1
|
Zhu J, Wang F, Chen J, Liu C. An efficient biosensor using a functionalized microneedle of Cu 2O-based CoCu-LDH for glucose detection. RSC Adv 2023; 13:32558-32566. [PMID: 37936640 PMCID: PMC10626343 DOI: 10.1039/d3ra05957j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Glucose detection with small and micro volume sampling has recently received increasing attention in monitoring personal health. Herein, a cauliflower-type cluster of Cu2O nanoparticles (NPs) was directly deposited on the tip surface of a stainless steel acupuncture needle electrode (ANE) by electrochemical deposition, and then this pre-formed cuprous basis was used to further prepare the neatly arranged CoCu-layered double hydroxide (CoCu-LDH) nanosheets that interconnected to form nano-sized pores in the range from 100 to 500 nm. The microstructure and spectral characteristics of the surface modification materials were comprehensively characterized by FE-SEM, EDS, XRD, FT-IR and TEM. Cu2O-based CoCu-LDH composites with special morphology had been proven to accelerate the rate of electron transport and provide more available active centers, and moreover, the mixed valence of Cu/Co induced an excellent synergism for the electrocatalytic oxidation of glucose. As a result, CoCu-LDH/Cu2O/ANE as a sensitive glucose probe exhibited two wider linear ranges of 0.03-0.40 mM and 0.40-6.00 mM, with sensitivities of 116.13 μA mM-1 and 52.08 μA mM-1, respectively, and the detection limit as low as 0.46 μM (S/N = 3). The response time only took 3 s and it kept working stably in the interference of ascorbic acid (AA), dopamine (DA), uric acid (UA), and Cl-. In the stability test, the CoCu-LDH/Cu2O/ANE sensor exhibited a stable monitoring sensitivity after 15 days. Finally, the CoCu-LDH/Cu2O/ANE sensor had been successfully applied to glucose analysis in human serum, proving that our design was an attractive strategy for developing a portable, minimally invasive, and low-cost non-enzymatic electrochemical glucose sensing platform.
Collapse
Affiliation(s)
- Jialei Zhu
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning P. R. China
| | - Fuqin Wang
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning P. R. China
| | - Jiaying Chen
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning P. R. China
| | - Chang Liu
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning P. R. China
| |
Collapse
|
2
|
Mariappan S, Mutharani B, Kavitha T, Sarojini P, Chiu FC, Ranganathan P. Green synthesis of cyclodextrin-capped AuNPs decorated on polystyrene microspheres for a furazolidone-responsive electrode. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
3
|
Han C, Yi W, Li Z, Dong C, Zhao H, Liu M. Single-atom Palladium anchored N-doped carbon enhanced electrochemical detection of Furazolidone. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
4
|
Bhuvaneswari C, Elangovan A, Sharmila C, Sudha K, Arivazhagan G. Fabrication of cobalt tungstate/N-rGO nanocomposite: Application towards the detection of antibiotic drug-Furazolidone. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Chen R, Peng X, Song Y, Du Y. A Paper-Based Electrochemical Sensor Based on PtNP/COF TFPB-DHzDS@rGO for Sensitive Detection of Furazolidone. BIOSENSORS 2022; 12:bios12100904. [PMID: 36291041 PMCID: PMC9599777 DOI: 10.3390/bios12100904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/29/2022] [Accepted: 10/18/2022] [Indexed: 05/31/2023]
Abstract
Herein, a paper-based electrochemical sensor based on PtNP/COFTFPB-DHzDS@rGO was developed for the sensitive detection of furazolidone. A cluster-like covalent organic framework (COFTFPB-DHzDS) was successfully grown on the surface of amino-functional reduced graphene oxide (rGO-NH2) to avoid serious self-aggregation, which was further loaded with platinum nanoparticles (PtNPs) with high catalytic activity as nanozyme to obtain PtNP/COFTFPB-DHzDS@rGO nanocomposites. The morphology of PtNP/COFTFPB-DHzDS@rGO nanocomposites was characterized, and the results showed that the smooth rGO surface became extremely rough after the modification of COFTFPB-DHzDS. Meanwhile, ultra-small PtNPs with sizes of around 1 nm were precisely anchored on COFTFPB-DHzDS to maintain their excellent catalytic activity. The conventional electrodes were used to detect furazolidone and showed a detection limit as low as 5 nM and a linear range from 15 nM to 110 μM. In contrast, the detection limit for the paper-based electrode was 0.23 μM, and the linear range was 0.69-110 μM. The results showed that the paper-based electrode can be used to detect furazolidone. This sensor is a potential candidate for the detection of furazolidone residue in human serum and fish samples.
Collapse
Affiliation(s)
| | | | | | - Yan Du
- Correspondence: or ; Tel.: +86-0791-88120861
| |
Collapse
|
6
|
Aihaiti A, Li Z, Qin Y, Meng F, Li X, Huangfu Z, Chen K, Zhang M. Construction of Electrochemical Sensors for Antibiotic Detection Based on Carbon Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2789. [PMID: 36014654 PMCID: PMC9414981 DOI: 10.3390/nano12162789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Excessive antibiotic residues in food can cause detrimental effects on human health. The establishment of rapid, sensitive, selective, and reliable methods for the detection of antibiotics is highly in demand. With the inherent advantages of high sensitivity, rapid analysis time, and facile miniaturization, the electrochemical sensors have great potential in the detection of antibiotics. The electrochemical platforms comprising carbon nanomaterials (CNMs) have been proposed to detect antibiotic residues. Notably, with the introduction of functional CNMs, the performance of electrochemical sensors can be bolstered. This review first presents the significance of functional CNMs in the detection of antibiotics. Subsequently, we provide an overview of the applications for detection by enhancing the electrochemical behaviour of the antibiotic, as well as a brief overview of the application of recognition elements to detect antibiotics. Finally, the trend and the current challenges of electrochemical sensors based on CNMs in the detection of antibiotics is outlined.
Collapse
Affiliation(s)
- Aihemaitijiang Aihaiti
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Zongda Li
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Fanxing Meng
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Xinbo Li
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Zekun Huangfu
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| | - Keping Chen
- Xinjiang Huize Foodstuff Co., Ltd., Wujiaqu City 830073, China
| | - Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi 830017, China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi 830017, China
| |
Collapse
|
7
|
Sun L, Yang M, Guo H, Zhang T, Wu N, Wang M, Yang F, Zhang J, Yang W. COOH-MWCNT connected COF and chemical activated CTF as a novel electrochemical sensing platform for simultaneous detection of acetaminophen and p-aminophenol. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Jia J, Zhang H, Qu J, Wang Y, Xu N. Immunosensor of Nitrofuran Antibiotics and Their Metabolites in Animal-Derived Foods: A Review. Front Chem 2022; 10:813666. [PMID: 35721001 PMCID: PMC9198595 DOI: 10.3389/fchem.2022.813666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Nitrofuran antibiotics have been widely used in the prevention and treatment of animal diseases due to the bactericidal effect. However, the residual and accumulation of their metabolites in vivo can pose serious health hazards to both humans and animals. Although their usage in feeding and process of food-derived animals have been banned in many countries, their metabolic residues are still frequently detected in materials and products of animal-derived food. Many sensitive and effective detection methods have been developed to deal with the problem. In this work, we summarized various immunological methods for the detection of four nitrofuran metabolites based on different types of detection principles and signal molecules. Furthermore, the development trend of detection technology in animal-derived food is prospected.
Collapse
Affiliation(s)
| | | | | | - Yuanfeng Wang
- Institute of Engineering Food, College of Life Science, Shanghai Normal Uniersity, Shanghai, China
| | - Naifeng Xu
- Institute of Engineering Food, College of Life Science, Shanghai Normal Uniersity, Shanghai, China
| |
Collapse
|
9
|
Jesu Amalraj AJ, Wang SF. Synthesis of transition metal titanium oxide (MTiOx, M = Mn, Fe, Cu) and its application in furazolidone electrochemical sensor. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Bhuvaneswari C, Ganesh Babu S. Nanoarchitecture and surface engineering strategy for the construction of 3D hierarchical CuS-rGO/g-C3N4 nanostructure: An ultrasensitive and highly selective electrochemical sensor for the detection of furazolidone drug. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Ramadhass KD, Ganesan M, Chen TW, Chen SM, Hao Q, Lei W, Gopalakrishnan G. Porous-coral-like cerium doped tungsten oxide/graphene oxide micro balls: A robust electrochemical sensing platform for the detection of antibiotic residue. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Wang B, He B, Guo R, Jiao Q, Liang Y, Wang J, Liu Y, Ren W, Suo Z. A competitive-type electrochemical immunosensor based on Ce-MOF@Au and MB-Au@Pt core-shell for nitrofuran metabolites residues detection. Bioelectrochemistry 2021; 142:107934. [PMID: 34474206 DOI: 10.1016/j.bioelechem.2021.107934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 02/03/2023]
Abstract
A novel competitive-type electrochemical immunosensor based on square wave voltammetry (SWV) response was developed for the quantitative detection of 1-Aminohydantoin (AHD). To improve the conductivity of this immunosensor nanocomposites with good electrical conductivity were prepared as a signal amplification platform for the immunosensor by growing Au nanoparticles on the surface of Ce-based metal-organic framework (Ce-MOF). In addition, methylene blue (MB)-loaded Au@Pt and coating antigen (OVA-AHD) connected as a signal label. When the target was introduced, it competed with the coating antigen for the Ab, which led to a reduction in the number of signal probes bound to the Ab. The concentration of AHD can be determined by SWV detection of the MB signal loaded on the signal labels. Under optimal conditions, the wide linear range of 0.001-1000 μg /L and a low detection limit of 1.35 × 10-7 μg/L were achieved. Ultimately, the developed method displayed excellent specificity in practical applications, providing a promising probability to detect nitrofuran metabolites residues to guarantee food safety.
Collapse
Affiliation(s)
- Botao Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Rui Guo
- Henan Institute of Product Quality Supervision and Inspection, Zhengzhou, Henan 450047, PR China
| | - Qiang Jiao
- Henan Province Food Inspection Research Institute, Zhengzhou, Henan 450003, PR China
| | - Ying Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yong Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
13
|
Yang M, Guo H, Sun L, Wu N, Wang M, Yang F, Zhang T, Zhang J, Pan Z, Yang W. Simultaneous electrochemical detection of hydroquinone and catechol using MWCNT-COOH/CTF-1 composite modified electrode. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Uzun D. Determination of Paracetamol Based on 3‐Amino‐4H‐1,2,4‐triazole Coated Glassy Carbon Surface in Pharmaceutical Sample. ELECTROANAL 2021. [DOI: 10.1002/elan.202100002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Demet Uzun
- Gazi University Faculty of Science Department of Chemistry 06500 Ankara/ Turkey
| |
Collapse
|
15
|
Rajakumaran R, Krishnapandi A, Chen SM, Balamurugan K, Chang FM, Sakthinathan S. Electrochemical investigation of zinc tungstate nanoparticles; a robust sensor platform for the selective detection of furazolidone in biological samples. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Ören Varol T, Hakli O, Anik U. Graphene oxide–porphyrin composite nanostructure included electrochemical sensor for catechol detection. NEW J CHEM 2021. [DOI: 10.1039/d0nj05475e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel composite nanostructure (GO–Por) has been prepared via ultrasonication and exhibited enhanced electrocatalytic activity towards catechol oxidation.
Collapse
Affiliation(s)
- Tuğba Ören Varol
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- Kötekli-Muğla
- Turkey
| | - Ozgul Hakli
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- Kötekli-Muğla
- Turkey
| | - Ulku Anik
- Muğla Sıtkı Koçman University
- Faculty of Science
- Chemistry Department
- Kötekli-Muğla
- Turkey
| |
Collapse
|
17
|
Alagumalai K, Shanmugam R, Chen SM, Balamurugan M. Facile synthesis of Co( ii)-doped cobalt oxide nanostructures: their application in the sensitive determination of the prophylactic drug furazolidone. NEW J CHEM 2021. [DOI: 10.1039/d1nj01261d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Electrochemical detection of prophylactic drug furazolidone through Co–Co2O4 modified GCE.
Collapse
Affiliation(s)
- Krishnapandi Alagumalai
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Ragurethinam Shanmugam
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Muthukutty Balamurugan
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|
18
|
Abinaya M, Muthuraj V. Bi-functional catalytic performance of silver manganite/polypyrrole nanocomposite for electrocatalytic sensing and photocatalytic degradation. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
19
|
Jesu Amalraj AJ, Umesh NM, Wang SF. Synthesis of core-shell-like structure SnS2-SnO2 integrated with graphene nanosheets for the electrochemical detection of furazolidone drug in furoxone tablet. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113554] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Naghian E, Marzi Khosrowshahi E, Sohouli E, Ahmadi F, Rahimi-Nasrabadi M, Safarifard V. A new electrochemical sensor for the detection of fentanyl lethal drug by a screen-printed carbon electrode modified with the open-ended channels of Zn(ii)-MOF. NEW J CHEM 2020. [DOI: 10.1039/d0nj01322f] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An electrochemical fentanyl sensor based on modified screen-printed carbon electrode by Zn(ii)-MOF.
Collapse
Affiliation(s)
- Ebrahim Naghian
- Chemical Injuries Research Center
- Systems Biology and Poisonings Institute
- Baqiyatallah University of Medical Sciences
- Tehran
- Iran
| | | | - Esmail Sohouli
- Young Researchers and Elites Club, Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| | - Farhad Ahmadi
- Physiology Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Medicinal Chemistry, School of Pharmacy-International Campus
| | - Mehdi Rahimi-Nasrabadi
- Faculty of Pharmacy, Baqiyatallah University of Medical Sciences
- Tehran
- Iran
- Department of Chemistry
- South Tehran Branch Islamic Azad University
| | - Vahid Safarifard
- Department of Chemistry
- Iran University of Science and Technology
- Tehran 16846-13114
- Iran
| |
Collapse
|
21
|
Shetti NP, Nayak DS, Malode SJ, Reddy KR, Shukla SS, Aminabhavi TM. Electrochemical behavior of flufenamic acid at amberlite XAD-4 resin and silver-doped titanium dioxide/ amberlite XAD-4 resin modified carbon electrodes. Colloids Surf B Biointerfaces 2019; 177:407-415. [DOI: 10.1016/j.colsurfb.2019.02.022] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
|
22
|
Shetti NP, Nayak DS, Malode SJ, Kakarla RR, Shukla SS, Aminabhavi TM. Sensors based on ruthenium-doped TiO2 nanoparticles loaded into multi-walled carbon nanotubes for the detection of flufenamic acid and mefenamic acid. Anal Chim Acta 2019; 1051:58-72. [DOI: 10.1016/j.aca.2018.11.041] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/25/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022]
|
23
|
Ghalkhani M, Khaloo SS, Mirzaie RA. Klonopin assay using modified electrode with multiwalled carbon nanotubes and poly melamine nanocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:121-128. [PMID: 30889656 DOI: 10.1016/j.msec.2019.01.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/12/2019] [Accepted: 01/23/2019] [Indexed: 11/18/2022]
Abstract
Developing of cheap, sensitive and stable sensors plays a significant role in pharmaceutical and clinical applications. Considering the effective role of Klonopin (KNP) in the treatment of epilepsy, KNP quantification in its production process for dose adjustments and checking the purity and also after its usage by patents for bioavailability testing and effectiveness assay is vital. In present work, an efficient electrochemical sensor based on poly melamine and multiwalled carbon nanotubes nanocomposite (PMela/CNTs) was constructed which displayed effective electrochemical response toward KNP. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square-wave voltammetry (SWV) experiments were applied for performance evaluation of the PMela/CNTs modified electrode and electrochemical redox behavior of KNP. Distinguish synergetic effect was observed between CNTs and poly melamine in response to KNP electrochemical redox reaction. A linear detection range of 0.05 to 10 μM with the detection limits of 63 nM was achieved for KNP analysis. The practical application of the PMela/CNTs modified electrode revealed satisfactory results for quantification of KNP in biological fluids.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran.
| | - Shokooh Sadat Khaloo
- Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Rasol Abdullah Mirzaie
- Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran
| |
Collapse
|
24
|
Hwa KY, Sharma TSK, Karuppaiah P. Development of an electrochemical sensor based on a functionalized carbon black/tungsten carbide hybrid composite for the detection of furazolidone. NEW J CHEM 2019. [DOI: 10.1039/c9nj02531f] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study, the simple sonochemical synthesis of functionalized carbon black (f-CB) anchored with tungsten carbide (WC) is used to prepare a novel electrocatalyst for the electrochemical detection of furazolidone (FU) by modifying screen-printed carbon electrodes (SPCE).
Collapse
Affiliation(s)
- Kuo-Yuan Hwa
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| | - Tata Sanjay Kanna Sharma
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| | - Palpandi Karuppaiah
- Graduate Institute of Organic and Polymeric Materials
- National Taipei University of Technology
- Taipei
- Republic of China
- Department of Molecular Science and Engineering
| |
Collapse
|
25
|
Balasubramanian P, Annalakshmi M, Chen SM, Chen TW. Sonochemical synthesis of molybdenum oxide (MoO 3) microspheres anchored graphitic carbon nitride (g-C 3N 4) ultrathin sheets for enhanced electrochemical sensing of Furazolidone. ULTRASONICS SONOCHEMISTRY 2019; 50:96-104. [PMID: 30197063 DOI: 10.1016/j.ultsonch.2018.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Present strategy introduce the sonochemical synthesis of molybdenum oxide (MoO3) microspheres anchored graphitic carbon nitride (g-C3N4) ultrathin sheets as a novel electrocatalyst for the detection of Furazolidone (FU). TEM results revealed that MoO3 are microspheres with an average size of 2 µM and the g-C3N4 seems like ultrathin sheets. Owing to their peculiar morphological structure, g-C3N4/MoO3 composite modified electrode provided an enriched electroactive surface area (0.3788 cm2) and higher heterogeneous electron transfer kinetics (K°eff = 4.91×10-2 cm s-1) than the other controlled electrodes. It is obviously observed from the voltammetric studies that the proposed sensor based on g-C3N4/MoO3 composite can significantly improve the electrocatalytic efficiency towards the sensing of FU. Due to the excellent synergic effect of g-C3N4/MoO3 composite, can detect the ultra-level FU with a limit of detection of 1.4 nM and a broad dynamic range of 0.01-228 µM, which surpassed the many previously reported FU sensors. Hence, the proposed sensor was successfully applied to sensing the FU in human blood serum, urine and pharmaceutical samples, gained an agreeable recoveries.
Collapse
Affiliation(s)
- Paramasivam Balasubramanian
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan, ROC
| |
Collapse
|
26
|
Shetti NP, Nayak DS, Kuchinad GT, Naik RR. Electrochemical behavior of thiosalicylic acid at γ-Fe2O3 nanoparticles and clay composite carbon electrode. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.170] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Zulkifli FH, Hussain FSJ, Zeyohannes SS, Rasad MSBA, Yusuff MM. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|