1
|
Sadeghian Dehkord E, De Carvalho B, Ernst M, Albert A, Lambert F, Geris L. Influence of physicochemical characteristics of calcium phosphate-based biomaterials in cranio-maxillofacial bone regeneration. A systematic literature review and meta-analysis of preclinical models. Mater Today Bio 2024; 26:101100. [PMID: 38854953 PMCID: PMC11157282 DOI: 10.1016/j.mtbio.2024.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives Calcium phosphate-based biomaterials (CaP) are the most widely used biomaterials to enhance bone regeneration in the treatment of alveolar bone deficiencies, cranio-maxillofacial and periodontal infrabony defects, with positive preclinical and clinical results reported. This systematic review aimed to assess the influence of the physicochemical properties of CaP biomaterials on the performance of bone regeneration in preclinical animal models. Methods The PubMed, EMBASE and Web of Science databases were searched to retrieve the preclinical studies investigating physicochemical characteristics of CaP biomaterials. The studies were screened for inclusion based on intervention (physicochemical characterization and in vivo evaluation) and reported measurable outcomes. Results A total of 1532 articles were retrieved and 58 studies were ultimately included in the systematic review. A wide range of physicochemical characteristics of CaP biomaterials was found to be assessed in the included studies. Despite a high degree of heterogeneity, the meta-analysis was performed on 39 studies and evidenced significant effects of biomaterial characteristics on their bone regeneration outcomes. The study specifically showed that macropore size, Ca/P ratio, and compressive strength exerted significant influence on the formation of newly regenerated bone. Moreover, factors such as particle size, Ca/P ratio, and surface area were found to impact bone-to-material contact during the regeneration process. In terms of biodegradability, the amount of residual graft was determined by macropore size, particle size, and compressive strength. Conclusion The systematic review showed that the physicochemical characteristics of CaP biomaterials are highly determining for scaffold's performance, emphasizing its usefulness in designing the next generation of bone scaffolds to target higher rates of regeneration.
Collapse
Affiliation(s)
- Ehsan Sadeghian Dehkord
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, Belgium
- Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
| | - Bruno De Carvalho
- Department of Periodontology, Oral-Dental and Implant Surgery, CHU of Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, Belgium
| | - Marie Ernst
- Biostatistics and Research Method Center (B-STAT), CHU of Liège and University of Liège, Belgium
| | - Adelin Albert
- Biostatistics and Research Method Center (B-STAT), CHU of Liège and University of Liège, Belgium
- Department of Public Health Sciences, University of Liège, Belgium
| | - France Lambert
- Department of Periodontology, Oral-Dental and Implant Surgery, CHU of Liège, Belgium
- Dental Biomaterials Research Unit (d-BRU), University of Liège, Belgium
| | - Liesbet Geris
- GIGA In Silico Medicine, Biomechanics Research Unit (Biomech), University of Liège, Belgium
- Prometheus, The R&D Division for Skeletal Tissue Engineering, KU Leuven, Belgium
- Department of Mechanical Engineering, Biomechanics Section (BMe), KU Leuven, Belgium
| |
Collapse
|
2
|
Yao C, Pripatnanont P, Zhang J, Suttapreyasri S. Fabrication and characterization of a bioactive composite scaffold based on polymeric collagen/gelatin/nano β-TCP for alveolar bone regeneration. J Mech Behav Biomed Mater 2024; 153:106500. [PMID: 38484429 DOI: 10.1016/j.jmbbm.2024.106500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
One strategy to correct alveolar bone defects is use of bioactive bone substitutes to maintain the structure of defect site and facilitate cells and vessels' ingrowth. This study aimed to fabricate and characterize the freeze-dried bone regeneration scaffolds composed of polymeric Type I collagen, nano Beta-tricalcium phosphate (β-TCP), and gelatin. The stable structures of scaffolds were obtained by thermal crosslinking and EDC/NHS ((1-ethyl-3-(3-dimethylaminopropyl) carbodiimide)/(N-hydroxysuccinimide)) chemical crosslinking processes. Subsequently, the physicochemical and biological properties of the scaffolds were characterized and assessed. The results indicated the bioactive composite scaffolds containing 10% and 20% (w/v) nano β-TCP exhibited suitable porosity (84.45 ± 25.43 nm, and 94.51 ± 14.69 nm respectively), a rapid swelling property (reaching the maximum swelling rate at 1 h), excellent degradation resistance (residual mass percentage of scaffolds higher than 80% on day 90 in PBS and Type I collagenase solution respectively), and sustained calcium release capabilities. Moreover, they displayed outstanding biological properties, including superior cell viability, cell adhesion, and cell proliferation. Additionally, the scaffolds containing 10% and 20% (w/v) nano β-TCP could promote the osteogenic differentiation of MC3T3-E1. Therefore, the bioactive composite scaffolds containing 10% and 20% (w/v) nano β-TCP could be further studied for being used to treat alveolar bone defects in vivo.
Collapse
Affiliation(s)
- Chao Yao
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Prisana Pripatnanont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Thailand
| | - Junbiao Zhang
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand; Guiyang Hospital of Stomatology, Guiyang, 550002, People's Republic of China
| | - Srisurang Suttapreyasri
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, 90112, Thailand.
| |
Collapse
|
3
|
Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Transformable Carbonate Apatite Chains as a Novel Type of Bone Graft. Adv Healthc Mater 2024; 13:e2303245. [PMID: 38229572 DOI: 10.1002/adhm.202303245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Indexed: 01/18/2024]
Abstract
The aging global population is generating an ever-increasing demand for bone regeneration. Various materials, including blocks, granules, and sponges, are developed for bone regeneration. However, blocks require troublesome shaping and exhibit poor bone-defect conformities; granules migrate into the surrounding tissues during and after filling of the defect, causing handling difficulties and complications; and sponges contain polymers that are subject to religious restrictions, lack osteoconductivity, and may cause inflammation and allergies. Herein, carbonate apatite chains that overcome the limitations of conventional materials are presented. Although carbonate apatite granules migrate, causing inflammation and ectopic calcification, the chains remain in the defects without causing any complications. The chains conform to the defect shape and transform into 3D porous structures, resulting in faster bone regeneration than that observed using granules. Thus, these findings indicate that even traditional calcium phosphates materials can be converted to state-of-the-art materials via shape control.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
4
|
Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Effects of Space Dimensionality within Scaffold for Bone Regeneration with Large and Oriented Blood Vessels. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7518. [PMID: 38138660 PMCID: PMC10744811 DOI: 10.3390/ma16247518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023]
Abstract
The internal structure of the scaffolds is a key factor for bone regeneration. In this study, we focused on the space dimensionality within the scaffold that may control cell migration and evaluated the effects on the size and orientation of blood vessels and the amount of bone formation in the scaffold. The carbonate apatite scaffolds with intrascaffold space allowing one-dimensional (1D), two-dimensional (2D), or three-dimensional (3D) cell migration were fabricated by 3D printing. These scaffolds had the same space size, i.e., distances between the struts (~300 µm). The scaffolds were implanted into the medial condyle of rabbit femurs for four weeks. Both the size and orientation degree of the blood vessels formed in the scaffolds allowing 1D cell migration were 2.5- to 4.0-fold greater than those of the blood vessels formed in the scaffolds allowing 2D and 3D cell migration. Furthermore, the amount of bone formed in the scaffolds allowing 1D cell migration was 1.4-fold larger than that formed in the scaffolds allowing 2D and 3D cell migration. These are probably because the 1D space limited the direction of cell migration and prevented the branching of blood vessels, whereas 2D and 3D spaces provided the opportunity for random cell migration and blood vessel branching. Thus, scaffolds with 1D space are advantageous for inducing large and oriented blood vessels, resulting in a larger amount of bone formation.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (R.K.); (A.T.); (K.I.)
| | | | | | | |
Collapse
|
5
|
Donos N, Akcali A, Padhye N, Sculean A, Calciolari E. Bone regeneration in implant dentistry: Which are the factors affecting the clinical outcome? Periodontol 2000 2023; 93:26-55. [PMID: 37615306 DOI: 10.1111/prd.12518] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/08/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
The key factors that are needed for bone regeneration to take place include cells (osteoprogenitor and immune-inflammatory cells), a scaffold (blood clot) that facilitates the deposition of the bone matrix, signaling molecules, blood supply, and mechanical stability. However, even when these principles are met, the overall amount of regenerated bone, its stability over time and the incidence of complications may significantly vary. This manuscript provides a critical review on the main local and systemic factors that may have an impact on bone regeneration, trying to focus, whenever possible, on bone regeneration simultaneous to implant placement to treat bone dehiscence/fenestration defects or for bone contouring. In the future, it is likely that bone tissue engineering will change our approach to bone regeneration in implant dentistry by replacing the current biomaterials with osteoinductive scaffolds combined with cells and mechanical/soluble factors and by employing immunomodulatory materials that can both modulate the immune response and control other bone regeneration processes such as osteogenesis, osteoclastogenesis, or inflammation. However, there are currently important knowledge gaps on the biology of osseous formation and on the factors that can influence it that require further investigation. It is recommended that future studies should combine traditional clinical and radiographic assessments with non-invasive imaging and with patient-reported outcome measures. We also envisage that the integration of multi-omics approaches will help uncover the mechanisms responsible for the variability in regenerative outcomes observed in clinical practice.
Collapse
Affiliation(s)
- Nikolaos Donos
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aliye Akcali
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Periodontology, Faculty of Dentistry, Dokuz Eylul University, Izmir, Turkey
| | - Ninad Padhye
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Elena Calciolari
- Centre for Oral Clinical Research, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine and Dentistry, Dental School, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Kariya Y, Shintani K, Horiguchi K, Okuyama K, Muramatsu Y, Tamaki Y, Nakamoto T. Synthesis of β-tricalcium phosphate by modifying the heating process of a dental casting mold. Dent Mater J 2023; 42:717-722. [PMID: 37558423 DOI: 10.4012/dmj.2023-075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
This study investigated a novel method for artificial synthesis of β-tricalcium phosphate (β-TCP). The binder of the phosphate-bonded investment was replaced with calcium oxide instead of magnesium oxide and sintered in an electric furnace. The water/powder mixing ratio for hardening was determined using preliminary experiments. Thermal analysis was performed to check the thermal behavior of the sample tested. In addition, the fired sample was analyzed using an X-ray diffraction apparatus to identify the compounds after sintering. The hardened sample exhibited multiple compounds, including unreacted components, post which, new compounds were generated by heating. Peaks of calcium pyrophosphate and β-TCP were confirmed at 800ºC and 1,300ºC, respectively. β-TCP could be easily synthesized within the limited study by sintering at 1,300ºC both monoammonium phosphate and calcium oxide. Experimental results suggest that β-TCP can be easily synthesized by simulating the conventional dental casting process.
Collapse
Affiliation(s)
- Yuko Kariya
- Department of Oral Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry
| | - Kohei Shintani
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Keiji Horiguchi
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Katsushi Okuyama
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Yasunori Muramatsu
- Department of Oral Surgery, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry
| | - Yukimichi Tamaki
- Department of Dental Materials Science, Division of Oral Functional Science and Rehabilitation, Asahi University School of Dentistry
| | - Tetsuji Nakamoto
- Department of Oral Implantology, Division of Oral Pathogenesis and Disease Control, Asahi University School of Dentistry
| |
Collapse
|
7
|
Gu L, Huang R, Ni N, Gu P, Fan X. Advances and Prospects in Materials for Craniofacial Bone Reconstruction. ACS Biomater Sci Eng 2023; 9:4462-4496. [PMID: 37470754 DOI: 10.1021/acsbiomaterials.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The craniofacial region is composed of 23 bones, which provide crucial function in keeping the normal position of brain and eyeballs, aesthetics of the craniofacial complex, facial movements, and visual function. Given the complex geometry and architecture, craniofacial bone defects not only affect the normal craniofacial structure but also may result in severe craniofacial dysfunction. Therefore, the exploration of rapid, precise, and effective reconstruction of craniofacial bone defects is urgent. Recently, developments in advanced bone tissue engineering bring new hope for the ideal reconstruction of the craniofacial bone defects. This report, presenting a first-time comprehensive review of recent advances of biomaterials in craniofacial bone tissue engineering, overviews the modification of traditional biomaterials and development of advanced biomaterials applying to craniofacial reconstruction. Challenges and perspectives of biomaterial development in craniofacial fields are discussed in the end.
Collapse
Affiliation(s)
- Li Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Rui Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
8
|
Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Superiority of Triply Periodic Minimal Surface Gyroid Structure to Strut-Based Grid Structure in Both Strength and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37433180 DOI: 10.1021/acsami.3c06263] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
The aging population has rapidly driven the demand for bone regeneration. The pore structure of a scaffold is a critical factor that affects its mechanical strength and bone regeneration. Triply periodic minimal surface gyroid structures similar to the trabecular bone structure are considered superior to strut-based lattice structures (e.g., grids) in terms of bone regeneration. However, at this stage, this is only a hypothesis and is not supported by evidence. In this study, we experimentally validated this hypothesis by comparing gyroid and grid scaffolds composed of carbonate apatite. The gyroid scaffolds possessed compressive strength approximately 1.6-fold higher than that of the grid scaffolds because the gyroid structure prevented stress concentration, whereas the grid structure could not. The porosity of gyroid scaffolds was higher than that of the grid scaffolds; however, porosity and compressive strength generally have a trade-off relationship. Moreover, the gyroid scaffolds formed more than twice the amount of bone as grid scaffolds in a critical-sized bone defect in rabbit femur condyles. This favorable bone regeneration using gyroid scaffolds was attributed to the high permeability (i.e., larger volume of macropores or porosity) and curvature profile of the gyroid structure. Thus, this study validated the conventional hypothesis using in vivo experiments and revealed factors that led to this hypothetical outcome. The findings of this study are expected to contribute to the development of scaffolds that can achieve early bone regeneration without sacrificing the mechanical strength.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
9
|
Trzaskowska M, Vivcharenko V, Franus W, Goryczka T, Barylski A, Przekora A. Optimization of the Composition of Mesoporous Polymer-Ceramic Nanocomposite Granules for Bone Regeneration. Molecules 2023; 28:5238. [PMID: 37446899 DOI: 10.3390/molecules28135238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Difficult-to-treat bone damage resulting from metabolic bone diseases, mechanical injuries, or tumor resection requires support in the form of biomaterials. The aim of this research was to optimize the concentration of individual components of polymer-ceramic nanocomposite granules (nanofilled polymer composites) for application in orthopedics and maxillofacial surgery to fill small bone defects and stimulate the regeneration process. Two types of granules were made using nanohydroxyapatite (nanoHA) and chitosan-based matrix (agarose/chitosan or curdlan/chitosan), which served as binder for ceramic nanopowder. Different concentrations of the components (nanoHA and curdlan), foaming agent (sodium bicarbonate-NaHCO3), and chitosan solvent (acetic acid-CH3COOH) were tested during the production process. Agarose and chitosan concentrations were fixed to be 5% w/v and 2% w/v, respectively, based on our previous research. Subsequently, the produced granules were subjected to cytotoxicity testing (indirect and direct contact methods), microhardness testing (Young's modulus evaluation), and microstructure analysis (porosity, specific surface area, and surface roughness) in order to identify the biomaterial with the most favorable properties. The results demonstrated only slight differences among the resultant granules with respect to their microstructural, mechanical, and biological properties. All variants of the biomaterials were non-toxic to a mouse preosteoblast cell line (MC3T3-E1), supported cell growth on their surface, had high porosity (46-51%), and showed relatively high specific surface area (25-33 m2/g) and Young's modulus values (2-10 GPa). Apart from biomaterials containing 8% w/v curdlan, all samples were predominantly characterized by mesoporosity. Nevertheless, materials with the greatest biomedical potential were obtained using 5% w/v agarose, 2% w/v chitosan, and 50% or 70% w/v nanoHA when the chitosan solvent/foaming agent ratio was equal to 2:2. In the case of the granules containing curdlan/chitosan matrix, the most optimal composition was as follows: 2% w/v chitosan, 4% w/v curdlan, and 30% w/v nanoHA. The obtained test results indicate that both manufactured types of granules are promising implantable biomaterials for filling small bone defects that can be used in maxillofacial surgery.
Collapse
Affiliation(s)
- Marta Trzaskowska
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Vladyslav Vivcharenko
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Lublin University of Technology, Nadbystrzycka 38 D, 20-618 Lublin, Poland
| | - Tomasz Goryczka
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Agata Przekora
- Independent Unit of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
10
|
Hayashi K, Yanagisawa T, Kishida R, Tsuchiya A, Ishikawa K. Gear-shaped carbonate apatite granules with a hexagonal macropore for rapid bone regeneration. Comput Struct Biotechnol J 2023; 21:2514-2523. [PMID: 37077175 PMCID: PMC10106487 DOI: 10.1016/j.csbj.2023.03.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Synthetic bone grafts are in high demand owing to increased age-related bone disorders in the global aging population. Here, we report fabrication of gear-shaped granules (G-GRNs) for rapid bone healing. G-GRNs possessed six protrusions and a hexagonal macropore in the granular center. These were composed of carbonate apatite, i.e., bone mineral, microspheres with ∼1-μm micropores in the spaces between the microspheres. G-GRNs formed new bone and blood vessels (both on the granular surface and within the macropores) 4 weeks after implantation in the rabbit femur defects. The formed bone structure was similar to that of cancellous bone. The bone percentage in the defect recovered to that in a normal rabbit femur at week-4 post-implantation, and the bone percentage remained constant for the following 8 weeks. Throughout the entire period, the bone percentage in the G-GRN-implanted group was ∼10% higher than that of the group implanted with conventional carbonate apatite granules. Furthermore, a portion of the G-GRNs resorbed at week-4, and resorption continued for the following 8 weeks. Thus, G-GRNs are involved in bone remodeling and are gradually replaced with new bone while maintaining a suitable bone level. These findings provide a basis for the design and fabrication of synthetic bone grafts for achieving rapid bone regeneration.
Collapse
|
11
|
Hayashi K, Yanagisawa T, Kishida R, Ishikawa K. Effects of Scaffold Shape on Bone Regeneration: Tiny Shape Differences Affect the Entire System. ACS NANO 2022; 16:11755-11768. [PMID: 35833725 PMCID: PMC9413413 DOI: 10.1021/acsnano.2c03776] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Although studies on scaffolds for tissue generation have mainly focused on the chemical composition and pore structure, the effects of scaffold shape have been overlooked. Scaffold shape determines the scaffold surface area (SA) at the single-scaffold level (i.e., microscopic effects), although it also affects the amount of interscaffold space in the tissue defect at the whole-system level (i.e., macroscopic effects). To clarify these microscopic and macroscopic effects, this study reports the osteogenesis abilities of three types of carbonate apatite granular scaffolds with different shapes, namely, irregularly shaped dense granules (DGs) and two types of honeycomb granules (HCGs) with seven hexagonal channels (∼255 μm in length between opposite sides). The HCGs possessed either 12 protuberances (∼75 μm in length) or no protuberances. Protuberances increased the SA of each granule by 3.24 mm2 while also widening interscaffold spaces and increasing the space percentage in the defect by ∼7.6%. Interscaffold spaces were lower in DGs than HCGs. On DGs, new bone formed only on the surface, whereas on HCGs, bone simultaneously formed on the surface and in intrascaffold channels. Interestingly, HCGs without protuberances formed approximately 30% more new bone than those with protuberances. Thus, even tiny protuberances on the scaffold surface can affect the percentage of interscaffold space, thereby exerting dominant effects on osteogenesis. Our findings demonstrate that bone regeneration can be improved by considering macroscopic shape effects beyond the microscopic effects of the scaffold.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty
of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Toshiki Yanagisawa
- Department of Biomaterials, Faculty
of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty
of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty
of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Bagal R, Bahir M, Lenka N, Patro TU. Polymer derived porous carbon foam and its application in bone tissue engineering: a review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2066669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rohit Bagal
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune, India
| | | | | | - T. Umasankar Patro
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Pune, India
| |
Collapse
|
13
|
Hayashi K, Yanagisawa T, Shimabukuro M, Kishida R, Ishikawa K. Granular honeycomb scaffolds composed of carbonate apatite for simultaneous intra- and inter-granular osteogenesis and angiogenesis. Mater Today Bio 2022; 14:100247. [PMID: 35378911 PMCID: PMC8976130 DOI: 10.1016/j.mtbio.2022.100247] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 02/08/2023] Open
Abstract
Granular porous calcium phosphate scaffolds are used for bone regeneration in dentistry. However, in conventional granules, the macropore interconnectivity is poor and has varying size. Herein, we developed a productive method for fabricating carbonate apatite honeycomb granules with uniformly sized macropores based on extrusion molding. Each honeycomb granule possesses three hexagonal macropores of ∼290 μm along its diagonal. Owing to these macropores, honeycomb granules simultaneously formed new and mature bone and blood vessels in both the interior and exterior of the granules at 4 weeks after implantation. The honeycomb granules are useful for achieving rapid osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Toshiki Yanagisawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaya Shimabukuro
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
14
|
Jing T, Yi Liu, Xu L, Chen C, Liu F. The incorporation of β-tricalcium phosphate nanoparticles within silk fibroin composite scaffolds for enhanced bone regeneration: An in vitro and in vivo study. J Biomater Appl 2022; 36:1567-1578. [PMID: 35135370 DOI: 10.1177/08853282211065621] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To investigate the osteogenesis of β-tricalcium phosphate nanoparticles-incorporated silk fibroin (SF/β-TCP) composite scaffolds, SF-based scaffolds with different β-TCP proportion (2/1, 1/1, and 1/2) were fabricated by freeze-drying technology in the present study. Structural and physicochemical properties of SF-based scaffolds were evaluated by using scanning electron microscope, X-ray diffraction, Fourier transformed infrared spectroscopy (ATR-FTIR) and transmission electron microscope. Biocompatibility and osteogenesis of SF/β-TCP scaffolds were investigated by using bone marrow mesenchymal stem cells (BMSCs). Eight New Zealand rabbits were selected, while four 8-mm-diameter calvarial defects were created in each rabbit to place SF/β-TCP scaffolds. The harvested specimens at 4 and 12 weeks were used to evaluate the bone forming ability by micro-CT and histological examination. The results suggested incorporation of β-TCP displayed flake-like pore morphology with proper pore sizes. With the increasing proportion of β-TCP, composite scaffolds exhibited higher compressive strength, lower swelling ratio and degradation rate, as well as enhanced biomineralization capacity. Alkaline phosphatase activity and collagen type I expression levels of BMSCs were significantly increased in the presence of β-TCP nanoparticles. All composite scaffolds with different β-TCP proportion had good bone formation ability at 12 weeks. Among them, SF/β-TCP (1/2) scaffold exhibited the favorable osteogenesis capability which had great potential for applications in bone regeneration.
Collapse
Affiliation(s)
- Tienan Jing
- Department of Oral Mucosa Disease, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yi Liu
- Department of Orthodontics, School and Hospital of Stomatology, 162778China Medical University, Shenyang, China
| | - Li Xu
- Department of Laboratory Medicine, First Hospital of China Medical University, Shenyang, China
| | - Cen Chen
- College of Life College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou China
| | - Fan Liu
- Department of Orthodontics, School and Hospital of Stomatology, 162778China Medical University, Shenyang, China
| |
Collapse
|
15
|
Nanostructured Zn-Substituted Monetite Based Material Induces Higher Bone Regeneration Than Anorganic Bovine Bone and β-Tricalcium Phosphate in Vertical Augmentation Model in Rabbit Calvaria. NANOMATERIALS 2021; 12:nano12010143. [PMID: 35010093 PMCID: PMC8746457 DOI: 10.3390/nano12010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
The capacity of a nanostructured multicomponent material composed of Zn-substituted monetite, amorphous calcium phosphate, hydroxyapatite and silica gel (MSi) to promote vertical bone augmentation was compared with anorganic bovine bone (ABB) and synthetic β-tricalcium phosphate (β-TCP). The relation between biological behavior and physicochemical properties of the materials was also studied. The in vivo study was conducted in a vertical bone augmentation model in rabbit calvaria for 10 weeks. Significant differences in the biological behavior of the materials were observed. MSi showed significantly higher bone regeneration (39%) than ABB and β-TCP (24%). The filled cylinder volume was similar in MSi (92%) and ABB (91%) and significantly lower in β-TCP (81%) implants. In addition, β-TCP showed the highest amount of non-osteointegrated particles (17%). MSi was superior to the control materials because it maintains the volume of the defect almost full, with the highest bone formation, the lowest number of remaining particles, which are almost fully osteointegrated and having the lowest amount of connective tissue. Besides, the bone formed was mature, with broad trabeculae, high vascularization and osteogenic activity. MSi resorbs gradually over time with an evident increment of the porosity and simultaneous colonization for vascularized new bone. In addition, the osteoinductive behavior of MSi material was evidenced.
Collapse
|
16
|
Fabrication and properties of βTCP/Zeolite/Gelatin scaffold as developed scaffold in bone regeneration: in vitro and in vivo studies. Biocybern Biomed Eng 2020. [DOI: 10.1016/j.bbe.2020.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Sánchez-Garcés MÁ, Camps-Font O, Escoda-Francolí J, Muñoz-Guzón F, Toledano-Serrabona J, Gay-Escoda C. Short time guided bone regeneration using beta-tricalcium phosphate with and without fibronectin - An experimental study in rats. Med Oral Patol Oral Cir Bucal 2020; 25:e532-e540. [PMID: 32388521 PMCID: PMC7338076 DOI: 10.4317/medoral.23564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this histomorphometric study was to assess the bone regeneration potential of beta-tricalcium phosphate with fibronectin (β-TCP-Fn) in critical-sized defects (CSDs) in rats calvarial, to know whether Fn improves the new bone formation in a short time scope.
Material and Methods CSDs were created in 30 Sprague Dawley rats, and divided into four groups (2 or 6 weeks of healing) and type of filling (β-TCP-Fn, β-TCP, empty control). Variables studied were augmented area (AA), gained tissue (GT), mineralized/non mineralized bone matrix (MBM/NMT) and bone substitute (BS).
Results 60 samples at 2 and six weeks were evaluated. AA was higher for treatment groups comparing to controls (p < 0.001) and significant decrease in BS area in the β-TCP-Fn group from 2 to 6 weeks (p = 0.031). GT was higher in the β-TCP-Fn group than in the controls expressed in % (p = 0.028) and in mm2 (p = 0.011), specially at two weeks (p=0.056).
Conclusions Both β-TCP biomaterials are effective as compared with bone defects left empty in maintaining the volume. GT in defects regeneration filed with β-TCP-Fn are significantly better in short healing time when comparing with controls but not for β-TCP used alone in rats calvarial CSDs. Key words:Bone regeneration, biomaterials, experimental design, histology.
Collapse
Affiliation(s)
- M-Á Sánchez-Garcés
- School of Medicine and Health Sciences Campus de Bellvitge, University of Barcelona Pavelló Govern, 2ª planta, Despatx 2.9, C/ Feixa Llarga, s/n 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Pinto RV, Gomes PS, Fernandes MH, Costa ME, Almeida MM. Glutaraldehyde-crosslinking chitosan scaffolds reinforced with calcium phosphate spray-dried granules for bone tissue applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110557. [DOI: 10.1016/j.msec.2019.110557] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
|
19
|
Escoda-Francolí J, Sánchez-Garcés MÁ, Gimeno-Sandig Á, Muñoz-Guzón F, Barbany-Cairó JR, Badiella-Busquets L, Gay-Escoda C. Guided bone regeneration using beta-tricalcium phosphate with and without fibronectin-An experimental study in rats. Clin Oral Implants Res 2018; 29:1038-1049. [PMID: 30267433 DOI: 10.1111/clr.13370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This histomorphometric study compared bone regeneration potential of beta-tricalcium phosphate with fibronectin (β-TCP-Fn) in critical-sized calvarial defects (CSDs) in rats to assess whether fibronectin (Fn) improved new bone formation. MATERIAL AND METHODS Critical-sized calvarial defects were created in 30 adult male Sprague Dawley rats, which were divided into four groups according to the time of euthanasia (6 or 8 weeks of healing) and type of filling (β-TCP-Fn/6 weeks, β-TCP/6 weeks, β-TCP-Fn/8 weeks and β-TCP/8 weeks). The primary variables related to new bone formation were augmented area (AA) and gained tissue (GT; sum of mineralized bone matrix [MBM] and bone substitute [BS]). Secondary variables were the diameter of the defect, MBM, non-mineralized tissue (NMT) and BS. RESULTS A total of 29 rats and 58 histological samples were evaluated, 28 (48.3%) samples obtained at 6 weeks and 30 (51.7%) at 8 weeks, homogeneously distributed between right and left sides. Thirteen (22.4%) were treated with β-TCP-Fn, 16 (27.6%) with β-TCP and 29 (50%) were controls. At 8 weeks, histomorphometric analysis showed significant differences in AA using β-TCP and β-TCP-Fn versus controls (p = 0.001 and p = 0.005, respectively). Bone turnover expressed as % within the target area was slightly higher but not statistically significant in the β-TCP-Fn than in β-TCP (MBM) at 6 weeks versus 8 weeks (p = 0.067 and p = 0.335, respectively). Finally, the total GT area in mm2 was higher using β-TCP-Fn as compared to β-TCP (p = 0.044). CONCLUSIONS β-TCP-Fn was slightly but non-significantly more effective than β-TCP without Fn for improving the volume of regenerated bone in CSDs of rats, possibly allowing a more efficient bone remodelling process. This effect however should continue being investigated.
Collapse
Affiliation(s)
- Jaume Escoda-Francolí
- Oral Surgery and Implantology, Faculty of Dentistry, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL Institute), L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - María Ángeles Sánchez-Garcés
- Oral Surgery and Implantology, Faculty of Dentistry, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL Institute), L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Álvaro Gimeno-Sandig
- Animal Research Facility, L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Fernando Muñoz-Guzón
- Department of Veterinary Clinical Sciences, University of Santiago de Compostela, Lugo, Spain
| | - Joan R Barbany-Cairó
- Department of Physiological Sciences II, Faculty of Medicine, L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Llorenç Badiella-Busquets
- The Applied Statistics Service, Autonomous University of Barcelona, Cerdanyola del Vallés, Barcelona, Spain
| | - Cosme Gay-Escoda
- Oral and Maxillofacial Surgery, Faculty of Dentistry, IDIBELL Institute, L'Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain.,Oral Surgery and Implantology, EFHRE International University (FUCSO), Barcelona, Spain.,Oral and Maxillofacial Department, Centro Médico Teknon, Barcelona, Spain
| |
Collapse
|
20
|
Bothe F, Lotz B, Seebach E, Fischer J, Hesse E, Diederichs S, Richter W. Stimulation of calvarial bone healing with human bone marrow stromal cells versus inhibition with adipose-tissue stromal cells on nanostructured β-TCP-collagen. Acta Biomater 2018; 76:135-145. [PMID: 29933108 DOI: 10.1016/j.actbio.2018.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/28/2022]
Abstract
Bioactive functional scaffolds are essential for support of cell-based strategies to improve bone regeneration. Adipose-tissue-derived-stromal cells (ASC) are more accessible multipotent cells with faster proliferation than bone-marrow-derived-stromal-cells (BMSC) having potential to replace BMSC for therapeutic stimulation of bone-defect healing. Their osteogenic potential is, however, lower compared to BMSC, a deficit that may be overcome in growth factor-rich orthotopic bone defects with enhanced bone-conductive scaffolds. Objective of this study was to compare the therapeutic potency of human ASC and BMSC for bone regeneration on a novel nanoparticulate β-TCP/collagen-carrier (β-TNC). Cytotoxicity of β-TCP nanoparticles and multilineage differentiation of cells were characterized in vitro. Cell-seeded β-TNC versus cell-free controls were implanted into 4 mm calvarial bone-defects in immunodeficient mice and bone healing was quantified by µCT at 4 and 8 weeks. Tissue-quality and cell-origin were assessed by histology. β-TNC was non-toxic, radiolucent and biocompatible, lent excellent support for human cell persistence and allowed formation of human bone tissue by BMSC but not ASC. Opposite to BMSC, ASC-grafting significantly inhibited calvarial bone healing compared to controls. Bone formation progressed significantly from 4 to 8 weeks only in BMSC and controls yielding 5.6-fold more mineralized tissue in BMSC versus ASC-treated defects. Conclusively, β-TNC was simple to generate, biocompatible, osteoconductive, and stimulated osteogenicity of BMSC to enhance calvarial defect healing while ASC had negative effects. Thus, an orthotopic environment and β-TNC could not compensate for cell-autonomous deficits of ASC which should systematically be considered when choosing the right cell source for tissue engineering-based stimulation of bone regeneration. STATEMENT OF SIGNIFICANCE Bone-marrow-derived-stromal cells (BMSC) implanted on bone replacement materials can support bone defect healing and adipose-tissue-derived-stromal cells (ASC) being more accessible and better proliferating are considered as alternate source. This first standardized comparison of the bone regeneration potency of human ASC and BMSC was performed on a novel nanoparticular β-TCP-enriched collagen-carrier (β-TNC) designed to overcome the known inferior osteogenicity of ASC. β-TNC was non-toxic, biocompatible and osteoconductive supporting human bone formation and defect-closure by BMSC but not ASC. Long-term cell-persistence and the distinct secretome of ASC appear as main reasons why ASC inhibited bone healing opposite to BMSC. Overall, ASC-grafting is at considerable risk of producing negative effects on bone-healing while no such risks are known for BMSC.
Collapse
|
21
|
Taz M, Bae SH, Jung HI, Cho HD, Lee BT. Bone regeneration strategy by different sized multichanneled biphasic calcium phosphate granules: In vivo evaluation in rabbit model. J Biomater Appl 2018; 32:1406-1420. [DOI: 10.1177/0885328218768605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A variety of synthetic materials are currently in use as bone substitutes, among them a new calcium phosphate-based multichannel, cylindrical, granular bone substitute that is showing satisfactory biocompatibility and osteoconductivity in clinical applications. These cylindrical granules differ in their mechanical and morphological characteristics such as size, diameter, surface area, pore size, and porosity. The aim of this study is to investigate whether the sizes of these synthetic granules and the resultant inter-granular spaces formed by their filling critical-sized bone defects affect new bone formation characteristics and to determine the best formulations from these individual types by combining the granules in different proportions to optimize the bone tissue regeneration. We evaluated two types of multichanneled cylindrical granules, 1 mm and 3 mm in diameter, combined the granules in two different proportions (wt%), and compared their different mechanical, morphological, and in vitro and in vivo biocompatibility characteristics. We assessed in vitro biocompatibility and cytotoxicity using MC3T3-E1 osteoblast-like cells using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and confocal imaging. In vivo investigation in a rabbit model indicated that all four samples formed significantly better bone than the control after four weeks and eight weeks of implantation. Micro-computed tomography analysis showed more bone formation by the 1 mm cylindrical granules with 160 ± 10 µm channeled pore and 50% porosity than the other three samples ( p<.05), which we confirmed by histological analysis.
Collapse
Affiliation(s)
- Mirana Taz
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Sang Ho Bae
- Department of Surgery, College of Medicine, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Hae Il Jung
- Department of Surgery, College of Medicine, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Hyun-Deuk Cho
- Department of Pathology, College of Medicine, Soonchunhyang University Hospital, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
22
|
Köse S, Kankilic B, Gizer M, Ciftci Dede E, Bayramli E, Korkusuz P, Korkusuz F. Stem Cell and Advanced Nano Bioceramic Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:317-342. [PMID: 30357696 DOI: 10.1007/978-981-13-0947-2_17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bioceramics are type of biomaterials generally used for orthopaedic applications due to their similar structure with bone. Especially regarding to their osteoinductivity and osteoconductivity, they are used as biodegradable scaffolds for bone regeneration along with mesenchymal stem cells. Since chemical properties of bioceramics are important for regeneration of tissue, physical properties are also important for cell proliferation. In this respect, several different manufacturing methods are used for manufacturing nano scale bioceramics. These nano scale bioceramics are used for regeneration of bone and cartilage both alone or with other types of biomaterials. They can also act as carrier for the delivery of drugs in musculoskeletal infections without causing any systemic toxicity.
Collapse
Affiliation(s)
- Sevil Köse
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Atilim University, Ankara, Turkey.
| | - Berna Kankilic
- Head of Certification, Directorate of Directives, Turkish Standards Institution, Ankara, Turkey
| | - Merve Gizer
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Eda Ciftci Dede
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Erdal Bayramli
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Feza Korkusuz
- Department of Sports Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
23
|
|
24
|
Reinares-Fisac D, Veintemillas-Verdaguer S, Fernández-Díaz L. Conversion of biogenic aragonite into hydroxyapatite scaffolds in boiling solutions. CrystEngComm 2017. [DOI: 10.1039/c6ce01725h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Lee DH, Tripathy N, Shin JH, Song JE, Cha JG, Min KD, Park CH, Khang G. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Int J Biol Macromol 2016; 95:14-23. [PMID: 27818295 DOI: 10.1016/j.ijbiomac.2016.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022]
Abstract
Scaffolds, used for tissue regeneration are important to preserve their function and morphology during tissue healing. Especially, scaffolds for bone tissue engineering should have high mechanical properties to endure load of bone. Silk fibroin (SF) from Bombyx mori silk cocoon has potency as a type of biomaterials in the tissue engineering. β-tricalcium phosphate (β-TCP) as a type of bioceramics is also critical as biomaterials for bone regeneration because of its biocompatibility, osteoconductivity, and mechanical strength. The aim of this study was to fabricate three-dimensional SF/β-TCP scaffolds and access its availability for bone grafts through in vitro and in vivo test. The scaffolds were fabricated in each different ratios of SF and β-TCP (100:0, 75:25, 50:50, 25:75). The characterizations of scaffolds were conducted by FT-IR, compressive strength, porosity, and SEM. The in vitro and in vivo tests were carried out by MTT, ALP, RT-PCR, SEM, μ-CT, and histological staining. We found that the SF/β-TCP scaffolds have high mechanical strength and appropriate porosity for bone tissue engineering. The study showed that SF/β-TCP (75:25) scaffold exhibited the highest osteogenesis compared with other scaffolds. The results suggested that SF/β-TCP (75:25) scaffold can be applied as one of potential bone grafts for bone tissue engineering.
Collapse
Affiliation(s)
- Dae Hoon Lee
- Department of BIN Convergence Technology, Department of Polymer. Nano Science & Technology and Polymer Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Nirmalya Tripathy
- Department of BIN Convergence Technology, Department of Polymer. Nano Science & Technology and Polymer Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Jae Hun Shin
- Department of BIN Convergence Technology, Department of Polymer. Nano Science & Technology and Polymer Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Jeong Eun Song
- Department of BIN Convergence Technology, Department of Polymer. Nano Science & Technology and Polymer Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Jae Geun Cha
- Department of BIN Convergence Technology, Department of Polymer. Nano Science & Technology and Polymer Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Kyung Dan Min
- Research and Development Institute, CGbio Corporation, Seongnam, Korea
| | - Chan Hum Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, 1-1 Okcheon, Chuncheon, Gangwon 200-702, Republic of Korea
| | - Gilson Khang
- Department of BIN Convergence Technology, Department of Polymer. Nano Science & Technology and Polymer Fusion Research Center, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea.
| |
Collapse
|
26
|
Stojanović ZS, Ignjatović N, Wu V, Žunič V, Veselinović L, Škapin S, Miljković M, Uskoković V, Uskoković D. Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:746-757. [PMID: 27524076 PMCID: PMC4987716 DOI: 10.1016/j.msec.2016.06.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/22/2016] [Accepted: 06/13/2016] [Indexed: 12/23/2022]
Abstract
Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome these issues, the preparation procedure was divided to two stages: dicalcium phosphate platelets synthesized in the first step were used as a precursor for the synthesis of 1D HA in the second stage. Despite the elongated particle morphologies, both the precursor and the final product exhibited excellent biocompatibility and caused no reduction of viability when tested against osteoblastic MC3T3-E1 cells in 2D culture up to the concentration of 2.6mg/cm(2). X-ray powder diffraction combined with a range of electron microscopies and laser diffraction analyses was used to elucidate the formation mechanism and the microstructure of the final particles. The two-step synthesis involved a more direct transformation of DCP to 1D HA with the average diameter of 37nm and the aspect ratio exceeding 100:1. The comparison of crystalline domain sizes along different crystallographic directions showed no signs of significant anisotropy, while indicating that individual nanowires are ordered in bundles in the b crystallographic direction of the P63/m space group of HA. Intermediate processes, e.g., dehydration of dicalcium phosphate, are critical for the formation of 1D HA alongside other key aspects of this phase transformation, it must be investigated in more detail in the continuous design of smart HA micro- and nano-structures with advanced therapeutic potentials.
Collapse
Affiliation(s)
- Zoran S Stojanović
- Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia
| | - Nenad Ignjatović
- Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia
| | - Victoria Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052, USA
| | - Vojka Žunič
- Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Ljiljana Veselinović
- Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia
| | - Srečo Škapin
- Advanced Materials Department, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Miroslav Miljković
- Laboratory for Electron Microscopy, Faculty of Medicine University of Niš, Dr. Zoran Đinđić Boulevard 81, 18 000 Niš, Serbia
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, IL 60607-7052, USA; Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, 9401 Jeronimo Road, Irvine, CA 92618-1908, USA
| | - Dragan Uskoković
- Centre for Fine Particles Processing and Nanotechnologies, Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/4, 11000 Belgrade, Serbia.
| |
Collapse
|