University of Environmental and Life Sciences, Wroclaw 51-631, Poland.
| |
Collapse
|
31
|
Ercolin ACM, Roballo KCS, Casals JB, Pieri NCG, Souza AF, Barreto RDSN, Bressan FF, Feitosa MLT, Miglino MA, Meirelles FV, Ambrósio CE. Rabbit olfactory stem cells. Isolation protocol and characterization. Acta Cir Bras 2016; 31:59-66. [PMID: 26840357 DOI: 10.1590/s0102-865020160010000009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/20/2015] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To describe a new technique for isolation of a mesenchymal stem cells (MSCs) population from the olfactory mucosa in rabbits. METHODS Olfactory stem cells (OSCs) were retrieved from under the cribriform plate of the Ethmoid bone. Several assays were accomplished to characterize the cell population and attest its viability in vitro. The cells were submitted to flow cytometry with the antibodies CD34, CD45, CD73, CD79, CD90 and CD105 and also they were induced to differentiate in three lineages. Functional evaluation involved analysis of in vitro growth behavior, colony forming unit like fibroblasts (CFU-f) and cryopreservation response. Further transduction with Green Fluorescent Protein (GFP) was also performed. RESULTS The OSCs showed mesenchymal features, as positive response to CD34, CD73 and CD90 antibodies and plasticity. Additionally, these cells have high proliferated rate, and they could be cultured through many passages and kept the ability to proliferate and differentiate after cryopreservation. The positive response to the transduction signalizes the possibility of cellular tracking in vivo. This is a desirable feature in case those cells are used for pre-clinical trials. CONCLUSION The cells harvested were mesenchymal stem cells and the technique described is therefore efficient for rabbit olfactory stem cells isolation.
Collapse
Affiliation(s)
- Anna Carolina Mazeto Ercolin
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, Universidade de Sao Paulo, Pirassununga, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Marycz K, Marędziak M, Grzesiak J, Szarek D, Lis A, Laska J. Polyurethane/Polylactide-Blend Films Doped with Zinc Ions for the Growth and Expansion of Human Olfactory Ensheathing Cells (OECs) and Adipose-Derived Mesenchymal Stromal Stem Cells (ASCs) for Regenerative Medicine Applications. Polymers (Basel) 2016; 8:polym8050175. [PMID: 30979270 PMCID: PMC6432353 DOI: 10.3390/polym8050175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 12/14/2022] Open
Abstract
Polymeric biomaterials based on polyurethane and polylactide blends are promising candidates for regenerative medicine applications as biocompatible, bioresorbable carriers. In current research we showed that 80/20 polyurethane/polylactide blends (PU/PLDL) with confirmed biological properties in vitro may be further improved by the addition of ZnO nanoparticles for the delivery of bioactive zinc oxide for cells. The PU/PLDL blends were doped with different concentrations of ZnO (0.001%, 0.01%, 0.05%) and undertaken for in vitro biological evaluation using human adipose stromal stem cells (ASCs) and olfactory ensheathing cells (OECs). The addition of 0.001% of ZnO to the biomaterials positively influenced the morphology, proliferation, and phenotype of cells cultured on the scaffolds. Moreover, the analysis of oxidative stress markers revealed that 0.001% of ZnO added to the material decreased the stress level in both cell lines. In addition, the levels of neural-specific genes were upregulated in OECs when cultured on sample 0.001 ZnO, while the apoptosis-related genes were downregulated in OECs and ASCs in the same group. Therefore, we showed that PU/PLDL blends doped with 0.001% of ZnO exert beneficial influence on ASCs and OECs in vitro and they may be considered for future applications in the field of regenerative medicine.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Electron Microscopy Laboratory, Wroclaw University of Environmental and Life Sciences, Wroclaw 51-631, Poland.
| | - Monika Marędziak
- Department of Animal Physiology and Biostructure, Wroclaw University of Environmental and Life Sciences, Wroclaw 50-375, Poland.
| | - Jakub Grzesiak
- Electron Microscopy Laboratory, Wroclaw Research Centre EIT+, Wroclaw 54-066, Poland.
| | - Dariusz Szarek
- Department of Neurosurgery, Lower Silesia Specialist Hospital of T. Marciniak, Emergency Medicine Centre, Wroclaw 54-049, Poland.
| | - Anna Lis
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow 30-059, Poland.
| | - Jadwiga Laska
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow 30-059, Poland.
| |
Collapse
|
33
|
Špírková M, Serkis M, Poręba R, Machová L, Hodan J, Kredatusová J, Kubies D, Zhigunov A. Experimental study of the simulated process of degradation of polycarbonate- and d,l-lactide-based polyurethane elastomers under conditions mimicking the physiological environment. Polym Degrad Stab 2016. [DOI: 10.1016/j.polymdegradstab.2016.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Szarek D, Marycz K, Lis A, Zawada Z, Tabakow P, Laska J, Jarmundowicz W. Lizard tail spinal cord: a new experimental model of spinal cord injury without limb paralysis. FASEB J 2015; 30:1391-403. [DOI: 10.1096/fj.15-272468] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 11/23/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Dariusz Szarek
- Department of NeurosurgeryLower Silesia Specialist Hospital of T. MarciniakEmergency Medicine CenterWrocławPoland
| | - Krzysztof Marycz
- Department of Electron MicroscopyUniversity of Environmental and Life SciencesWrocławPoland
| | - Anna Lis
- Department of BiomaterialsAGH (Akademia Górniczo‐Hutnicza) University of Science and TechnologyKrakówPoland
| | - Zbigniew Zawada
- Department of BiologyUniversity of Zielona GóraZielona GóraPoland
| | - Paweł Tabakow
- Department of NeurosurgeryWrocław Medical UniversityWrocławPoland
| | - Jadwiga Laska
- Department of BiomaterialsAGH (Akademia Górniczo‐Hutnicza) University of Science and TechnologyKrakówPoland
| | | |
Collapse
|