1
|
Gutiérrez-Sánchez M, Flores-Rocha S, Pozos-Guillén A, Flores H, Escobar-Barrios V, Palestino-Escobedo AG, Escobar-García DM. Design, characterization, and biocompatibility of chitosan-nano-hydroxyapatite/tricalcium phosphate sponges. Tissue Cell 2025; 94:102804. [PMID: 39986128 DOI: 10.1016/j.tice.2025.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Chitosan-based sponges, incorporating tricalcium phosphate and hydroxyapatite, are extracellular components that represent a novel and impactful advancement in bone regeneration. Their bioactive composition, porous structure, and controlled release capacity are designed to stimulate osteogenesis effectively and could enhance the interrelations of cells in tissues and organs. The objective is to manufacture and characterize chitosan (CHT)-based sponges with different concentrations of nano-hydroxyapatite (nHAP) and tricalcium phosphate (TCP), as well as evaluate their biocompatibility. Composite sponges were manufactured in different concentrations: CHT (S1), 50:30:20 (S2), 60:20:20 (S3), and 70:20:10 (S4) and characterized by FTIR-ATR, TGA, and swelling. For biocompatibility, a cell proliferation assay, hemocompatibility, alizarin red, and its bactericidal effect were performed. Main groups of CHT are detected, and the presence of phosphate groups characteristic of TCP and nHAP was confirmed by FTIR. The nHAP/TCP content was validated using the Thermo Gravimetric Analysis (TGA), and the swelling tests were carried out with simulated body fluid (SBF), which proved stable for S2 and S3. About the biocompatibility tests of the cell proliferation assay, The TCP and nHAP present in the sponges caused a significant increase in cell proliferation (up 50-80 %). In contrast, in the control sample (S1), cell proliferation decreased without becoming cytotoxic (down 25 %). The hemolysis degree was less than 2 % at the times evaluated. Using alizarin red (ARS), it was shown that the different sponges were able to increase calcium deposits by approximately 10-45 % Through the antibiogram, it is assumed that the zone of inhibition occurs about the amount of CHT present in each sponge. Incorporating nHAP/TCP into CHT sponges favors the physical and thermal stability of the material. The sponges were demonstrated to have biocompatible and osteoinductive properties.
Collapse
Affiliation(s)
- Mariana Gutiérrez-Sánchez
- Endodontics Postgraduate Program, Faculty of Dentistry, Autonomous University of San Luis Potosi, 78290 San Luis Potosí, Av. Dr. Manuel Nava 2, San Luis Potosí SLP 78210, Mexico
| | - Sofía Flores-Rocha
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, Av. Dr. Manuel Nava 2, San Luis Potosí SLP 78210, Mexico
| | - Amaury Pozos-Guillén
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, Av. Dr. Manuel Nava 2, San Luis Potosí SLP 78210, Mexico
| | - Héctor Flores
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, Av. Dr. Manuel Nava 2, San Luis Potosí SLP 78210, Mexico
| | - Vladimir Escobar-Barrios
- Polymer Laboratory, Instituto Potosino de Investigación Científica y Tecnológica A.C. San Luís Potosí, San Luis Potosí, SLP 78210, Mexico
| | - Alma Gabriela Palestino-Escobedo
- Laboratory of Biopolymers and Nanostructures, Faculty of Chemical Sciences, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico
| | - Diana María Escobar-García
- Basic Sciences Laboratory, Faculty of Dentistry, Autonomous University of San Luis Potosi, Av. Dr. Manuel Nava 2, San Luis Potosí SLP 78210, Mexico.
| |
Collapse
|
2
|
He W, Ma P, Zhang Z, Hou B. Preparation and properties of chitosan/gelatin/supersaturated calcium citrate scaffolds crosslinked by dehydrogenation heat treatment method. Int J Biol Macromol 2025; 305:140844. [PMID: 39938817 DOI: 10.1016/j.ijbiomac.2025.140844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Low cross-linking degree, weak mechanical strength, and poor osteoinductivity are significant obstacles in the development of bone repair materials. In this study, chitosan/gelatin/supersaturated calcium citrate scaffolds were prepared with the dehydrogenation heat treatment method. The results confirmed that citric acid significantly improved the cross-linking degree and efficiency of the chitosan/gelatin scaffolds. But the addition of Ca2+ reduced the cross-linking degree, water absorption, and resistance to enzymatic degradation of the scaffolds. While, the supersaturated calcium citrate formed inside the scaffold increased its mechanical strength. The biocompatibility and osteogenic activity of scaffolds were measured by inoculation with MC3T3-E1 cells. The rapid and efficient release of Ca2+ from the scaffolds could significantly promote cell adhesion, proliferation, and differentiation, while cell activities were inhibited by excessive Ca2+. The results of repairing skull defects in SD rats demonstrated that the chitosan/gelatin/supersaturated calcium citrate scaffolds with 25 mM Ca2+ added had a stronger osteogenic effect compared to the chitosan/gelatin scaffolds. Hence, the chitosan/gelatin/ supersaturated calcium citrate scaffolds prepared in this study are promising materials for treating bone defects. The appropriate amount of calcium salt added to the scaffold in order to optimize its biocompatibility and osteogenic activity deserves further investigation.
Collapse
Affiliation(s)
- Wensheng He
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ping Ma
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| | - Zutai Zhang
- Beijing Institute of Dental Research, School of Stomatology, Capital Medical University, Beijing, China
| | - Benxiang Hou
- The Department of Endodontics, School of Stomatology, Capital Medical University.
| |
Collapse
|
3
|
Carrascal-Hernández DC, Martínez-Cano JP, Rodríguez Macías JD, Grande-Tovar CD. Evolution in Bone Tissue Regeneration: From Grafts to Innovative Biomaterials. Int J Mol Sci 2025; 26:4242. [PMID: 40362478 PMCID: PMC12072198 DOI: 10.3390/ijms26094242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/24/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Bone defects caused by various traumas and diseases such as osteoporosis, which affects bone density, and osteosarcoma, which affects the integrity of bone structure, are now well known. Given this situation, several innovative research projects have been reported to improve orthopedic methods and technologies that positively contribute to the regeneration of affected bone tissue, representing a significant advance in regenerative medicine. This review article comprehensively analyzes the transition from existing methods and technologies for implants and bone tissue regeneration to innovative biomaterials. These biomaterials have been of great interest in the last decade due to their physicochemical characteristics, which allow them to overcome the most common limitations of traditional grafting methods, such as the availability of biomaterials and the risk of rejection after their application in regenerative medicine. This could be achieved through an exhaustive study of the applications and properties of various materials with potential applications in regenerative medicine, such as using magnetic nanoparticles and hydrogels sensitive to external stimuli, including pH and temperature. In this regard, this review article describes the most relevant compounds used in bone tissue regeneration, promoting the integration of these biomaterials with the affected area's bone structure, thereby allowing for regeneration and preventing amputation. Additionally, the types of interactions between biomaterials and mesenchymal stem cells and their effects on bone tissue are discussed, which is critical for developing biomaterials with optimal regenerative properties. Furthermore, the mechanisms of action of the various biomaterials that enhance osteoconduction and osteoinduction, ensuring the success of orthopedic therapies, are analyzed. This enables the treatment of bone defects tailored to each patient's condition, thereby avoiding limb amputation. Consequently, a promising future for regenerative medicine is emerging, with various therapies that could revolutionize the management of bone defects, offering more efficient and safer solutions.
Collapse
Affiliation(s)
| | - Juan Pablo Martínez-Cano
- Ortopedia y Traumatología, Epidemiología Clínica, Fundación Valle del Lili, Universidad ICESI, Cali 760031, Colombia;
| | | | - Carlos David Grande-Tovar
- Grupo de Investigación en Fotoquímica y Fotobiología, Programa de Química, Universidad del Atlántico, Puerto Colombia 081007, Colombia
| |
Collapse
|
4
|
Haider A, Khan S, Iqbal DN, Khan SU, Haider S, Mohammad K, Mustfa G, Rizwan M, Haider A. Chitosan as a tool for tissue engineering and rehabilitation: Recent developments and future perspectives - A review. Int J Biol Macromol 2024; 278:134172. [PMID: 39111484 DOI: 10.1016/j.ijbiomac.2024.134172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Chitosan has established itself as a multifunctional and auspicious biomaterial within the domain of tissue engineering, presenting a decade of uninterrupted advancements and novel implementations. This article provides a comprehensive overview of the most recent developments in chitosan-based tissue engineering, focusing on significant progress made in the last ten years. An exploration is conducted of the various techniques utilized in the modification of chitosan and the production of scaffolds, with an analysis of their effects on cellular reactions and tissue regeneration. The investigation focuses on the integration of chitosan with other biomaterials and the addition of bioactive agents to improve their functionalities. Upon careful analysis of the in vitro and in vivo research, it becomes evident that chitosan effectively stimulates cell adhesion, proliferation, and differentiation. Furthermore, we offer valuable perspectives on the dynamic realm of chitosan-based approaches tailored to distinct tissue categories, including nerve, bone, cartilage, and skin. The review concludes with a discussion of prospective developments, with particular attention given to possible directions for additional study, translational implementations, and the utilization of chitosan to tackle existing obstacles in the field of tissue engineering. This extensive examination provides a significant amalgamation of the advancements achieved over the previous decade and directs scholars towards uncharted territories in chitosan-based tissue engineering.
Collapse
Affiliation(s)
- Ammar Haider
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Shabana Khan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Dure Najaf Iqbal
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan.
| | - Salah Uddin Khan
- Sustainable Energy Technologies Center, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia; King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia.
| | - Sajjad Haider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Khaled Mohammad
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Ghulam Mustfa
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore, Lahore 54000, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| |
Collapse
|
5
|
Percival KM, Paul V, Husseini GA. Recent Advancements in Bone Tissue Engineering: Integrating Smart Scaffold Technologies and Bio-Responsive Systems for Enhanced Regeneration. Int J Mol Sci 2024; 25:6012. [PMID: 38892199 PMCID: PMC11172494 DOI: 10.3390/ijms25116012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In exploring the challenges of bone repair and regeneration, this review evaluates the potential of bone tissue engineering (BTE) as a viable alternative to traditional methods, such as autografts and allografts. Key developments in biomaterials and scaffold fabrication techniques, such as additive manufacturing and cell and bioactive molecule-laden scaffolds, are discussed, along with the integration of bio-responsive scaffolds, which can respond to physical and chemical stimuli. These advancements collectively aim to mimic the natural microenvironment of bone, thereby enhancing osteogenesis and facilitating the formation of new tissue. Through a comprehensive combination of in vitro and in vivo studies, we scrutinize the biocompatibility, osteoinductivity, and osteoconductivity of these engineered scaffolds, as well as their interactions with critical cellular players in bone healing processes. Findings from scaffold fabrication techniques and bio-responsive scaffolds indicate that incorporating nanostructured materials and bioactive compounds is particularly effective in promoting the recruitment and differentiation of osteoprogenitor cells. The therapeutic potential of these advanced biomaterials in clinical settings is widely recognized and the paper advocates continued research into multi-responsive scaffold systems.
Collapse
Affiliation(s)
- Kelly M. Percival
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
| | - Vinod Paul
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical and Biological Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (K.M.P.); (V.P.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
6
|
Zamora I, Alfonso Morales G, Castro JI, Ruiz Rojas LM, Valencia-Llano CH, Mina Hernandez JH, Valencia Zapata ME, Grande-Tovar CD. Chitosan (CS)/Hydroxyapatite (HA)/Tricalcium Phosphate (β-TCP)-Based Composites as a Potential Material for Pulp Tissue Regeneration. Polymers (Basel) 2023; 15:3213. [PMID: 37571109 PMCID: PMC10421191 DOI: 10.3390/polym15153213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/17/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
This research focused on developing new materials for endodontic treatments to restore tissues affected by infectious or inflammatory processes. Three materials were studied, namely tricalcium phosphate β-hydroxyapatite (β-TCP), commercial and natural hydroxyapatite (HA), and chitosan (CS), in different proportions. The chemical characterization using infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the composition of the composite. Scanning electron microscopy (SEM) demonstrated that the design and origin of the HA, whether natural or commercial, did not affect the morphology of the composites. In vitro studies using Artemia salina (A. salina) indicated that all three experimental materials were biocompatible after 24 h, with no significant differences in mortality rate observed among the groups. The subdermal implantation of the materials in block form exhibited biocompatibility and biodegradability after 30 and 60 days, with the larger particles undergoing fragmentation and connective tissue formation consisting of collagen type III fibers, blood vessels, and inflammatory cells. The implanted material continued to undergo resorption during this process. The results obtained in this research contribute to developing endodontic technologies for tissue recovery and regeneration.
Collapse
Affiliation(s)
- Ingrid Zamora
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (I.Z.); (G.A.M.); (C.H.V.-L.)
| | - Gilbert Alfonso Morales
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (I.Z.); (G.A.M.); (C.H.V.-L.)
| | - Jorge Iván Castro
- Laboratorio SIMERQO, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, Cali 76001, Colombia;
| | - Lina Marcela Ruiz Rojas
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Cali 760032, Colombia; (L.M.R.R.); (J.H.M.H.); (M.E.V.Z.)
| | - Carlos Humberto Valencia-Llano
- Grupo Biomateriales Dentales, Escuela de Odontología, Universidad del Valle, Calle 4B # 36-00, Cali 76001, Colombia; (I.Z.); (G.A.M.); (C.H.V.-L.)
| | - Jose Herminsul Mina Hernandez
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Cali 760032, Colombia; (L.M.R.R.); (J.H.M.H.); (M.E.V.Z.)
| | - Mayra Eliana Valencia Zapata
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Facultad de Ingeniería, Universidad del Valle, Calle 13 No. 100-00, Cali 760032, Colombia; (L.M.R.R.); (J.H.M.H.); (M.E.V.Z.)
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| |
Collapse
|
7
|
Biernat M, Woźniak A, Chraniuk M, Panasiuk M, Tymowicz-Grzyb P, Pagacz J, Antosik A, Ciołek L, Gromadzka B, Jaegermann Z. Effect of Selected Crosslinking and Stabilization Methods on the Properties of Porous Chitosan Composites Dedicated for Medical Applications. Polymers (Basel) 2023; 15:polym15112507. [PMID: 37299306 DOI: 10.3390/polym15112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Chitosan is one of the most commonly employed natural polymers for biomedical applications. However, in order to obtain stable chitosan biomaterials with appropriate strength properties, it is necessary to subject it to crosslinking or stabilization. Composites based on chitosan and bioglass were prepared using the lyophilization method. In the experimental design, six different methods were used to obtain stable, porous chitosan/bioglass biocomposite materials. This study compared the crosslinking/stabilization of chitosan/bioglass composites with ethanol, thermal dehydration, sodium tripolyphosphate, vanillin, genipin, and sodium β-glycerophosphate. The physicochemical, mechanical, and biological properties of the obtained materials were compared. The results showed that all the selected crosslinking methods allow the production of stable, non-cytotoxic porous composites of chitosan/bioglass. The composite with genipin stood out with the best of the compared properties, taking into account biological and mechanical characteristics. The composite stabilized with ethanol is distinct in terms of its thermal properties and swelling stability, and it also promotes cell proliferation. Regarding the specific surface area, the highest value exposes the composite stabilized by the thermal dehydration method.
Collapse
Affiliation(s)
- Monika Biernat
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Anna Woźniak
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Milena Chraniuk
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Mirosława Panasiuk
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Paulina Tymowicz-Grzyb
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Joanna Pagacz
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Agnieszka Antosik
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Lidia Ciołek
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| | - Beata Gromadzka
- Department of In Vitro Studies, Institute of Biotechnology and Molecular Medicine, Kampinoska 25, 80-180 Gdańsk, Poland
| | - Zbigniew Jaegermann
- Biomaterials Research Group, Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Cementowa 8, 31-983 Kraków, Poland
| |
Collapse
|
8
|
Mehnath S, Muthuraj V, Jeyaraj M. Biomimetic and osteogenic natural HAP coated three dimensional implant for orthopaedic application. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Lavagnini IR, Campos JV, Osiro D, Ferreira JA, Colnago LA, Pallone EMJA. Influence of alumina substrates open porosity on calcium phosphates formation produced by the biomimetic method. Prog Biomater 2022; 11:263-271. [PMID: 35739413 DOI: 10.1007/s40204-022-00193-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/03/2022] [Indexed: 10/17/2022] Open
Abstract
We evaluated the influence of the open porosity of alumina (Al2O3) substrates on the phase formation of calcium phosphates deposited onto it surface. The Al2O3 substrates were prepared with different porosities by the foam-gelcasting method associated with different amounts of polyethylene beads. The substrates were coated biomimetically for 14 and 21 days of incubation in a simulated body fluid (SBF). Scanning electron microscopy characterisation and X-ray computed microtomography showed that the increase in the number of beads provided an increase in the open porosity. The X-ray diffraction and infrared spectroscopy showed that the biomimetic method was able to form different phases of calcium phosphates. It was observed that the increase in the porosity favoured the formation of β-tricalcium phosphate for both incubation periods. The incubation period and the porosity of the substrates can influence the phases and the amount of calcium phosphates formed. Thus, it is possible to target the best application for the biomaterial produced.
Collapse
Affiliation(s)
- Isabela R Lavagnini
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil.
| | - João V Campos
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Denise Osiro
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Julieta A Ferreira
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil
| | - Luiz A Colnago
- Brazilian Agricultural Research Corporation, EMBRAPA Instrumentation, Rua Quinze de novembro, 1500/1501, São Carlos, SP, 13561-206, Brazil
| | - Eliria M J A Pallone
- Postgraduate Programme in Materials Science and Engineering, University of São Paulo, USP/FZEA, Av. Duque de Caxias Norte, 225, Pirassununga, SP, 13635-900, Brazil.,Department of Biosystem Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga, SP, 13635-900, Brazil
| |
Collapse
|
10
|
Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23126574. [PMID: 35743019 PMCID: PMC9224397 DOI: 10.3390/ijms23126574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, bone tissue engineering (BTE), as a multidisciplinary field, has shown considerable promise in replacing traditional treatment modalities (i.e., autografts, allografts, and xenografts). Since bone is such a complex and dynamic structure, the construction of bone tissue composite materials has become an attractive strategy to guide bone growth and regeneration. Chitosan and its derivatives have been promising vehicles for BTE owing to their unique physical and chemical properties. With intrinsic physicochemical characteristics and closeness to the extracellular matrix of bones, chitosan-based composite scaffolds have been proved to be a promising candidate for providing successful bone regeneration and defect repair capacity. Advances in chitosan-based scaffolds for BTE have produced efficient and efficacious bio-properties via material structural design and different modifications. Efforts have been put into the modification of chitosan to overcome its limitations, including insolubility in water, faster depolymerization in the body, and blood incompatibility. Herein, we discuss the various modification methods of chitosan that expand its fields of application, which would pave the way for future applied research in biomedical innovation and regenerative medicine.
Collapse
|
11
|
Woźniak A, Biernat M. Methods for crosslinking and stabilization of chitosan structures for potential medical applications. J BIOACT COMPAT POL 2022. [DOI: 10.1177/08839115221085738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chitosan is a well-known polymer widely used in tissue engineering and regenerative medicine. It is biocompatible, biodegradable, non-toxic, has antibacterial and osteoconductive properties. Chitosan is often used in the form of composites (with the participation of ceramic particles), membranes, hydrogels or nanoparticles. The problem with biomaterials is their low durability, rapid degradation, poor mechanical properties and cytotoxicity. Cross-linking or stabilization of such materials allows for solving these problems. It is important that the compounds used for this purpose exhibit limited or no toxicity. The presented article is a review and presents some methods of cross-linking/stabilization of chitosan structures. The analysis concerns low or non-cytotoxic cross-linking/stabilization methods. The discussed compounds used for the purpose of chitosan structure fixation are: cinnamaldehyde, genipin, L-aspartic acid, vanillin, sodium carbonate, sodium alginate, BGP, ethanol and TPP. There is discussed also a hydrothermal/dehydrothermal method which seems to be promising as it is more advantageous since no additional compounds are introduced into the structure.
Collapse
Affiliation(s)
- Anna Woźniak
- Biomaterials Research Group, Lukasiewicz Research Network—Institute of Ceramics and Building Materials, Ceramics and Concrete Division in Warsaw, Warsaw, Poland
| | - Monika Biernat
- Biomaterials Research Group, Lukasiewicz Research Network—Institute of Ceramics and Building Materials, Ceramics and Concrete Division in Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
Daskalakis E, Huang B, Vyas C, Acar AA, Liu F, Fallah A, Cooper G, Weightman A, Blunn G, Koç B, Bartolo P. Bone Bricks: The Effect of Architecture and Material Composition on the Mechanical and Biological Performance of Bone Scaffolds. ACS OMEGA 2022; 7:7515-7530. [PMID: 35284712 PMCID: PMC8908495 DOI: 10.1021/acsomega.1c05437] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/14/2022] [Indexed: 05/14/2023]
Abstract
Large bone loss injuries require high-performance scaffolds with an architecture and material composition resembling native bone. However, most bone scaffold studies focus on three-dimensional (3D) structures with simple rectangular or circular geometries and uniform pores, not able to recapitulate the geometric characteristics of the native tissue. This paper addresses this limitation by proposing novel anatomically designed scaffolds (bone bricks) with nonuniform pore dimensions (pore size gradients) designed based on new lay-dawn pattern strategies. The gradient design allows one to tailor the properties of the bricks and together with the incorporation of ceramic materials allows one to obtain structures with high mechanical properties (higher than reported in the literature for the same material composition) and improved biological characteristics.
Collapse
Affiliation(s)
- Evangelos Daskalakis
- School of Mechanical,
Aerospace and Civil Engineering, University
of Manchester, ManchesterM13 9PL, U.K.
| | - Boyang Huang
- School of Mechanical,
Aerospace and Civil Engineering, University
of Manchester, ManchesterM13 9PL, U.K.
| | - Cian Vyas
- School of Mechanical,
Aerospace and Civil Engineering, University
of Manchester, ManchesterM13 9PL, U.K.
| | - Anil A. Acar
- Integrated
Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- SUNUM Nanotechnology
Research Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Fengyuan Liu
- Department of
Mechanical Engineering, School of Civil, Aerospace and Mechanical
Engineering, Faculty of Engineering, University
of Bristol, Bristol BS8 1TR, U.K.
| | - Ali Fallah
- Integrated
Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- SUNUM Nanotechnology
Research Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Glen Cooper
- School of Mechanical,
Aerospace and Civil Engineering, University
of Manchester, ManchesterM13 9PL, U.K.
| | - Andrew Weightman
- School of Mechanical,
Aerospace and Civil Engineering, University
of Manchester, ManchesterM13 9PL, U.K.
| | - Gordon Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, PortsmouthPO1 2DT, U.K.
| | - Bahattin Koç
- Integrated
Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- SUNUM Nanotechnology
Research Center, Sabanci University, Tuzla 34956, Istanbul, Turkey
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Paulo Bartolo
- School of Mechanical,
Aerospace and Civil Engineering, University
of Manchester, ManchesterM13 9PL, U.K.
- Singapore
Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore
- ,
| |
Collapse
|
13
|
Saxena V, Hasan A, Pandey LM. Antibacterial nano-biocomposite scaffolds of Chitosan, Carboxymethyl Cellulose and Zn & Fe integrated Hydroxyapatite (Chitosan-CMC-FZO@HAp) for bone tissue engineering. CELLULOSE 2021; 28:9207-9226. [DOI: 10.1007/s10570-021-04072-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/07/2021] [Indexed: 05/15/2025]
|
14
|
Nakhaee FM, Rajabi M, Bakhsheshi-Rad HR. In-vitroassessment of β-tricalcium phosphate/bredigite-ciprofloxacin (CPFX) scaffolds for bone treatment applications. Biomed Mater 2021; 16. [PMID: 34038876 DOI: 10.1088/1748-605x/ac0590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/26/2021] [Indexed: 11/11/2022]
Abstract
In the present study, β-tricalcium phosphate (β-TCP) scaffolds with various amounts of bredigite (Bre) were fabricated by the space holder method. The effect of bredigite content on the structure, mechanical properties,in vitrobioactivity, and cell viability was investigated. The structural assessment of the composite scaffolds presented interconnected pores with diameter of 300-500 μm with around 78%-82% porosity. The results indicated that the compressive strength of the scaffolds with 20% bredigite (1.91 MPa) was improved in comparison with scaffolds with 10% bredigite (0.52 MPa), due to the reduction of the average pore and grain sizes. Also, the results showed that the bioactivity and biodegradability of β-TCP/20Bre were better than that of β-TCP/10Bre. Besides, in this study, the release kinetics of ciprofloxacin (CPFX) loaded β-TCP/Bre composites as well as the ability of scaffolds to function as a sustained release drug carrier was investigated. Drug release pattern of β-TCP/bredigite-5CPFX scaffolds exhibited the rapid burst release of 43% for 3 h along with sustained release (82%) for 32 h which is favorable for bone infection treatment. Antibacterial tests revealed that the antibacterial properties of β-TCP/bredigite scaffolds are strongly related to the CPFX concentration, wherein the scaffold containing 5% CPFX showed the most significant zone of inhibition (33 ± 0.5 mm) againstStaphylococcus aureus. The higher specific surface areas of nanostructure β-TCP/bredigite scaffolds containing CPFX lead to an initial rapid release followed by constant drug delivery. MTT assay showed that the cell viability of β-TCP/bredigite scaffold loading with up to 1%-3% CPFX (95 ± 2%), is greater than for scaffolds containing 5% CPFX (84 ± 2%). In Overall, it may suggested that β-TCP/bredigite containing 1%-3% CPFX possesses great cell viability and antibacterial activity and be employed as bactericidal biomaterials and bone infection treatment.
Collapse
Affiliation(s)
- Foroogh Mofid Nakhaee
- Department of materials Engineering, Faculty of Materials and Industries Engineering, Noshirvani University of Technology, Babol, Iran
| | - Mohammad Rajabi
- Department of materials Engineering, Faculty of Materials and Industries Engineering, Noshirvani University of Technology, Babol 47148-71167, Iran
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
15
|
Murugesan S, Scheibel T. Chitosan‐based
nanocomposites for medical applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Selvakumar Murugesan
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Department of Metallurgical and Materials Engineering National Institute of Technology Karnataka Mangalore India
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Bayerisches Polymerinstitut (BPI) University Bayreuth Bayreuth Germany
| |
Collapse
|
16
|
Biofabrication of Gingival Fibroblast Cell-Laden Collagen/Strontium-Doped Calcium Silicate 3D-Printed Bi-Layered Scaffold for Osteoporotic Periodontal Regeneration. Biomedicines 2021; 9:biomedicines9040431. [PMID: 33923505 PMCID: PMC8073616 DOI: 10.3390/biomedicines9040431] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Periodontal disease is a chronic disease that can lead to lose teeth and even tooth loss if left untreated. Osteoporosis and periodontal disease share similar characteristics and associated factors. Current regenerative techniques for periodontal diseases are ineffective in restoring complete function and structural integrity of periodontium due to unwanted migration of cells. In this study, we applied the concept of guided tissue regeneration (GTR) and 3D fabricated gingival fibroblast cell-laden collagen/strontium-doped calcium silicate (SrCS) bi-layer scaffold for periodontal regeneration. The results revealed that the bioactive SrCS had a hydroxyapatite formation on its surface after 14 days of immersion and that SrCS could release Sr and Si ions even after 6 months of immersion. In addition, in vitro results showed that the bi-layer scaffold enhanced secretion of FGF-2, BMP-2, and VEGF from human gingival fibroblasts and increased secretion of osteogenic-related proteins ALP, BSP, and OC from WJMSCs. In vivo studies using animal osteoporotic models showed that the 3D-printed cell-laden collagen/SrCS bi-layer scaffold was able to enhance osteoporotic bone regeneration, as seen from the increased Tb.Th and BV/TV ratio and the histological stains. In conclusion, it can be seen that the bi-layer scaffolds enhanced osteogenesis and further showed that guided periodontal regeneration could be achieved using collagen/SrCS scaffolds, thus making it a potential candidate for future clinical applications.
Collapse
|
17
|
Pita-López ML, Fletes-Vargas G, Espinosa-Andrews H, Rodríguez-Rodríguez R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110176] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Injectable Chitosan Scaffolds with Calcium β-Glycerophosphate as the Only Neutralizing Agent. Processes (Basel) 2019. [DOI: 10.3390/pr7050297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The presented work describes the method of preparation of thermosensitive chitosan hydrogels using calcium β-glycerophosphate salt as the only pH neutralizing agent and supporting the crosslinking process. The presence of calcium ions instead of sodium ions is particularly important in the case of scaffolds in bone tissue engineering. Rheological and physicochemical properties of low concentrated chitosan solutions with the addition of calcium β-glycerophosphate were investigated using rotational rheometry techniques, Zeta potential (by electrophoresis), XPS, and SEM analysis together with an EDS detector. It was found to be possible to prepare colloidal solutions of chitosan containing only calcium β-glycerophosphate (without sodium ions) undergoing a sol-gel phase transition at the physiological temperature of the human body. It has also been shown that it is possible to further enrich the obtained cellular scaffolds with calcium ions. Using the addition of calcium carbonate, hydrogels with a physiological ratio of calcium to phosphorus (1.6–1.8):1 were obtained.
Collapse
|
19
|
Chitosan and polyethylene glycol based membranes with antibacterial properties for tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:606-615. [DOI: 10.1016/j.msec.2018.11.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/10/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
|
20
|
|
21
|
Zhai C, Fei H, Hu J, Wang Z, Xu S, Zuo Q, Li Z, Wang Z, Liang W, Fan W. Repair of Articular Osteochondral Defects Using an Integrated and Biomimetic Trilayered Scaffold. Tissue Eng Part A 2018; 24:1680-1692. [PMID: 29779446 DOI: 10.1089/ten.tea.2018.0086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Chenjun Zhai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Fei
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junzheng Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shun Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeng Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwei Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
El-Meliegy E, Abu-Elsaad NI, El-Kady AM, Ibrahim MA. Improvement of physico-chemical properties of dextran-chitosan composite scaffolds by addition of nano-hydroxyapatite. Sci Rep 2018; 8:12180. [PMID: 30111828 PMCID: PMC6093882 DOI: 10.1038/s41598-018-30720-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/06/2018] [Indexed: 01/26/2023] Open
Abstract
Nano-hydroxyapatite was incorporated into polymer matrix of Dextran/Chitosan to achieve a novel composite scaffold by freeze drying technique. The synthesized composite scaffolds were recognized by different performances such as: X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and Scanning electron microscope (SEM). The results revealed the complex formation between dextran and chitosan with an excellent dispersion of nHA inside the polymer matrix. The SEM images showed the presence of interconnected pore structure inside the scaffolds. The porosity of the composites was found to decrease from 82% to 67% by adding nanohydroxyapatite to the polymer matrix of Dextran/Chitosan. The mechanical properties of the scaffolds were measured by compression test. The obtained results verified that the presence of nHA can noticeably enhance young’s modulus and compressive strength of the composite scaffolds. All the obtained results essentially recommend that these composites can be a good candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Emad El-Meliegy
- Department of ceramics, National research Centre, El-Tahrir street, Dokki, Cairo, Egypt
| | - N I Abu-Elsaad
- Department of Physics, Faculty of Science, Zagazig University, Zagazig, Egypt.
| | - Abeer M El-Kady
- Department of glass, National research Centre, El-Tahrir street, Dokki, Cairo, Egypt
| | - Manar A Ibrahim
- Department of Physics, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
23
|
Mao D, Li Q, Bai N, Dong H, Li D. Porous stable poly(lactic acid)/ethyl cellulose/hydroxyapatite composite scaffolds prepared by a combined method for bone regeneration. Carbohydr Polym 2017; 180:104-111. [PMID: 29103485 DOI: 10.1016/j.carbpol.2017.10.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/13/2023]
Abstract
A major challenge in bone tissue engineering is the development of biomimetic scaffolds which should simultaneously meet mechanical strength and pore structure requirements. Herein, we combined technologies of high concentration solvent casting, particulate leaching, and room temperature compression molding to prepare a novel poly(lactic acid)/ethyl cellulose/hydroxyapatite (PLA/EC/HA) scaffold. The functional, structural and mechanical properties of the obtained porous scaffolds were characterized. The results indicated that the PLA/EC/HA scaffolds at the 20wt% HA loading level showed optimal mechanical properties and desired porous structure. Its porosity, contact angle, compressive yield strength and weight loss after 56days were 84.28±7.04%, 45.13±2.40°, 1.57±0.09MPa and 4.77±0.32%, respectively, which could satisfy the physiological demands to guide bone regeneration. Thus, the developed scaffolds have potential to be used as a bone substitute material for bone tissue engineering application.
Collapse
Affiliation(s)
- Daoyong Mao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Qing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ningning Bai
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hongzhou Dong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Daikun Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
24
|
Sun YX, Zhang JF, Li DJ, Wu XM, Xu LL, Pan XH, Li G. Comparing the osteoconductive potential between tubular and cylindrical beta-tricalcium phosphate scaffolds: An experimental study in rats. J Biomed Mater Res B Appl Biomater 2017; 106:1934-1940. [DOI: 10.1002/jbm.b.34011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/11/2017] [Accepted: 09/17/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Yu-Xin Sun
- Department of Orthopaedics and Traumatology; Bao-An District People's Hospital; Shenzhen People's Republic of China
- Department of Orthopaedics and Traumatology; Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital; Shatin Hong Kong SAR People's Republic of China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute; Shenzhen People's Republic of China
| | - Jin-Fang Zhang
- Key Laboratory of Orthopaedics and Traumatology; The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine; Guangzhou China
| | - Dong-Ji Li
- Department of Orthopaedics and Traumatology; Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital; Shatin Hong Kong SAR People's Republic of China
| | - Xiao-Min Wu
- Department of Orthopaedics and Traumatology; Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital; Shatin Hong Kong SAR People's Republic of China
| | - Liang-Liang Xu
- Department of Orthopaedics and Traumatology; Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital; Shatin Hong Kong SAR People's Republic of China
| | - Xiao-Hua Pan
- Department of Orthopaedics and Traumatology; Bao-An District People's Hospital; Shenzhen People's Republic of China
| | - Gang Li
- Department of Orthopaedics and Traumatology; Bao-An District People's Hospital; Shenzhen People's Republic of China
- Department of Orthopaedics and Traumatology; Li Ka Shing Institute of Health Sciences and Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital; Shatin Hong Kong SAR People's Republic of China
- The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute; Shenzhen People's Republic of China
- Key Laboratory for Regenerative Medicine; Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong; Hong Kong SAR People' Republic of China
| |
Collapse
|
25
|
Oryan A, Alidadi S, Bigham-Sadegh A, Moshiri A. Effectiveness of tissue engineered based platelet gel embedded chitosan scaffold on experimentally induced critical sized segmental bone defect model in rat. Injury 2017; 48:1466-1474. [PMID: 28460883 DOI: 10.1016/j.injury.2017.04.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/21/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Healing and regeneration of large bone defects are a challenging problem for reconstructive orthopedic surgeons. PURPOSE This study investigated the effectiveness of chitosan scaffold (CS), platelet gel (PG) and their combination (CS-PG) on healing process of an experimentally induced critical sized segmental bone defect model in rat. METHODS Fifty bilateral defects were created in the mid diaphysis of the radial bones of 25 Sprague-Dawley rats. The animals were randomly divided into five equal groups. The bone defects were either left untreated or treated with corticomedullary autograft, CS, PG or CS-PG. Plain radiographs were provided from the radial bones on weeks 2, 5, and 8 after injury. In addition, clinical examinations were done for the healing radial bones. The animals were euthanized after 8 weeks of injury, and their harvested samples were evaluated by gross morphology, histopathology, scanning electron microscopy, CT-scan, and biomechanical testing. RESULTS Compared with the defect group, the PG and autograft treated bone defects had significantly superior radiological scored values, bone volume and biomechanical performance which had positive correlation with their superior gross pathological, histopathological and ultra-structural features. Compared with the untreated defects, the PG and CS-PG treated defects showed significantly superior structural and functional properties so that PG had the highest value. In addition, CS had low value in bone regeneration. Although combination of CS and PG improved the healing efficacy of the CS, this strategy reduced the ability of PG to increase osteoconduction and osteoinduction during bone regeneration. CONCLUSION Application of PG alone enhanced bone healing and can be regarded as a promising option for bone tissue engineering in clinical settings. Chitosan was not effective in bone reconstruction surgery and further investigations should be conducted to find a suitable carrier for PG.
Collapse
Affiliation(s)
- Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Soodeh Alidadi
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Bigham-Sadegh
- Department of Clinical Sciences, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Ali Moshiri
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
A facile, efficient, and sustainable chitosan/CaHAp catalyst and one-pot synthesis of novel 2,6-diamino-pyran-3,5-dicarbonitriles. Mol Divers 2016; 21:247-255. [DOI: 10.1007/s11030-016-9708-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 11/06/2016] [Indexed: 10/20/2022]
|
27
|
Hierarchical structures of β-TCP/45S5 bioglass hybrid scaffolds prepared by gelcasting. J Mech Behav Biomed Mater 2016; 62:10-23. [DOI: 10.1016/j.jmbbm.2016.04.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 12/22/2022]
|
28
|
Corrosion resistance characteristics of a Ti-6Al-4V alloy scaffold that is fabricated by electron beam melting and selective laser melting for implantation in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:832-841. [PMID: 27770961 DOI: 10.1016/j.msec.2016.07.045] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/07/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022]
Abstract
The purpose of this study is to determine the corrosion resistance of Ti-6Al-4V alloy fabricated with electron beam melting and selective laser melting for implantation in vivo. Ti-6Al-4V alloy specimens were fabricated with electron beam melting (EBM) and selective laser melting (SLM). A wrought form of Ti-6Al-4V alloy was used as a control. Surface morphology observation, component analysis, corrosion resistance experimental results, electrochemical impedance spectroscopy, crevice corrosion resistance experimental results, immersion test and metal ions precipitation analysis were processed, respectively. The thermal stability of EBM specimen was the worst, based on the result of open circuit potential (OCP) result. The result of electrochemical impedance spectroscopy indicated that the corrosion resistance of the SLM specimen was the best under the low electric potential. The result of potentiodynamic polarization suggested that the corrosion resistance of the SLM specimen was the best under the low electric potential (<1.5V) and EBM specimen was the best under the high electric potential (>1.5V).The crevice corrosion resistance of the EBM specimen was the best. The corrosion resistance of SLM specimen was the best, based on the result of immersion test. The content of Ti, Al and V ions of EBM, SLM and wrought specimens was very low. In general, the scaffolds that were fabricated with EBM and SLM had good corrosion resistance, and were suitable for implantation in vivo.
Collapse
|
29
|
Affiliation(s)
- Alina Sionkowska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry; Nicolaus Copernicus University in Toruń; Poland
| |
Collapse
|
30
|
A Comparative Evaluation of the Mechanical Properties of Two Calcium Phosphate/Collagen Composite Materials and Their Osteogenic Effects on Adipose-Derived Stem Cells. Stem Cells Int 2016; 2016:6409546. [PMID: 27239204 PMCID: PMC4864572 DOI: 10.1155/2016/6409546] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/28/2016] [Accepted: 04/04/2016] [Indexed: 11/18/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) are ideal seed cells for use in bone tissue engineering and they have many advantages over other stem cells. In this study, two kinds of calcium phosphate/collagen composite scaffolds were prepared and their effects on the proliferation and osteogenic differentiation of ADSCs were investigated. The hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) composite scaffolds (HTPSs), which have an additional β-tricalcium phosphate, resulted in better proliferation of ADSCs and showed osteogenesis-promoting effects. Therefore, such composite scaffolds, in combination with ADSCs or on their own, would be promising for use in bone regeneration and potential clinical therapy for bone defects.
Collapse
|
31
|
Bio-scaffolds produced from irradiated squid pen and crab chitosan with hydroxyapatite/β-tricalcium phosphate for bone-tissue engineering. Int J Biol Macromol 2016; 93:1446-1456. [PMID: 27126171 DOI: 10.1016/j.ijbiomac.2016.04.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/12/2016] [Accepted: 04/15/2016] [Indexed: 11/23/2022]
Abstract
In this study, bio-scaffolds have been developed using irradiated chitosan from different sources - squid pen (RS) and crab shell (RC) - with hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) at a chitosan/HA/β-TCP ratio of 50/30/20. The bio-scaffolds were prepared at two different freezing temperature (-20°C and -80°C) followed by lyophilisation. To enhance the mechanical properties, the bio-scaffolds were cross-linked using sodium tripolyphosphate (TPP) followed by lyophilisation. The composition and morphology of the bio-scaffolds were characterized using XRD, SEM, TEM and μ-CT. The pore size of the porous scaffolds ranged from 90 to 220μm and the scaffolds had 70-80% porosity. The scaffolds had a water uptake ratio of more than 10, and a controlled biodegradation in the range of 30-40%. These results suggest that the physical and biological properties of chitosan-based bio-scaffolds can be a promising biomaterial for bone-tissue regeneration.
Collapse
|