1
|
Wang Z, Xiao N, Guo S, Liu X, Liu C, Ai M. Unlocking the Potential of Keratin: A Comprehensive Exploration from Extraction and Structural Properties to Cross-Disciplinary Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1014-1037. [PMID: 39681472 DOI: 10.1021/acs.jafc.4c07102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The rapid expansion of the livestock and poultry industry has led to a considerable increase in slaughter byproducts; however, exploring their potential applications still needs to be improved. These underutilized byproducts, which include nails, hides, skins, and bones, represent a significant loss of valuable biological resources. Among these materials, keratin has garnered considerable attention due to its unique properties as a natural biopolymer. Keratin exhibits outstanding mechanical properties and biocompatibility and has attracted increasing attention for its recovery and conversion into relevant application materials. However, natural keratin typically has a high sulfur content, complex 3D structure, and abundant hydrogen and disulfide bonds, which cause challenges in application. Current extraction for keratin includes physical, chemical, biological, and hybrid approaches. Combining multiple methods synergistically enhances protein extraction efficiency and purity, and facilitates the exploration of structure and functional properties. This review encompasses the structural characteristics, properties, extraction methods, and research progress related to keratin. The preparation and application of keratin composite materials in different forms, such as fibers, films, hydrogels, and scaffolds, are illustrated. Applications in several fields, including biomedicine, flexible electronic components, environmental materials and food packaging are discussed. Hopefully, this paper will provide a comprehensive understanding and guidance for further development and application of keratin materials.
Collapse
Affiliation(s)
- Ziyuan Wang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chunhong Liu
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
2
|
Yan RR, Xue D, Su C, Xu Y, Gong JS, Liu YL, Jiang M, Geng Y, Lv GZ, Xu ZH, Shi JS. A keratin/chitosan sponge with excellent hemostatic performance for uncontrolled bleeding. Colloids Surf B Biointerfaces 2022; 218:112770. [PMID: 35988313 DOI: 10.1016/j.colsurfb.2022.112770] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Uncontrolled bleeding leads to a higher fatality rate in the situation of surgery, traffic accidents and warfare. Traditional hemostatic materials such as bandages are not ideal for uncontrolled or incompressible bleeding. Therefore, it is of great significance to develop a new medical biomaterial with excellent rapid hemostatic effect. Keratin is a natural, biocompatible and biodegradable protein which contains amino acid sequences that induce cell adhesion. As a potential biomedical material, keratin has been developed and paid attention in tissue engineering fields such as promoting wound healing and nerve repair. Herein, a keratin/chitosan (K/C) sponge was prepared to achieve rapid hemostasis. The characterizations of K/C sponge were investigated, including SEM, TGA, liquid absorption and porosity, showing that the high porosity up to 90.12 ± 2.17 % resulted in an excellent blood absorption. The cytotoxicity test and implantation experiment proved that the K/C sponge was biocompatible and biodegradable. Moreover, the prepared K/C sponge showed better hemostatic performance than chitosan sponge (CS) and the commercially available gelatin sponge in both rat tail amputation and liver trauma bleeding models. Further experiments showed that K/C sponge plays a hemostatic role through the endogenous coagulation pathway, thus shortening the activated partial thromboplastin time (APTT) effectively. Therefore, this study provided a K/C sponge which can be served as a promising biomedical hemostatic material.
Collapse
Affiliation(s)
- Rong-Rong Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Dai Xue
- Department of Stomatology, Wuxi Children's Hospital, Wuxi 214023, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Yan Xu
- Affiliated Hospital of Jiangnan University, Wuxi 214062 PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yan-Ling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Guo-Zhong Lv
- Affiliated Hospital of Jiangnan University, Wuxi 214062 PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
3
|
Kalkan Erdoğan M, Aydoğdu Tığ G, Saçak M. A novel tool for the adsorption of dsDNA: Electrochemical reduction of Pd nanoparticles onto reduced-keratin particles extracted from wool wastes. Bioelectrochemistry 2021; 140:107835. [PMID: 33984693 DOI: 10.1016/j.bioelechem.2021.107835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
This work outlines the fabrication of a novel electrochemical platform for the dsDNA adsorption, using one of the most sustainable materials, wool fabric waste, and Pd2+ ions. To develop a functional material with a significant adsorption capability, the waste wool was subjected to the chemical reduction process, and the keratin-SH (KerSH) particles were extracted in powder form. These particles were used in the adsorption of Pd2+ ions by monitoring with the UV-vis spectra. The dispersion of the KerSH-Pd2+ particles was subsequently drop-casted onto a glassy carbon electrode (GCE) and electrochemically reduced to the GCE/KerSH-PdNPs composite by chronoamperometry at -0.4 V for 500 s. It was found that the KerSH particles were self-assembled by revealing chemically attractive NH2 groups after the electrochemical PdNPs deposition. A GCE/KerSH-PdNPs composite was then employed in the electrochemical dsDNA detection by Differential Pulse Voltammetry (DPV), using the oxidation signals of guanine and adenine bases at 0.8 V and 1.2 V, respectively. Accordingly, relatively stable, repeatable, and reproducible dsDNA adsorption was ensured through the positively charged-NH2 groups of KerSH-PdNPs. This finding reveals the potential of textile waste for various electrochemical applications, such as DNA biosensors for environmental, pharmaceutical, and medicinal fields.
Collapse
Affiliation(s)
| | - Gözde Aydoğdu Tığ
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, Turkey.
| | - Mehmet Saçak
- Ankara University, Faculty of Science, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
4
|
|
5
|
Su C, Gong JS, Qin J, Li H, Li H, Xu ZH, Shi JS. The tale of a versatile enzyme: Molecular insights into keratinase for its industrial dissemination. Biotechnol Adv 2020; 45:107655. [PMID: 33186607 DOI: 10.1016/j.biotechadv.2020.107655] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023]
Abstract
Keratinases are unique among proteolytic enzymes for their ability to degrade recalcitrant insoluble proteins, and they are of critical importance in keratin waste management. Over the past few decades, researchers have focused on discovering keratinase producers, as well as producing and characterizing keratinases. The application potential of keratinases has been investigated in the feed, fertilizer, leathering, detergent, cosmetic, and medical industries. However, the commercial availability of keratinases is still limited due to poor productivity and properties, such as thermostability, storage stability and resistance to organic reagents. Advances in molecular biotechnology have provided powerful tools for enhancing the production and functional properties of keratinase. This critical review systematically summarizes the application potential of keratinase, and in particular certain newly discovered catalytic capabilities. Furthermore, we provide comprehensive insight into mechanistic and molecular aspects of keratinases including analysis of gene sequences and protein structures. In addition, development and current advances in protein engineering of keratinases are summarized and discussed, revealing that the engineering of protein domains such as signal peptides and pro-peptides has become an important strategy to increase production of keratinases. Finally, prospects for further development are also proposed, indicating that advanced protein engineering technologies will lead to improved and additional commercial keratinases for various industrial applications.
Collapse
Affiliation(s)
- Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
6
|
Su C, Gong JS, Ye JP, He JM, Li RY, Jiang M, Geng Y, Zhang Y, Chen JH, Xu ZH, Shi JS. Enzymatic Extraction of Bioactive and Self-Assembling Wool Keratin for Biomedical Applications. Macromol Biosci 2020; 20:e2000073. [PMID: 32691954 DOI: 10.1002/mabi.202000073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/20/2020] [Indexed: 12/30/2022]
Abstract
Keratin is widely recognized as a high-quality renewable protein resource for biomedical applications. Despite their extensive existence, keratin resources such as feathers, wool, and hair exhibit high stability and mechanical properties because of their high disulfide bond content. Consequently, keratin extraction is challenging and its application is greatly hindered. In this work, a biological extraction strategy is proposed for the preparation of bioactive keratin and the fabrication of self-assembled keratin hydrogels (KHs). Based on moderate and controlled hydrolysis by keratinase, keratin with a high molecular weight of approximately 45 and 28 kDa that retain its intrinsic bioactivities is obtained. The keratin products show excellent ability to promote cell growth and migration and are conferred with significant antioxidant ability because of their intrinsically high cysteine content. In addition, without the presence of any cross-linking agent, the extracted keratin can self-assemble into injectable hydrogels. The KHs exhibit a porous network structure and 3D culture ability, showing potential in promoting wound healing. This enzyme-driven keratin extraction strategy opens up a new approach for the preparation of keratin that can self-assemble into injectable hydrogels for biomedical engineering.
Collapse
Affiliation(s)
- Chang Su
- C. Su, Dr. J.-S. Gong, J.-P. Ye, J.-M. He, Dr. R.-Y. Li, M. Jiang, Dr. Y. Geng, Dr. Y. Zhang, Prof. J.-H. Chen, Prof. J.-S, Shi, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jin-Song Gong
- C. Su, Dr. J.-S. Gong, J.-P. Ye, J.-M. He, Dr. R.-Y. Li, M. Jiang, Dr. Y. Geng, Dr. Y. Zhang, Prof. J.-H. Chen, Prof. J.-S, Shi, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jin-Peng Ye
- C. Su, Dr. J.-S. Gong, J.-P. Ye, J.-M. He, Dr. R.-Y. Li, M. Jiang, Dr. Y. Geng, Dr. Y. Zhang, Prof. J.-H. Chen, Prof. J.-S, Shi, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Ji-Meng He
- C. Su, Dr. J.-S. Gong, J.-P. Ye, J.-M. He, Dr. R.-Y. Li, M. Jiang, Dr. Y. Geng, Dr. Y. Zhang, Prof. J.-H. Chen, Prof. J.-S, Shi, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Rui-Yi Li
- C. Su, Dr. J.-S. Gong, J.-P. Ye, J.-M. He, Dr. R.-Y. Li, M. Jiang, Dr. Y. Geng, Dr. Y. Zhang, Prof. J.-H. Chen, Prof. J.-S, Shi, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Min Jiang
- C. Su, Dr. J.-S. Gong, J.-P. Ye, J.-M. He, Dr. R.-Y. Li, M. Jiang, Dr. Y. Geng, Dr. Y. Zhang, Prof. J.-H. Chen, Prof. J.-S, Shi, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Geng
- C. Su, Dr. J.-S. Gong, J.-P. Ye, J.-M. He, Dr. R.-Y. Li, M. Jiang, Dr. Y. Geng, Dr. Y. Zhang, Prof. J.-H. Chen, Prof. J.-S, Shi, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yan Zhang
- C. Su, Dr. J.-S. Gong, J.-P. Ye, J.-M. He, Dr. R.-Y. Li, M. Jiang, Dr. Y. Geng, Dr. Y. Zhang, Prof. J.-H. Chen, Prof. J.-S, Shi, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jing-Hua Chen
- C. Su, Dr. J.-S. Gong, J.-P. Ye, J.-M. He, Dr. R.-Y. Li, M. Jiang, Dr. Y. Geng, Dr. Y. Zhang, Prof. J.-H. Chen, Prof. J.-S, Shi, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zheng-Hong Xu
- Prof. Z.-H. Xu, National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, 214122, P. R. China.,Prof. Z.-H. Xu, Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jin-Song Shi
- C. Su, Dr. J.-S. Gong, J.-P. Ye, J.-M. He, Dr. R.-Y. Li, M. Jiang, Dr. Y. Geng, Dr. Y. Zhang, Prof. J.-H. Chen, Prof. J.-S, Shi, Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
7
|
In Vitro Production of Calcified Bone Matrix onto Wool Keratin Scaffolds via Osteogenic Factors and Electromagnetic Stimulus. MATERIALS 2020; 13:ma13143052. [PMID: 32650489 PMCID: PMC7411850 DOI: 10.3390/ma13143052] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/15/2022]
Abstract
Pulsed electromagnetic field (PEMF) has drawn attention as a potential tool to improve the ability of bone biomaterials to integrate into the surrounding tissue. We investigated the effects of PEMF (frequency, 75 Hz; magnetic induction amplitude, 2 mT; pulse duration, 1.3 ms) on human osteoblast-like cells (SAOS-2) seeded onto wool keratin scaffolds in terms of proliferation, differentiation, and production of the calcified bone extracellular matrix. The wool keratin scaffold offered a 3D porous architecture for cell guesting and nutrient diffusion, suggesting its possible use as a filler to repair bone defects. Here, the combined approach of applying a daily PEMF exposure with additional osteogenic factors stimulated the cells to increase both the deposition of bone-related proteins and calcified matrix onto the wool keratin scaffolds. Also, the presence of SAOS-2 cells, or PEMF, or osteogenic factors did not influence the compression behavior or the resilience of keratin scaffolds in wet conditions. Besides, ageing tests revealed that wool keratin scaffolds were very stable and showed a lower degradation rate compared to commercial collagen sponges. It is for these reasons that this tissue engineering strategy, which improves the osteointegration properties of the wool keratin scaffold, may have a promising application for long term support of bone formation in vivo.
Collapse
|
8
|
Suarato G, Contardi M, Perotto G, Heredia-Guerrero JA, Fiorentini F, Ceseracciu L, Pignatelli C, Debellis D, Bertorelli R, Athanassiou A. From fabric to tissue: Recovered wool keratin/polyvinylpyrrolidone biocomposite fibers as artificial scaffold platform. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111151. [PMID: 32806258 DOI: 10.1016/j.msec.2020.111151] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Keratin extracted from wool fibers has recently gained attention as an abundant source of renewable, biocompatible material for tissue engineering and drug delivery applications. However, keratin extraction and processing generally require a copious use of chemicals, not only bearing consequences for the environment but also possibly compromising the envisioned biological outcome. In this study, we present, for the first time, keratin-PVP biocomposite fibers obtained via an all-water co-electrospinning process and explored their properties modulation as a result of different thermal crosslinking treatments. The protein-based fibers featured homogenous morphologies and average diameters in the range of 170-290 nm. The thermomechanical stability and response to a wet environment can be tuned by acting on the curing time; this can be achieved without affecting the 3D fibrous network nor the intrinsic hydrophilic behavior of the material. More interestingly, our protein-based membranes treated at 170 °C for 18 h successfully sustained the attachment and growth of primary human dermal fibroblasts, a cellular model which can recapitulate more faithfully the physiological human tissue conditions. Our proposed approach can be viewed as pivotal in designing tunable protein-based scaffolds for the next generation of skin tissue growth devices.
Collapse
Affiliation(s)
- Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy; Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy.
| | - Marco Contardi
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Jose' A Heredia-Guerrero
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy; IHSM La Mayora, Departamento de Mejora Genética y Biotecnología, Consejo Superior de Investigaciones Científicas, E-29750 Algarrobo-Costa, Málaga, Spain
| | - Fabrizio Fiorentini
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Luca Ceseracciu
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Cataldo Pignatelli
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Doriana Debellis
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology, Istituto Italiano di Tecnologia, Via Morego, 30, Genova 16163, Italy
| | | |
Collapse
|
9
|
Keratinous materials: Structures and functions in biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110612. [PMID: 32204061 DOI: 10.1016/j.msec.2019.110612] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/12/2019] [Accepted: 12/26/2019] [Indexed: 11/21/2022]
Abstract
Keratins are a family of fibrous proteins anticipated to possess wide-ranging biomedical applications due to their abundance, physicochemical properties and intrinsic biological activity. This review mainly focuses on the biomaterials derived from three major sources of keratins; namely human hair, wool and feather, that have effective applications in tissue engineering, wound healing and drug delivery. This article offers five viewpoints regarding keratin i) an introduction to keratin protein extraction and keratin-based scaffold fabrication methods ii) applications in nerve and bone tissue engineering iii) a review on the keratin dressings applied to different types of wounds to facilitate wound healing and thereby repair the skin iv) the utilization of keratinous materials as a carrier system for therapeutics with a controlled manner v) a discussion regarding the main challenges for using keratin in biomedical applications as well as its future prospects.
Collapse
|
10
|
Suarato G, Bertorelli R, Athanassiou A. Borrowing From Nature: Biopolymers and Biocomposites as Smart Wound Care Materials. Front Bioeng Biotechnol 2018; 6:137. [PMID: 30333972 PMCID: PMC6176001 DOI: 10.3389/fbioe.2018.00137] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022] Open
Abstract
Wound repair is a complex and tightly regulated physiological process, involving the activation of various cell types throughout each subsequent step (homeostasis, inflammation, proliferation, and tissue remodeling). Any impairment within the correct sequence of the healing events could lead to chronic wounds, with potential effects on the patience quality of life, and consequent fallouts on the wound care management. Nature itself can be of inspiration for the development of fully biodegradable materials, presenting enhanced bioactive potentialities, and sustainability. Naturally-derived biopolymers are nowadays considered smart materials. They provide a versatile and tunable platform to design the appropriate extracellular matrix able to support tissue regeneration, while contrasting the onset of adverse events. In the past decades, fabrication of bioactive materials based on natural polymers, either of protein derivation or polysaccharide-based, has been extensively exploited to tackle wound-healing related problematics. However, in today's World the exclusive use of such materials is becoming an urgent challenge, to meet the demand of environmentally sustainable technologies to support our future needs, including applications in the fields of healthcare and wound management. In the following, we will briefly introduce the main physico-chemical and biological properties of some protein-based biopolymers and some naturally-derived polysaccharides. Moreover, we will present some of the recent technological processing and green fabrication approaches of novel composite materials based on these biopolymers, with particular attention on their applications in the skin tissue repair field. Lastly, we will highlight promising future perspectives for the development of a new generation of environmentally-friendly, naturally-derived, smart wound dressings.
Collapse
Affiliation(s)
- Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Genoa, Italy
- In vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Rosalia Bertorelli
- In vivo Pharmacology Facility, Istituto Italiano di Tecnologia, Genoa, Italy
| | | |
Collapse
|
11
|
The Potential of Animal By-Products in Food Systems: Production, Prospects and Challenges. SUSTAINABILITY 2017. [DOI: 10.3390/su9071089] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Wang J, Hao S, Luo T, Zhou T, Yang X, Wang B. Keratose/poly (vinyl alcohol) blended nanofibers: Fabrication and biocompatibility assessment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:212-219. [DOI: 10.1016/j.msec.2016.11.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/02/2016] [Accepted: 11/21/2016] [Indexed: 12/26/2022]
|