1
|
Guo W, Peng Z, Ning D, Wu Y, Mao Y, Wang E, Zhang M, Zhang Y, Zhang W, You H, Long Y, Guo F, Mai H. Chitosan microporous foam filled 3D printed polylactic acid-pearl macroporous scaffold: Dual-scale porous structure, biological and mechanical properties. Int J Biol Macromol 2025; 303:140508. [PMID: 39889981 DOI: 10.1016/j.ijbiomac.2025.140508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
A bone scaffold with well-designed porous structure and material composition is essential for bone regeneration as it supports various biological functions. In this study, a dual-scale porous polylactic acid-pearl/chitosan (PLA-P/CS) scaffold was developed by integrating 3D printing and conventional techniques. An interconnected macroporous PLA-P scaffold with pore sizes ranging from 680-800 μm was fabricated using FDM 3D printing. Additionally, a microporous CS foam with pore sizes of 10-200 μm was prepared via freeze-drying within the macropores of the 3D-printed scaffold. The microporous CS foam enhanced the scaffold's hydrophilicity while preserving its favorable mechanical properties. Moreover, the dual-scale porous structure demonstrated improved biomineralization, due to its larger specific surface area and increased nucleation sites, along with the electrostatic adsorption provided by the amino and hydroxyl functional groups of chitosan. Furthermore, cell culture experiments revealed the dual-scale porous structure, and the effects of CS enhanced the cellular response of BMSCs. More importantly, a 12-week in vivo study on rat skull defect repair demonstrated that the dual-scale porous PLA-P/CS scaffold exhibited enhanced bone formation. These findings suggest that designing a graded porous structure and optimizing material composition can effectively enhance biological responses, thereby facilitating bone regeneration.
Collapse
Affiliation(s)
- Wang Guo
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
| | - Ziying Peng
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Dan Ning
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yunlei Wu
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yufeng Mao
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Enyu Wang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Mingzhi Zhang
- International Zhuang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China
| | - Yong Zhang
- International Zhuang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China
| | - Wenjie Zhang
- International Zhuang Hospital, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China
| | - Hui You
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Yu Long
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Mechanical Engineering, Guangxi University, Nanning 530004, China; Institute of Laser Intelligent Manufacturing and Precision Processing, Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
| | - Feng Guo
- Department of Oral Anatomy and Physiology, College of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China.
| | - Huaming Mai
- Department of Oral and Maxillofacial Surgery, College & Hospital of Stomatology, GuiLin Medical University, Guilin 541004, China; Department of Oral and Maxillofacial Surgery, College &Hospital of Stomatology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Nanning 530021, China; Guangxi Clinical Research Center for Craniofacial Deformity, Nanning 530021, China.
| |
Collapse
|
2
|
Chen L, Xie Y, Chen X, Li H, Lu Y, Yu H, Zheng D. O-carboxymethyl chitosan in biomedicine: A review. Int J Biol Macromol 2024; 275:133465. [PMID: 38945322 DOI: 10.1016/j.ijbiomac.2024.133465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/01/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
O-carboxymethyl chitosan (O-CMC) is a chitosan derivative produced through the substitution of hydroxyl (-OH) functional groups in glucosamine units with carboxymethyl (-CH2COOH) substituents, effectively addressing the inherent solubility issues of chitosan in aqueous solutions. O-CMC has garnered significant interest due to its enhanced solubility, elevated viscosity, minimal toxicity, and advantageous biocompatibility properties. Furthermore, O-CMC demonstrates antibacterial, antifungal, and antioxidant characteristics, rendering it a promising candidate for various biomedical uses such as wound healing, tissue engineering, anti-tumor therapies, biosensors, and bioimaging. Additionally, O-CMC is well-suited for the fabrication of nanoparticles, hydrogels, films, microcapsules, and tablets, offering opportunities for effective drug delivery systems. This review outlines the distinctive features of O-CMC, offers analyses of advancements and future potential based on current research, examines significant obstacles for clinical implementation, and foresees its ongoing significant impacts in the realm of biomedicine.
Collapse
Affiliation(s)
- Lingbin Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yandi Xie
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China
| | - Xiaohang Chen
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hengyi Li
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hao Yu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Department of Prosthodontics & Research Center of Dental Esthetics and Biomechanics, Fujian Medical University, Fuzhou, China.
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
3
|
Zhang Y, Wei H, Hua B, Hu C, Zhang W. Preparation and application of the thermo-/pH-/ ion-sensitive semi-IPN hydrogel based on chitosan. Int J Biol Macromol 2024; 258:128968. [PMID: 38154725 DOI: 10.1016/j.ijbiomac.2023.128968] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 12/30/2023]
Abstract
Chitosan based hydrogels with multiple stimulus responses have broad application prospects in many fields. Considering the advantages of semi interpenetrating network (IPN) technology and the special temperature and ion responsiveness of polymers containing zwitterionic groups, a semi-IPN hydrogel was prepared through in situ free radical polymerization of N,N-dimethyl acrylamide and [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide with polyethylene glycol dimethacrylate as a crosslinker and carboxymethyl chitosan as filler. The gel mass fraction and swelling ratio were measured, and the preparation conditions were optimized. The result indicated that the hydrogel possessed a unique thermo-/pH-/ ion-sensitive behavior. The swelling ratio increased with the increase of temperature and ion concentration, and showed a decreasing trend with the increase in pH. In addition, the hydrogel was stable when the stimuli changed. Adsorption behavior of the hydrogel to Eosin Y (EY) was systematically investigated. The adsorption process can be described well by the pseudo-second-order kinetic model and Langmuir isotherm model, indicating that it was a chemical adsorption. The experiments indicated that the hydrogel exhibited good antifouling and reusability features. Therefore, the semi-IPN hydrogel with antifouling properties and thermo-/pH-/ion-sensitivity can be easily manufactured is expected to find applications in water treatment fields.
Collapse
Affiliation(s)
- Yaqi Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Hongliang Wei
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Bingya Hua
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Chunwang Hu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| |
Collapse
|
4
|
Jolly R, Furkan M, Khan AA, Ahmed SS, Khan RH, Singh N, Shakir M. Zizyphus mauritiana seed extract: Paving the way for next-generation bone constructs with nano-fluorohydroxyapatite/carboxymethyl chitosan nanocomposite scaffold. Int J Biol Macromol 2024; 254:127913. [PMID: 37939772 DOI: 10.1016/j.ijbiomac.2023.127913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
This is the first study that explored the potential use of Zizyphus mauritiana seed extract (ZSE) to synthesize nano-fluorohydroxyapatite/carboxymethyl chitosan nanocomposite scaffolds at different concentrations (CFZ1, CFZ2 and CFZ3) using co-precipitation method. The proposed scaffolds showed presence of intermolecular H bonding interactions between the constituents, according to the FTIR. The mechanical studies revealed shore hardness of 72 ± 4.6 and optimal compressive modulus in case of CFZ3 [1654.48 ± 1.6 MPa], that was comparable with that of human cortical bone. The SEM, TEM and platelet adhesion images corroborated uniformly distributed needle like particles in case of CFZ3 with an average size ranging from 22 to 26 nm, linked rough morphology, and appropriate hemocompatibility. The markedly up regulation in the ALP activity and protein adsorption upon increasing ZSE concentration demonstrated that CFZ nanocomposite scaffolds were compatible with osteoblastic cells relative to CF nanocomposite. The cytotoxicity study indicated that CFZ nanocomposite do not induce toxicity over MG-63 and did not aggravate LDH leakage in contrast to CF. The histopathological investigations on albino rats confirmed significantly improved regeneration of bone in the repair of a critical-size [8 mm] calvarium defect. Therefore, CFZ3 nanocomposite scaffold represents a simple, off-the-shelf solution to the combined challenges associated with bone defects.
Collapse
Affiliation(s)
- Reshma Jolly
- Indian Reference Material (Bharatiya Nirdeshak Dravya) Divison, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Mohammad Furkan
- Interdisciplinary Biotechnology Unit, AMU, Aligarh 202002, India
| | - Aijaz Ahmed Khan
- Neuroanatomy Laboratory, Department of Anatomy, J. N. Medical College, AMU, Aligarh 202002, India
| | - Syed Sayeed Ahmed
- Department of Oral and Maxillofacial Surgery, Dr. Ziauddin Ahmad Dental College, AMU, Aligarh 202002,India
| | | | - Nahar Singh
- Indian Reference Material (Bharatiya Nirdeshak Dravya) Divison, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India.
| | - Mohammad Shakir
- Inorganic Chemistry Laboratory, Department of Chemistry, AMU, Aligarh 202002, India.
| |
Collapse
|
5
|
Pelin IM, Popescu I, Calin M, Rebleanu D, Voicu G, Ionita D, Zaharia MM, Constantin M, Fundueanu G. Tri-Component Hydrogel as Template for Nanocrystalline Hydroxyapatite Deposition Using Alternate Soaking Method for Bone Tissue Engineering Applications. Gels 2023; 9:905. [PMID: 37998995 PMCID: PMC10671408 DOI: 10.3390/gels9110905] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Composite hydrogels containing apatite-like particles can act as scaffolds for osteoblast proliferation, with applications in bone tissue engineering. In this respect, porous biocompatible hydrogels were obtained from chitosan, oxidized pullulan, and PVA in different ratios. The stability of the hydrogels was ensured both by covalent bonds between aldehyde groups of oxidized pullulan and free amino groups of chitosan, and by physical bonds formed during freeze-thaw cycles and lyophilization. The deposition of calcium phosphates was performed by alternate soaking of the porous hydrogels into solutions with calcium and phosphate ions, assuring a basic pH required for hydroxyapatite formation. The mineralized hydrogels were characterized using FTIR spectroscopy, scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis, showing that inorganic particles containing between 80 and 92% hydroxyapatite were deposited in a high amount on the pore walls of the polymeric matrix. The composition of the organic matrix influenced the crystallization of calcium phosphates and the mechanical properties of the composite hydrogels. In vitro biological tests showed that mineralized hydrogels support the proliferation of MG-63 osteoblast-like cells to a greater extent compared to pristine hydrogels.
Collapse
Affiliation(s)
- Irina Mihaela Pelin
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (D.I.); (M.-M.Z.); (G.F.)
| | - Irina Popescu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (D.I.); (M.-M.Z.); (G.F.)
| | - Manuela Calin
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.C.); (D.R.); (G.V.)
| | - Daniela Rebleanu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.C.); (D.R.); (G.V.)
| | - Geanina Voicu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (M.C.); (D.R.); (G.V.)
| | - Daniela Ionita
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (D.I.); (M.-M.Z.); (G.F.)
| | - Marius-Mihai Zaharia
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (D.I.); (M.-M.Z.); (G.F.)
| | - Marieta Constantin
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (D.I.); (M.-M.Z.); (G.F.)
| | - Gheorghe Fundueanu
- “Petru Poni” Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania; (I.M.P.); (D.I.); (M.-M.Z.); (G.F.)
| |
Collapse
|
6
|
Koc S(G, Baygar T, Özarslan S, Sarac N, Ugur A. Fabrication and Characterization of a Multifunctional Coating to Promote the Osteogenic Properties of Orthopedic Implants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6608. [PMID: 37834746 PMCID: PMC10574367 DOI: 10.3390/ma16196608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Titanium-based alloys are used in orthopedic applications as fixation elements, hard tissue replacements in artificial bones, and dental implants. Despite their wide range of applications, metallic implant defects and failures arise due to inadequate mechanical bonding, postoperative clotting problems, aseptic loosening, and infections. To improve the surface bioactivity and reduce the corrosion rate of the Ti6Al4V alloy, multi-layered coatings (HAp, BG, Cs, and Hep) were applied via electrophoretic deposition (EPD). XRD images showed the presence of HAp within the coating. In vitro investigation: cell line NIH-3T3 fibroblasts were seeded on the non-coated and coated Ti6Al4V substrates, and their cellular behavior was evaluated. The results indicated that the HApBGCsHep coating could enhance the adhesion and proliferation of NIH 3T3 cells. In addition, the potentiodynamic polarization results are compatible with the in vitro outcome.
Collapse
Affiliation(s)
- Serap (Gungor) Koc
- Department of Mechanical Engineering, Faculty of Engineering, Van Yuzuncu Yil University, 65080 Van, Turkey
| | - Tuba Baygar
- Research Laboratories Center, Mugla Sitki Kocman University, 48000 Mugla, Turkey;
| | - Selma Özarslan
- Department of Physics, Faculty of Science, Hatay Mustafa Kemal University, 31060 Hatay, Turkey;
| | - Nurdan Sarac
- Department of Biology, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey;
| | - Aysel Ugur
- Section of Medical Microbiology, Department of Basic Sciences, Faculty of Dentistry, Gazi University, 06500 Ankara, Turkey;
| |
Collapse
|
7
|
Pan Q, Zhou C, Yang Z, Wang C, He Z, Liu Y, Song S, Chen Y, Xie M, Li P. Preparation and characterization of functionalized chitosan/polyvinyl alcohol composite films incorporated with cinnamon essential oil as an active packaging material. Int J Biol Macromol 2023; 235:123914. [PMID: 36870659 DOI: 10.1016/j.ijbiomac.2023.123914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
In this study, amphiphilic chitosan (NPCS-CA) was synthesized by grafting quaternary phosphonium salt and cholic acid onto the chain of chitosan, aiming to develop an active edible film based on NPCS-CA and polyvinyl alcohol (PVA) incorporated with cinnamon essential oil (CEO) by the casting method. The chemical structure of the chitosan derivative was characterized by FT-IR, 1H NMR and XRD. Through the characterization of FT-IR, TGA, mechanical and barrier properties of the composite films, the optimal proportion of NPCS-CA/PVA was determined as 5/5. And, the tensile strength and elongation at break of the NPCS-CA/PVA (5/5) film with 0.4 % CEO were 20.32 MPa and 65.73 %, respectively. The results revealed that the NPCS-CA/PVA-CEO composite films exhibited an excellent ultraviolet barrier property at 200-300 nm and significantly reduced oxygen permeability, carbon dioxide permeability and water vapor permeability. Furthermore, the antibacterial property of film-forming solutions against E. coli, S. aureus, and C. lagenarium was distinctly improved with the increase of NPCS-CA/PVA proportion. And, the multifunctional films effectively extended the shelf-life of mangoes at 25 °C based on the characterization of surface changes and quality indexes. The NPCS-CA/PVA-CEO films could be developed as biocomposite food packaging material.
Collapse
Affiliation(s)
- Qingyan Pan
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chuang Zhou
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China.
| | - Ziming Yang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China.
| | - Chao Wang
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Zuyu He
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Yunhao Liu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Shuhui Song
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China
| | - Yu Chen
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Mubiao Xie
- School of Chemistry and Chemical Enjineering, Lingnan Normal University, Zhanjiang 524048, PR China
| | - Puwang Li
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, PR China.
| |
Collapse
|
8
|
Kashyap PK, Chauhan S, Negi YS, Goel NK, Rattan S. Biocompatible carboxymethyl chitosan-modified glass ionomer cement with enhanced mechanical and anti-bacterial properties. Int J Biol Macromol 2022; 223:1506-1520. [PMID: 36368362 DOI: 10.1016/j.ijbiomac.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
Due to the potential adverse effects of conventional dental cements, the demand for biocompatible cements have grown tremendously in the field of dentistry. In this respect, Glass ionomer cements (GICs) are being developed by different researchers. However, low mechanical strength of GIC make them unsuitable for application in high-stress areas. Thus, numerous initiatives to improve mechanical performance have been attempted till date including incorporation of reinforcing fillers. Novelty of the study lies in using carboxymethyl chitosan (CMC) to develop a biocompatible dental cement (DC/CMC-m-GP), which would have enhanced mechanical strength due to greater interaction of CMC with the particles of GIC and better cyto-compatibility due to its cell-proliferation activity. The mechanical strength, acid erosion and fluoride release of DC/CMC-m-GP were studied and compared with control dental cement (DC/Control). DC/CMC-m-GP shows compressive strength of 157.45 M Pa and flexural strength of 18.76 M Pa which was higher as compared to DC/Control. The morphology of the GICs were studied through FESEM. Anti-microbial activity of DC/CMC-m-GP was studied by Agar disc-diffusion method and biofilm assay against S. mutans, which shows that DC/CMC-m-GP inhibits bacterial adhesion on its surface. MTT assay infers that DC/CMC-m-GP was non-cytotoxic and did not affect the cell viability significantly.
Collapse
Affiliation(s)
| | - Sonal Chauhan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, India.
| | | | - Narender Kumar Goel
- Radiation Technology Development Division, Bhabha Atomic Research Centre, India.
| | - Sunita Rattan
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, India.
| |
Collapse
|
9
|
Pardeshi SR, More MP, Patil PB, Mujumdar A, Naik JB. Statistical optimization of voriconazole nanoparticles loaded carboxymethyl chitosan-poloxamer based in situ gel for ocular delivery: In vitro, ex vivo, and toxicity assessment. Drug Deliv Transl Res 2022; 12:3063-3082. [PMID: 35525868 DOI: 10.1007/s13346-022-01171-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 12/16/2022]
Abstract
The research study reflects the development of novel voriconazole (VCZ) loaded nanoparticles (NPs) for prolonged delivery for the management of ocular diseases. The in situ ophthalmic gel was prepared by incorporating NPs into carboxymethyl chitosan (CMCh) and poloxamer. The central composite design was used to optimize the process for the preparation of nanoparticles by the o/w solvent evaporation method. The developed nanoparticles were evaluated for the encapsulation efficiency (89.6 ± 1.2%), particle size (219.3 ± 1.8 nm), polydispersity index (PDI, 0.1), zeta potential (- 21.1 ± 1.12 mV), saturation solubility, DSC study, and drug release. The etherification process grafts carboxyl surface functional groups, on chitosan, and was confirmed by FTIR and NMR studies. The developed CMCh-poloxamer based gelling system was found to be clear and transparent with gelation temperature varying from 33 to 40 °C. The nanoparticle-loaded gel containing CMCh demonstrated enhanced antifungal activity against Candida albicans. The optimized batch containing CMCh showed improved mucoadhesion by 2.86-fold compared to VCZ nanosuspension. The drug release was prolonged up to 8 h with an ex vivo study suggesting the enhanced permeation across goat cornea estimated via fluorescent microscope. The hen's egg chorioallantoic membrane study revealed that the formulation was non-irritant and tolerated by the chorioallantoic membrane. The present study concludes that the VCZ loaded nanoparticulate in situ ophthalmic gel using CMCh may act as a potential alternative for traditional eye drops.
Collapse
Affiliation(s)
- Sagar R Pardeshi
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, Maharashtra, 425001, India
| | - Mahesh P More
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, 443101, India
| | - Pritam B Patil
- Department of Chemical Engineering, Shri S'ad Vidya Mandal Institute of Technology, Bharuch, Gujarat, 392001, India
| | - Arun Mujumdar
- Department of Bioresource Engineering, Macdonald College, McGill University, Ste. Anne de Bellevue, QC, Canada
| | - Jitendra B Naik
- University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon, Maharashtra, 425001, India.
| |
Collapse
|
10
|
Valencia-Gómez LE, Muzquiz-Ramos EM, Fausto-Reyes AD, Rodríguez-Arrellano PI, Rodríguez-González CA, Hernández-Paz JF, Reyes-Blas H, Olivas-Armendáriz I. O-carboxymethyl chitosan/gelatin/silver-copper hydroxyapatite composite films with enhanced antibacterial and wound healing properties. J Biomater Appl 2022; 37:773-785. [DOI: 10.1177/08853282221121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wound dressing composite films of O-carboxymethyl chitosan (OCMC) and gelatin were prepared and mixed with hydroxyapatite (HA) composited with Silver (Ag) and Copper (Cu) at different concentrations. The chemical, thermal, morphological, and biological properties of the composite films were studied. The analysis by FTIR confirmed the presence of interactions between gelatin and OCMC, and at the same time, the polymer matrix interactions with Ag-Cu/HA complex. The inclusion of nanoparticle to the composite was associated with an improvement of the thermal stability, morphological roughness, a 9–12% more hydrophobic behavior (composite C1, C5, and C8), increase in antibacterial activity from 23.2 to 33.1% for gram negative bacteria and from 37.28 to 40.59% for gram positive bacteria, and with a cell viability greater than 100% for 24 and 72 h. The films obtained can serve as a wound healing dressing and regenerating biomaterial.
Collapse
Affiliation(s)
- Laura-E Valencia-Gómez
- Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Juárez, México
| | - Elia-M Muzquiz-Ramos
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Saltillo, México
| | - Abril-D Fausto-Reyes
- Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Juárez, México
| | | | | | - Juan-F Hernández-Paz
- Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Juárez, México
| | - Hortensia Reyes-Blas
- Universidad Autónoma de Ciudad Juárez, Instituto de Ingeniería y Tecnología, Juárez, México
| | | |
Collapse
|
11
|
Salim EI, Abd El Khalik EAM, Shalaby TI, Ali EMM. Synthesis, characterisation and enhanced apoptotic effect of gemcitabine-loaded albumin nanoparticles coating with chitosan. Arch Physiol Biochem 2022; 128:970-978. [PMID: 32212969 DOI: 10.1080/13813455.2020.1742165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gemcitabine was loaded in albumin nanoparticles then coated with chitosan. The diameter of GEM-ANPs/CS was 200 ± 4 nm. Gemcitabine was loaded in GEM-ANPs/CS with an efficacy of 75%. The IC50 of GEM-ANPs/CS was found to be 12.98 and 6.08 μg/ml after incubation for 48 and 72 h with MCF-7 cells, respectively. Treatment of MCF-7 cells with IC50 of GEM-ANPS, and GEM-ANPS/CS resulted in membrane damage which led to elevated LDH activity of 4 and 3.4, and increasing GSH level of 4.6 and 9.3, respectively, when compared with untreated cells. DNA fragmentation and up-regulated of caspase-3 and p53 had illustrated the apoptotic effect of MCF-7 treated with GEM-ANPS/CS. The tumour suppressor RRM1 gene expression was down-regulated in MCF-7 cells treated with GEM-ANPS/CS. The modified ANPs coated with chitosan may be used as a promising nanomatrix for gemcitabine delivery and targeting to improve its therapeutic index against MCF-7 cells.
Collapse
Affiliation(s)
- Elsayed I Salim
- Research Laboratory of Molecular Carcinogenesis, Department of Zoology Faculty of Science, Tanta University, Tanta, Egypt
| | - Eman A M Abd El Khalik
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Thanaa I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ehab M M Ali
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23126574. [PMID: 35743019 PMCID: PMC9224397 DOI: 10.3390/ijms23126574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, bone tissue engineering (BTE), as a multidisciplinary field, has shown considerable promise in replacing traditional treatment modalities (i.e., autografts, allografts, and xenografts). Since bone is such a complex and dynamic structure, the construction of bone tissue composite materials has become an attractive strategy to guide bone growth and regeneration. Chitosan and its derivatives have been promising vehicles for BTE owing to their unique physical and chemical properties. With intrinsic physicochemical characteristics and closeness to the extracellular matrix of bones, chitosan-based composite scaffolds have been proved to be a promising candidate for providing successful bone regeneration and defect repair capacity. Advances in chitosan-based scaffolds for BTE have produced efficient and efficacious bio-properties via material structural design and different modifications. Efforts have been put into the modification of chitosan to overcome its limitations, including insolubility in water, faster depolymerization in the body, and blood incompatibility. Herein, we discuss the various modification methods of chitosan that expand its fields of application, which would pave the way for future applied research in biomedical innovation and regenerative medicine.
Collapse
|
13
|
Duarte ACA, Pereira RDFC, Carvalho SMD, Silva AGD, Araújo CTPD, Galo R, Dumont VC. Enhancing glass ionomer cement features by using the calcium phosphate nanocomposite. Braz Dent J 2022; 33:99-108. [PMID: 35766723 PMCID: PMC9645200 DOI: 10.1590/0103-6440202204887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/02/2022] [Indexed: 12/02/2022] Open
Abstract
This study showed the synthesis of Glass ionomer cements (GIC) modified with
calcium phosphate nanoparticles (nCaP). The nCaP/GIC were submitted to
mechanical compression and diametral tensile tests. The biocomposite were
characterized by scanning electron microscopy (SEM), energy-dispersive X-ray
spectroscopy (EDX), X-ray diffraction (XRD) and Fourier-transform infrared
spectroscopy (FTIR). Cytotoxicity and cell viability tests were performed on the
human bone marrow mesenchymal stem cells using a
3-(4,5-dimethylthiazol-2yl)2,5-diphenyl- tetrazolium-bromide assay and LIVE/DEAD
assays. Statistically significant differences were observed for mechanical
properties (Kruskal-Wallis, p<0.001), nCaP/GIC showed higher resistance to
compression and diametral traction. The SEM analyses revealed a uniform
distribution nCaP in the ionomer matrix. The EDX and XRD results indicated that
hydroxyapatite and calcium β-triphosphate phases. The FTIR spectra revealed the
asymmetric band of ν3PO43- between 1100-1030cm-1 and the vibration band
associated with ν1PO43- in 963cm-1 associated with nCaP. The nCaP/GIC presented
response to adequate cell viability and non-cytotoxic behavior. Therefore, the
new nCaP/GIC composite showed great mechanical properties, non-cytotoxic
behavior, and adequate response to cell viability with promising dental
applications.
Collapse
Affiliation(s)
- Ana Caroline Alves Duarte
- Department of Pediatric Clinics, Federal University of the Vales do Jequitinhonha e Mucuri - UFVJM, Diamantina-MG, Brasil
| | | | | | | | | | - Rodrigo Galo
- Department of Prosthodontics and Dental Materials, School of Dentistry of Ribeirão Preto, University of São Paulo Ribeirão Preto-SP, Brasil
| | | |
Collapse
|
14
|
Preparation and characterization of chitosan derivatives modified with quaternary ammonium salt and quaternary phosphate salt and its effect on tropical fruit preservation. Food Chem 2022; 387:132878. [PMID: 35421653 DOI: 10.1016/j.foodchem.2022.132878] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 01/11/2023]
Abstract
In this paper, HACC modified with (5-Carboxypentyl) (triphenyl) phosphonium bromide (HA-CS-NP) was synthesized. Then, a multifunctional food packaging composite film with good thermal stability and antibacterial functions was fabricated by HA-CS-NP and poly (vinyl alcohol) (PVA). The tensile strength and elongation at break of HA-CS-NP/PVA composite film at the weight ratio of 3/7 were 20.32 ± 1.02 MPa and 65.73 ± 3.29%, respectively. And, the inhibition rates of HA-CS-NP (0.5%) on Mango C. lagenarium and Papaya C. gloeosporioides on day 6 were up to 80.92 ± 4.12%. Compared with CK group, the weight loss of experimental groups were 23.96 ± 2.46 g/206 ± 7.25 g (mangoes) and 59.45 ± 3.06 g/496 ± 6.37 g (papaya), reduced by 35.76 ± 1.15%. Moreover, the final hardness value of the fruits coated with composite films was 4.94 ± 0.23 kg/cm3 and increased by 20.79 ± 1.04%, and the rot index was reduced by 71.43 ± 3.24%. The multifunctional HA-CS-NP/PVA coating has broad prospects in the application of food packaging.
Collapse
|
15
|
Physicochemical and biological properties of carboxymethyl chitosan zinc (CMCS-Zn)/α‑calcium sulfate hemihydrate (α-CSH) composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112496. [PMID: 34857282 DOI: 10.1016/j.msec.2021.112496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/30/2022]
Abstract
To improve the osteoinductivity, antibacterial activity, and clinical application of calcium sulfate hemihydrate (CSH), carboxymethyl chitosan zinc (CMCS-Zn) and α-CSH were prepared using different mass ratios. The setting time and injectability of the CMCS-Zn/α-CSH composite were increased with increasing CMCS-Zn content. After adding different amounts of CMCS-Zn to α-CSH, the fine lamellar structure of CMCS-Zn was found by scanning electron microscopy (SEM), which is evenly distributed in the matrix of α-CSH. With the increase of CMCS-Zn, the pores on the surface gradually increased. After mixing CMCS-Zn and α-CSH, no new phase was measured by X-ray diffraction (XRD) and Fourier transform (FTIR) spectroscopy. The degradation rate of CMCS-Zn/α-CSH decreased with increasing CMCS-Zn content, and the pH was stable during the degradation process. The release of Zn2+ increased with increasing CMCS-Zn content, while the release of Ca2+ decreased. Extracts of CMCS-Zn/α-CSH composites up-regulated the osteoinduction and migration of rat bone marrow stem cells. The antibacterial ability of CMCS-Zn/α-CSH was evaluated as a function of CMCS-Zn content. In the rat bone defect model, 5% CMCS-Zn/α-CSH group revealed a higher volume and density of trabeculae by micro-CT 8 weeks after the operation. Therefore, CMCS-Zn/α-CSH was demonstrated to be an adjustable, degradable, substitute biomaterial (with osteogenesis-promoting effects) for use in bone defects, which also has antibacterial activity that can suppress bone infection.
Collapse
|
16
|
Al-Malki AL, Bakkar A, Huwait EA, Barbour EK, Abulnaja KO, Kumosani TA, Moselhy SS. Strigol1/albumin/chitosan nanoparticles decrease cell viability, induce apoptosis and alter metabolomics profile in HepG2 cancer cell line. Biomed Pharmacother 2021; 142:111960. [PMID: 34352718 DOI: 10.1016/j.biopha.2021.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common causes of cancer-related deaths globally. Bioavailable, effective and safe therapeutic agents are urgently needed for cancer treatment. This study evaluated the metabolomics profiling, anti-proliferative and pro-apoptotic effects of strigol/albumin/chitosan nanoparticles (S/A/CNP) on HepG2 cell line. The diameter of S/A/CNP was (5 ± 0.01) nm. The IC50 was 180.4 nM and 47.6 nM for Strigol1 and S/A/CNP, respectively, after incubation for 24 h with HepG2 cells. By increasing the concentration of S/A/CNP, there was chromatin condensation, degranulation in the cytoplasm and shrinking in cell size indicating pro-apoptotic activity. Metabolomics profiling of the exposed cells by LC/MS/MS revealed that S/A/CNP up-regulated epigenetic intermediates (spermine and spermidine) and down-regulated energy production pathway and significantly decreased glutamine (P < 0.001). These findings demonstrated that S/A/CNP has anti-proliferative, apoptotic effects and modulate energetic, and epigenetic metabolites in the hepatocellular carcinoma cell line (HepG2).
Collapse
Affiliation(s)
- Abdulrahman L Al-Malki
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Saudi Arabia; Bioactive Natural Products Research Group, King Abdulaziz University. Jeddah, Saudi Arabia
| | - Ashraf Bakkar
- Modern Sciences and Arts University (MSA), 6th October, Giza, Egypt
| | - Etimad A Huwait
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Elie K Barbour
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Saudi Arabia; Director of R and D Department, Opticon Hygiene Consulting, Oechsli 7, 8807 Freienbach, Switzerland
| | - Kalid O Abulnaja
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Saudi Arabia; Bioactive Natural Products Research Group, King Abdulaziz University. Jeddah, Saudi Arabia
| | - Taha A Kumosani
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Saudi Arabia; Production of Bio-products for Industrial Applications Research Group, King Abdulaziz University
| | - Said S Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
17
|
Easter QT. Biopolymer hydroxyapatite composite materials: Adding fluorescence lifetime imaging microscopy to the characterization toolkit. NANO SELECT 2021. [DOI: 10.1002/nano.202100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Quinn T. Easter
- Department of Innovation and Technology Research ADA Science & Research Institute Gaithersburg MD USA
| |
Collapse
|
18
|
Dental Applications of Systems Based on Hydroxyapatite Nanoparticles—An Evidence-Based Update. CRYSTALS 2021. [DOI: 10.3390/cryst11060674] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydroxyapatite is one of the most studied biomaterials in the medical and dental field, because of its biocompatibility; it is the main constituent of the mineral part of teeth and bones. In dental science, hydroxyapatite nanoparticles (HAnps) or nano-hydroxyapatite (nano-HA) have been studied, over the last decade, in terms of oral implantology and bone reconstruction, as well in restorative and preventive dentistry. Hydroxyapatite nanoparticles have significant remineralizing effects on initial enamel lesions, and they have also been used as an additive material in order to improve existing and widely used dental materials, mainly in preventive fields, but also in restorative and regenerative fields. This paper investigates the role of HAnps in dentistry, including recent advances in the field of its use, as well as their advantages of using it as a component in other dental materials, whether experimental or commercially available. Based on the literature, HAnps have outstanding physical, chemical, mechanical and biological properties that make them suitable for multiple interventions, in different domains of dental science. Further well-designed randomized controlled trials should be conducted in order to confirm all the achievements revealed by the in vitro or in vivo studies published until now.
Collapse
|
19
|
The regulating effect of trace elements Si, Zn and Sr on mineralization of gelatin-hydroxyapatite electrospun fiber. Colloids Surf B Biointerfaces 2021; 204:111822. [PMID: 33984616 DOI: 10.1016/j.colsurfb.2021.111822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/10/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
Biomineralization approaches have been increasingly adopted to synthesizing advanced materials with superior properties. Nevertheless, the potential influence of inorganic trace elements on the mineralization process of collagen has been rarely reported, despite of the significant progress achieved on exploiting the critical roles of organic polymers in regulating the collagen mineralization. To this aim, the potential roles of Si, Zn and Sr in regulating the mineralization of gelatin-hydroxyapatite (HA) composite fibers have been examined in this study. The results indicated that the incorporation of trace elements not only promoted the biomineralization of gelatin, but also led to drastic change in the mineralization behavior. In particular, the gelatin-SiHA sample showed uniform mineralization predominantly inside the fibers, with nucleation and growth directions along the c-axis of the gelatin fibers. On the contrary, the gelatin-HA sample showed nucleation outside the fibers and spherical mineral crystals on top of fibers, typical structure for heterogeneous nucleation. As the mineralization process proceeded, the gelatin-ZnHA and gelatin-SrHA samples evolved into having similar structure as the gelatin-SiHA sample, despite of showing totally different mineralization behaviors at early time. Overall, the incorporation of trace elements seemed to lower the nucleation barriers, led to a more homogeneous mineralization mode within the fiber region and formation of mineralized structures closer to those in natural bone. Moreover, mineralized samples with trace elements demonstrated improved adhesion and cytoskeleton organization of osteoblastic cells. Such finding would provide important insight for understanding the mineralization process and the optimal design of advanced biological materials.
Collapse
|
20
|
Dumont VC, Carvalho IC, Andrade VB, de Sá MA, Ferreira AJ, Carvalho SM, Mansur AAP, Mansur HS. Nanohydroxyapatite reinforced chitosan and carboxymethyl-chitosan biocomposites chemically crosslinked with epichlorohydrin for potential bone tissue repair. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1895158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Vitor C. Dumont
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation–CeNano2I, Federal University of Minas Gerais–UFMG, Belo Horizonte, Brazil
| | - Isadora C. Carvalho
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation–CeNano2I, Federal University of Minas Gerais–UFMG, Belo Horizonte, Brazil
| | - Vanessa B. Andrade
- Department of Morphology, Federal University of Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Marcos A. de Sá
- Department of Morphology, Federal University of Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Anderson J. Ferreira
- Department of Morphology, Federal University of Minas Gerais-UFMG, Belo Horizonte, Brazil
| | - Sandhra M. Carvalho
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation–CeNano2I, Federal University of Minas Gerais–UFMG, Belo Horizonte, Brazil
| | - Alexandra A. P. Mansur
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation–CeNano2I, Federal University of Minas Gerais–UFMG, Belo Horizonte, Brazil
| | - Herman S. Mansur
- Department of Metallurgical and Materials Engineering, Center of Nanoscience, Nanotechnology and Innovation–CeNano2I, Federal University of Minas Gerais–UFMG, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Xue Q, Wang Y. Impact of Hyperbaric Oxygen on Nano-hydroxyapatite/Carboxymethyl Chitosan/Zoledronic Acid Biocomposite for Bone Tissue Engineering. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Synthesis of the superabsobents enriched in chitosan derivatives with excellent water absorption properties. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03521-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Sun X, Ma C, Gong W, Ma Y, Ding Y, Liu L. Biological properties of sulfanilamide-loaded alginate hydrogel fibers based on ionic and chemical crosslinking for wound dressings. Int J Biol Macromol 2020; 157:522-529. [DOI: 10.1016/j.ijbiomac.2020.04.210] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 02/08/2023]
|
24
|
Recent Advancement of Molecular Structure and Biomaterial Function of Chitosan from Marine Organisms for Pharmaceutical and Nutraceutical Application. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144719] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chitosan is an innate cationic biological polysaccharide polymer, naturally obtained from chitin deacetylation, that possesses broad-spectrum properties such as antibacterial, biodegradability, biocompatibility, non-toxic, non-immunogenicity, and so on. Chitosan can be easily modified owing to its molecular chain that contains abundant active amino and hydroxyl groups, through various modifications. Not only does it possess excellent properties but it also greatly accelerates its solubility and endows it with additional special properties. It can be developed into bioactive materials with innovative properties, functions, and multiple uses, especially in the biomedical fields. In this paper, the unique properties and the relationship between the molecular structure of chitosan and its derivatives are emphasized, an overview of various excellent biomedical properties of chitosan and its current progress in the pharmaceutical and nutraceutical field have prospected, to provide the theoretical basis for better development and utilization of new biomedical materials of chitosan and its derivatives.
Collapse
|
25
|
Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers: An injectable hydrogel for tissue engineering. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109697] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Trakoolwannachai V, Kheolamai P, Ummartyotin S. Development of hydroxyapatite from eggshell waste and a chitosan-based composite: In vitro behavior of human osteoblast-like cell (Saos-2) cultures. Int J Biol Macromol 2019; 134:557-564. [PMID: 31075334 DOI: 10.1016/j.ijbiomac.2019.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/24/2019] [Accepted: 05/01/2019] [Indexed: 11/24/2022]
Abstract
Hydroxyapatite was successfully synthesized using eggshell waste as a raw material. Eggshell waste and orthophosphoric acid were co-precipitated for 2 h at an ambient temperature. The pH of the solution was adjusted to 10 using ammonium hydroxide. Then, 10-30 wt% of hydroxyapatite was loaded into the chitosan film. Scanning electron microscopy and energy dispersive analyses confirmed the morphological properties and dispersion. A thermogravimetric analysis showed a significant enhancement in the thermal stability of the composite. The existence of hydroxyapatite resulted in a higher thermal stability. Furthermore, atomic force microscopy was used to investigate the roughness of the surface. With the addition of hydroxyapatite, the roughness significantly increased. The swelling behavior of the composite was observed in phosphate buffer saline solution. The hydroxyapatite offered the inferiority on the swelling behavior. A preliminary investigation on the in vitro behavior of Saos-2 was also performed. The composite presented good cytotoxicity, and thus, excellent properties as a tissue engineering material.
Collapse
Affiliation(s)
- V Trakoolwannachai
- Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Patumtani, Thailand
| | - P Kheolamai
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - S Ummartyotin
- Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Patumtani, Thailand.
| |
Collapse
|
27
|
An injectable and self‐healing novel chitosan hydrogel with low adamantane substitution degree. POLYM INT 2019. [DOI: 10.1002/pi.5800] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Yan J, Wang Y, Zhang X, Zhao X, Ma J, Pu X, Wang Y, Ran F, Wang Y, Leng F, Zhang W. Snakegourd root/Astragalus polysaccharide hydrogel preparation and application in 3D printing. Int J Biol Macromol 2019; 121:309-316. [DOI: 10.1016/j.ijbiomac.2018.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/19/2018] [Accepted: 10/01/2018] [Indexed: 01/23/2023]
|
29
|
Capanema NSV, Mansur AAP, Mansur HS, de Jesus AC, Carvalho SM, Chagas P, de Oliveira LC. Eco-friendly and biocompatible cross-linked carboxymethylcellulose hydrogels as adsorbents for the removal of organic dye pollutants for environmental applications. ENVIRONMENTAL TECHNOLOGY 2018; 39:2856-2872. [PMID: 28805161 DOI: 10.1080/09593330.2017.1367845] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, new eco-friendly hydrogel adsorbents were synthesized based on carboxymethylcellulose (CMC, degree of substitution [DS] = 0.7) chemically cross-linked with citric acid (CA) using a green process in aqueous solution and applied for the adsorption of methylene blue (MB). Spectroscopic analyses demonstrated the mechanism of cross-linking through the reaction of hydroxyl functional groups from CMC with CA. These CMC hydrogels showed very distinct morphological features dependent on the extension of cross-linking and their nanomechanical properties were drastically increased by approximately 300% after cross-linking with 20% CA (e.g. elastic moduli from 80 ± 15 to 270 ± 50 MPa). Moreover, they were biocompatible using an in vitro cell viability assay in contact with human osteosarcoma-derived cells (SAOS) for 24 h. These CMC-based hydrogels exhibited adsorption efficiency above 90% (24 h) and maximum removal capacity of MB from 5 to 25 mg g-1 depending on the dye concentration (from 100 to 500 mg L-1), which was used as the model cationic organic pollutant. The adsorption of process of MB was well-fit to the pseudo-second-order kinetics model. The desorption of MB by immersion in KCl solution (3 mol L-1, 24 h) showed a typical recovery efficiency of over 60% with conceivable reuse of these CMC-based hydrogels. Conversely, CMC hydrogels repelled methyl orange dye used as model anionic pollutant, proving the mechanism of adsorption by the formation of charged polyelectrolyte/dye complexes.
Collapse
Affiliation(s)
- Nádia S V Capanema
- a Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering , Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Alexandra A P Mansur
- a Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering , Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Herman S Mansur
- a Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering , Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Anderson C de Jesus
- a Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering , Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Sandhra M Carvalho
- a Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering , Federal University of Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Poliane Chagas
- b Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Luiz C de Oliveira
- b Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
30
|
Cengiz IF, Oliveira JM, Reis RL. Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomater Res 2018; 22:26. [PMID: 30275969 PMCID: PMC6158835 DOI: 10.1186/s40824-018-0136-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. MAIN BODY This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. CONCLUSION Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
31
|
Carvalho SM, Mansur AA, Capanema NS, Carvalho IC, Chagas P, de Oliveira LCA, Mansur HS. Synthesis and in vitro assessment of anticancer hydrogels composed by carboxymethylcellulose-doxorubicin as potential transdermal delivery systems for treatment of skin cancer. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Capanema NS, Mansur AA, Carvalho SM, Carvalho IC, Chagas P, de Oliveira LCA, Mansur HS. Bioengineered carboxymethyl cellulose-doxorubicin prodrug hydrogels for topical chemotherapy of melanoma skin cancer. Carbohydr Polym 2018; 195:401-412. [DOI: 10.1016/j.carbpol.2018.04.105] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/02/2018] [Accepted: 04/26/2018] [Indexed: 11/16/2022]
|
33
|
Abdellatif AAH, El-Telbany DFA, Zayed G, Al-Sawahli MM. Hydrogel Containing PEG-Coated Fluconazole Nanoparticles with Enhanced Solubility and Antifungal Activity. J Pharm Innov 2018. [DOI: 10.1007/s12247-018-9335-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Moaddab M, Nourmohammadi J, Rezayan AH. Bioactive composite scaffolds of carboxymethyl chitosan-silk fibroin containing chitosan nanoparticles for sustained release of ascorbic acid. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
35
|
Zima A. Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:175-184. [PMID: 29241052 DOI: 10.1016/j.saa.2017.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/24/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
Composites consisting of hydroxyapatite (HA) and chitosan (CTS) have recently been intensively studied. In this work, a novel inorganic-organic (I/O) HA/CTS materials in the form of granules were prepared through a simple solution-based chemical method. During the synthesis of these hybrids, the electrostatic complexes between positively charged, protonated amine groups of chitosan and the negative phosphate species (HPO42- and H2PO4-) were formed. Our biocomposites belong to the class I of hybrids, which was confirmed by FTIR studies. XRD analysis revealed that the obtained materials consisted of hydroxyapatite as the only crystalline phase. Homogeneous dispersion of the components in HA/CTS composites was confirmed. The use of 17wt% and 23wt% of chitosan resulted in approximately 12-fold and 16-fold increase in the compressive strength of HA/CTS as compared to the non-modified HA material. During incubation of the studied materials in SBF, pH of the solution remained close to the physiological one. Formation of apatite layer on their surfaces indicated bioactive nature of the developed biomaterials.
Collapse
Affiliation(s)
- A Zima
- Faculty of Materials Science and Ceramics, AGH-UST University of Science and Technology, Krakow, Poland.
| |
Collapse
|
36
|
Trino LD, Bronze-Uhle ES, Ramachandran A, Lisboa-Filho PN, Mathew MT, George A. Titanium surface bio-functionalization using osteogenic peptides: Surface chemistry, biocompatibility, corrosion and tribocorrosion aspects. J Mech Behav Biomed Mater 2018; 81:26-38. [PMID: 29477893 DOI: 10.1016/j.jmbbm.2018.02.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 11/24/2022]
Abstract
Titanium (Ti) is widely used in biomedical devices due to its recognized biocompatibility. However, implant failures and subsequent clinical side effects are still recurrent. In this context, improvements can be achieved by designing biomaterials where the bulk and the surface of Ti are independently tailored. The conjugation of biomolecules onto the Ti surface can improve its bioactivity, thus accelerating the osteointegration process. Ti was modified with TiO2, two different spacers, 3-(4-aminophenyl) propionic acid (APPA) or 3-mercaptopropionic acid (MPA) and dentin matrix protein 1 (DMP1) peptides. X-ray photoelectron spectroscopy analysis revealed the presence of carbon and nitrogen for all samples, indicating a success in the functionalization process. Furthermore, DMP1 peptides showed an improved coverage area for the samples with APPA and MPA spacers. Biological tests indicated that the peptides could modulate cell affinity, proliferation, and differentiation. Enhanced results were observed in the presence of MPA. Moreover, the immobilization of DMP1 peptides through the spacers led to the formation of calcium phosphate minerals with a Ca/P ratio near to that of hydroxyapatite. Corrosion and tribocorrosion results indicated an increased resistance to corrosion and lower mass loss in the functionalized materials, showing that this new type of functional material has attractive properties for biomaterials application.
Collapse
Affiliation(s)
- Luciana D Trino
- São Paulo State University (Unesp), School of Sciences, Bauru, SP 17033-360, Brazil
| | - Erika S Bronze-Uhle
- São Paulo State University (Unesp), School of Sciences, Bauru, SP 17033-360, Brazil
| | - Amsaveni Ramachandran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Paulo N Lisboa-Filho
- São Paulo State University (Unesp), School of Sciences, Bauru, SP 17033-360, Brazil.
| | - Mathew T Mathew
- Department of Biomedical Sciences, College of Medicine at Rockford, University of Illinois-School of Medicine at Rockford, Rockford, IL, 61107-1897, USA
| | - Anne George
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
37
|
Synergic effect of chitosan and dicalcium phosphate on tricalcium silicate-based nanocomposite for root-end dental application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:631-641. [DOI: 10.1016/j.msec.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/08/2017] [Accepted: 07/10/2017] [Indexed: 11/23/2022]
|
38
|
Capanema NSV, Mansur AAP, Carvalho SM, Mansur LL, Ramos CP, Lage AP, Mansur HS. Physicochemical properties and antimicrobial activity of biocompatible carboxymethylcellulose-silver nanoparticle hybrids for wound dressing and epidermal repair. J Appl Polym Sci 2017. [DOI: 10.1002/app.45812] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nádia S. V. Capanema
- Center of Nanoscience, Nanotechnology and Innovation-CeNano I, Department of Metallurgical and Materials Engineering; Federal University of Minas Gerais/UFMG, Av. Antônio Carlos, 6627-Escola de Engenharia, Bloco 2-Sala 2233, 31.270-901; Belo Horizonte MG Brazil
| | - Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology and Innovation-CeNano I, Department of Metallurgical and Materials Engineering; Federal University of Minas Gerais/UFMG, Av. Antônio Carlos, 6627-Escola de Engenharia, Bloco 2-Sala 2233, 31.270-901; Belo Horizonte MG Brazil
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology and Innovation-CeNano I, Department of Metallurgical and Materials Engineering; Federal University of Minas Gerais/UFMG, Av. Antônio Carlos, 6627-Escola de Engenharia, Bloco 2-Sala 2233, 31.270-901; Belo Horizonte MG Brazil
| | - Lorena L. Mansur
- Center of Nanoscience, Nanotechnology and Innovation-CeNano I, Department of Metallurgical and Materials Engineering; Federal University of Minas Gerais/UFMG, Av. Antônio Carlos, 6627-Escola de Engenharia, Bloco 2-Sala 2233, 31.270-901; Belo Horizonte MG Brazil
| | - Carolina P. Ramos
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva; Escola de Veterinária, UFMG; Belo Horizonte MG Brazil
| | - Andrey P. Lage
- Laboratório de Bacteriologia Aplicada, Departamento de Medicina Veterinária Preventiva; Escola de Veterinária, UFMG; Belo Horizonte MG Brazil
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology and Innovation-CeNano I, Department of Metallurgical and Materials Engineering; Federal University of Minas Gerais/UFMG, Av. Antônio Carlos, 6627-Escola de Engenharia, Bloco 2-Sala 2233, 31.270-901; Belo Horizonte MG Brazil
| |
Collapse
|
39
|
Carvalho IC, Mansur HS. Engineered 3D-scaffolds of photocrosslinked chitosan-gelatin hydrogel hybrids for chronic wound dressings and regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:690-705. [DOI: 10.1016/j.msec.2017.04.126] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/07/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
|
40
|
Capanema NSV, Mansur AAP, de Jesus AC, Carvalho SM, de Oliveira LC, Mansur HS. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int J Biol Macromol 2017; 106:1218-1234. [PMID: 28851645 DOI: 10.1016/j.ijbiomac.2017.08.124] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 11/24/2022]
Abstract
This study focused on the synthesis and comprehensive characterization of environmentally friendly hydrogel membranes based on carboxymethyl cellulose (CMC) for wound dressing and skin repair substitutes. These new CMC hydrogels were prepared with two degrees of functionalization (DS=0.77 and 1.22) and chemically crosslinked with citric acid (CA) for tuning their properties. Additionally, CMC-based hybrids were prepared by blending with polyethylene glycol (PEG, 10wt.%). The results demonstrated that superabsorbent hydrogels (SAP) were produced with swelling degree typically ranging from 100% to 5000%, which was significantly dependent on the concentration of CA crosslinker and the addition of PEG as network modifier. The spectroscopical characterizations indicated that the mechanism of CA crosslinking was mostly associated with the chemical reaction with CMC hydroxyl groups and that PEG played an important role on the formation of a hybrid polymeric network. These hydrogels presented very distinct morphological features depended on the degree of crosslinking and the surface nanomechanical properties (e.g., elastic moduli) were drastically affected (from approximately 0.08GPa to 2.0GPa) due to the formation of CMC-PEG hybrid nanostructures. These CMC-based hydrogels were cytocompatible considering the in vitro cell viability responses of over 95% towards human embryonic kidney cells (HEK293T) used as model cell line.
Collapse
Affiliation(s)
- Nádia S V Capanema
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Brazil
| | - Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Brazil
| | - Anderson C de Jesus
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Brazil
| | | | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Brazil.
| |
Collapse
|
41
|
Liu X, Kang H, Wang Z, Zhang W, Li J, Zhang S. Simultaneously Toughening and Strengthening Soy Protein Isolate-Based Composites via Carboxymethylated Chitosan and Halloysite Nanotube Hybridization. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E653. [PMID: 28773012 PMCID: PMC5554034 DOI: 10.3390/ma10060653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 01/28/2023]
Abstract
Chemical cross-linking modification can significantly enhance the tensile strength (TS) of soy protein isolate (SPI)-based composites, but usually at the cost of a reduction in the elongation at break (EB). In this study, eco-friendly and high-potential hybrid SPI-based nanocomposites with improved TS were fabricated without compromising the reduction of EB. The hybrid of carboxymethylated chitosan (CMCS) and halloysite nanotubes (HNTs) as the enhancement center was added to the SPI and 1,2,3-propanetriol-diglycidyl-ether (PTGE) solution. The chemical structure, crystallinity, micromorphology, and opacity properties of the obtained SPI/PTGE/HNTs/CMCS film was analyzed by the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV-Vis spectroscopy. The results indicated that HNTs were uniformly dispersed in the SPI matrix without crystal structure damages. Compared to the SPI/PTGE film, the TS and EB of the SPI/PTGE/HNTs/CMCS film were increased by 57.14% and 27.34%, reaching 8.47 MPa and 132.12%, respectively. The synergy of HNTs and CMCS via electrostatic interactions also improved the water resistance of the SPI/PTGE/HNTs/CMCS film. These films may have considerable potential in the field of sustainable and environmentally friendly packaging.
Collapse
Affiliation(s)
- Xiaorong Liu
- MOE Key Laboratory of Wood Material Science and Utilization, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Haijiao Kang
- MOE Key Laboratory of Wood Material Science and Utilization, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong Wang
- MOE Key Laboratory of Wood Material Science and Utilization, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Wei Zhang
- MOE Key Laboratory of Wood Material Science and Utilization, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- MOE Key Laboratory of Wood Material Science and Utilization, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shifeng Zhang
- MOE Key Laboratory of Wood Material Science and Utilization, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
42
|
Oktay B, Kayaman-Apohan N, Süleymanoğlu M, Erdem-Kuruca S. Zwitterionic phosphorylcholine grafted chitosan nanofiber: Preparation, characterization and in-vitro cell adhesion behavior. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:569-578. [DOI: 10.1016/j.msec.2016.12.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/25/2016] [Accepted: 12/17/2016] [Indexed: 01/12/2023]
|
43
|
Biodegradable and Biocompatible Systems Based on Hydroxyapatite Nanoparticles. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7010060] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Yu S, Zhang X, Tan G, Tian L, Liu D, Liu Y, Yang X, Pan W. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym 2017; 155:208-217. [DOI: 10.1016/j.carbpol.2016.08.073] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/02/2016] [Accepted: 08/24/2016] [Indexed: 11/28/2022]
|
45
|
Yu S, Li Q, Li Y, Wang H, Liu D, Yang X, Pan W. A novel hydrogel with dual temperature and pH responsiveness based on a nanostructured lipid carrier as an ophthalmic delivery system: enhanced trans-corneal permeability and bioavailability of nepafenac. NEW J CHEM 2017. [DOI: 10.1039/c7nj00112f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A schematic illustration of a novel formulation that can be instilled on the surface of eyes (A) and the results of in vivo studies (B and C).
Collapse
Affiliation(s)
- Shihui Yu
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Qi Li
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Yuenan Li
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Haiying Wang
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Dandan Liu
- School of Biomedical & Chemical Engineering
- Liaoning Institute of Science and Technology
- Benxi 117004
- P. R. China
| | - Xinggang Yang
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Weisan Pan
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
46
|
Yu S, Tan G, Liu D, Yang X, Pan W. Nanostructured lipid carrier (NLC)-based novel hydrogels as potential carriers for nepafenac applied after cataract surgery for the treatment of inflammation: design, characterization and in vitro cellular inhibition and uptake studies. RSC Adv 2017. [DOI: 10.1039/c7ra00552k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of the novel formulation (nanostructured lipid carriers-based novel hydrogels) instills into the surface of eyes and the results of cytotoxicity and cell uptake for optimal formulation.
Collapse
Affiliation(s)
- Shihui Yu
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Guoxin Tan
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Dandan Liu
- School of Biomedical & Chemical Engineering
- Liaoning Institute of Science and Technology
- Benxi 117004
- PR China
| | - Xinggang Yang
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Weisan Pan
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
47
|
Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization. INORGANICS 2016. [DOI: 10.3390/inorganics4040033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
48
|
Bhavsar C, Momin M, Gharat S, Omri A. Functionalized and graft copolymers of chitosan and its pharmaceutical applications. Expert Opin Drug Deliv 2016; 14:1189-1204. [DOI: 10.1080/17425247.2017.1241230] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chintan Bhavsar
- Department of Pharmaceutics, Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
49
|
Wu X, Liu Y, Wang W, Han Y, Liu A. Improved mechanical and thermal properties of gelatin films using a nano inorganic filler. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12469] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Xiaomeng Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Yaowei Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Yue Han
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology; Tianjin University of Science and Technology; Tianjin 300457 China
| |
Collapse
|
50
|
Preparation and evaluation of adipic acid dihydrazide cross-linked carboxymethyl chitosan microspheres for copper ion adsorption. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|