1
|
Ye T, Chen Q, Yang S, Liu H, Zhou Y, Feng Y, Li J, Wang Y, Yu G, Dai J. Host-guest interfacial recognition of alginate-based β-cyclodextrin/dendrobine supra-amphiphiles reinforced the physicochemical stability and sustained-release properties of Pickering emulsions. Int J Biol Macromol 2025; 306:141746. [PMID: 40049470 DOI: 10.1016/j.ijbiomac.2025.141746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Achieving high bioavailability of dendrobine (DDB) necessitates the development of simplified available and efficient delivery systems. Pickering emulsions (PEs) derived from biomass represent a promising option. However, the physicochemical properties of PEs interfacial films were insufficient to prevent DDB leakage, thereby reducing bioavailability. Herein, a supramolecular host-guest interfacial recognition strategy was proposed in-situ between amphipathic sodium alginate-functionalized cyclodextrin (SAE-CD) and hydrophobic DDB at oil-water interface, further forming the SAE-based supra-amphiphiles to efficient stabilize the high internal phase Pickering emulsions (HIPPEs) with gel-like characteristics. A multiscale methodology was empolyed to investigate the interfacial assembly behavior and emulsification properties of supra-amphiphilic SAE-CD/DDB interfacial system, focusing on molecular interactions, interfacial adsorption, and overall stability. Notably, the SAE-CD/DDB-based supramolecular assembly/disassembly behaviors could be self-adjusted for regulating the aggregation particle size and thickness of interfacial self-assembled films. The SAE-CD/DDB co-stabilized HIPPEs exhibited favorable drug release capabilities, enabling sustained effects of DDB. Overall, the SAE-CD/DDB co-stabilized HIPPEs demonstrated excellent properties in terms of stability, drug loading capacity, and sustained release performance, highlighting their potential for in oral delivery and sustained-release systems.
Collapse
Affiliation(s)
- Tong Ye
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Qile Chen
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Shujuan Yang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Haifang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Yan Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Yuhong Feng
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Jiacheng Li
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Yujuan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Gaobo Yu
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China.
| | - Jun Dai
- School of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China.
| |
Collapse
|
2
|
Qin Q, Zhang X, Gao B, Liu W, Han L, Sing SL, Liu X. Insight into the effect of different nanocellulose types on protein-based bionanocomposite film properties. Int J Biol Macromol 2024; 257:127944. [PMID: 37951448 DOI: 10.1016/j.ijbiomac.2023.127944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
This paper investigates the effect of five different types of nanocellulose on the properties of protein-based bionanocomposite films (PBBFs) and the mechanism of action. The results show that TEMPO-oxidized nanocellulose (TNC) PBBFs have the smoothest surface structure. This is because some hydroxyl groups in TNC are converted to carboxyl groups, increasing hydrogen bonding and cross-linking with proteins. Bacterial nanocellulose (BNC) PBBFs have the highest crystallinity. Filamentous BNC can form an interlocking network with protein, promoting effective stress transfer in the PBBFs with maximum tensile strength. The PBBFs of lignin nanocellulose (LNC) have superior elasticity due to the presence of lignin, which gives them the greatest creep properties. The PBBFs of cellulose nanocrystals (CNCs) have the largest water contact angle. This is because the small particle size of CNC can be uniformly distributed in the protein matrix. The different types of nanocellulose differ in their microscopic morphology and the number of hydroxyl groups and hydrogen bonding sites on their surfaces. Therefore, there are differences in the spatial distribution and the degree of intermolecular cross-linking of different types of nanocellulose in the protein matrix. This is the main reason for the differences in the material properties of PBBFs.
Collapse
Affiliation(s)
- Qingyu Qin
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China; Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore.
| | - Xinyan Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Bing Gao
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Wenying Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Swee Leong Sing
- Department of Mechanical Engineering, College of Design and Engineering, National University of Singapore, Singapore.
| | - Xian Liu
- Laboratory of Biomass and Bioprocessing Engineering, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Munir S, Yue W, Li J, Yu X, Ying T, Liu R, You J, Xiong S, Hu Y. Effects of Phenolics on the Physicochemical and Structural Properties of Collagen Hydrogel. Polymers (Basel) 2023; 15:4647. [PMID: 38139899 PMCID: PMC10747534 DOI: 10.3390/polym15244647] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
In the current era, the treatment of collagen hydrogels with natural phenolics for the improvement in physicochemical properties has been the subject of considerable attention. The present research aimed to fabricate collagen hydrogels cross-linked with gallic acid (GA) and ellagic acid (EA) at different concentrations depending on the collagen dry weight. The structural, enzymatic, thermal, morphological, and physical properties of the native collagen hydrogels were compared with those of the GA/EA cross-linked hydrogels. XRD and FTIR spectroscopic analyses confirmed the structural stability and reliability of the collagen after treatment with either GA or EA. The cross-linking also significantly contributed to the improvement in the storage modulus, of 435 Pa for 100% GA cross-linked hydrogels. The thermal stability was improved, as the highest residual weight of 43.8% was obtained for the hydrogels cross-linked with 50% GA in comparison with all the other hydrogels. The hydrogels immersed in 30%, 50%, and 100% concentrations of GA also showed improved swelling behavior and porosity, and the highest resistance to type 1 collagenase (76.56%), was obtained for 50% GA cross-linked collagen hydrogels. Moreover, GA 100% and EA 100% obtained the highest denaturation temperatures (Td) of 74.96 °C and 75.78 °C, respectively. In addition, SEM analysis was also carried out to check the surface morphology of the pristine collagen hydrogels and the cross-linked collagen hydrogels. The result showed that the hydrogels cross-linked with GA/EA were denser and more compact. However, the improved physicochemical properties were probably due to the formation of hydrogen bonds between the phenolic hydroxyl groups of GA and EA and the nitrogen atoms of the collagen backbone. The presence of inter- and intramolecular cross-links between collagen and GA or EA components and an increased density of intermolecular bonds suggest potential hydrogen bonding or hydrophobic interactions. Overall, the present study paves the way for further investigations in the field by providing valuable insights into the GA/EA interaction with collagen molecules.
Collapse
Affiliation(s)
- Sadia Munir
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Wei Yue
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Jinling Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Xiaoyue Yu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Tianhao Ying
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Ru Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Juan You
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Shanbai Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (X.Y.); (T.Y.); (R.L.); (J.Y.); (S.X.)
- Bioactive Peptide Technology Hubei Engineering Research Center, Jingzhou 434000, China
| |
Collapse
|
4
|
Wei SY, Chen PY, Hsieh CC, Chen YS, Chen TH, Yu YS, Tsai MC, Xie RH, Chen GY, Yin GC, Melero-Martin JM, Chen YC. Engineering large and geometrically controlled vascularized nerve tissue in collagen hydrogels to restore large-sized volumetric muscle loss. Biomaterials 2023; 303:122402. [PMID: 37988898 PMCID: PMC11606314 DOI: 10.1016/j.biomaterials.2023.122402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Developing scalable vascularized and innervated tissue is a critical challenge for the successful clinical application of tissue-engineered constructs. Collagen hydrogels are extensively utilized in cell-mediated vascular network formation because of their naturally excellent biological properties. However, the substantial increase in hydrogel contraction induced by populated cells limits their long-term use. Previous studies attempted to mitigate this issue by concentrating collagen pre-polymer solutions or synthesizing covalently crosslinked collagen hydrogels. However, these methods only partially reduce hydrogel contraction while hindering blood vessel formation within the hydrogels. To address this challenge, we introduced additional support in the form of a supportive spacer to counteract the contraction forces of populated cells and prevent hydrogel contraction. This approach was found to promote cell spreading, resist hydrogel contraction, control hydrogel/tissue geometry, and even facilitate the engineering of functional blood vessels and host nerve growth in just one week. Subsequently, implanting these engineered tissues into muscle defect sites resulted in timely anastomosis with the host vasculature, leading to enhanced myogenesis, increased muscle innervation, and the restoration of injured muscle functionality. Overall, this innovative strategy expands the applicability of collagen hydrogels in fabricating large vascularized nerve tissue constructs for repairing volumetric muscle loss (∼63 %) and restoring muscle function.
Collapse
Affiliation(s)
- Shih-Yen Wei
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Po-Yu Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chia-Chang Hsieh
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yu-Shan Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Tzu-Hsuan Chen
- Department of Materials Science and Engineering, Carnegie Mellon University, PA, USA
| | - Yu-Shan Yu
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Min-Chun Tsai
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Ren-Hao Xie
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan
| | - Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing-Hua University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Zhang Y, Zhang R, Tao Y. Conductive, water-retaining and knittable hydrogel fiber from xanthan gum and aniline tetramer modified-polysaccharide for strain and pressure sensors. Carbohydr Polym 2023; 321:121300. [PMID: 37739505 DOI: 10.1016/j.carbpol.2023.121300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
Herein, we explored strategies for defoaming and controllable adjustment of spinnable and mechanical properties of polyanion polysaccharide-based hydrogels to fabricate conductive, water-retaining, and knittable hydrogel fibers for next-generation flexible electronics. Xanthan gum (XG) and aniline tetramer modified-polysaccharide (TMAT38) were crosslinked with sodium trimetaphosphate (STMP) and subsequently by Fe3+/Fe2+ ions coordination to prepare conductive and spinnable hydrogels. Polypropylene glycol was introduced as chemical antifoam, and solvent displacement method was adopted to improve mechanical and water-retaining properties. The glycerol-immersed XG5-TMAT38-STMP-Fe3+/CA-PPG hydrogel exhibited conductivity of 3.55×10-3-27.30×10-3 S/cm, storage modulus at linear viscoelastic region of 573 Pa-1717 Pa and self-healing percentage of 100 %-108 %. The 2 h glycerol-immersed hydrogel fibers with good flexibility, moisture retention and freezing tolerance were ready to bend and knit into fabrics. The hydrogel fiber braid possessed better conductivity, reliability and durability than the single hydrogel fiber as strain sensors. The hydrogel fiber fabric perceived tiny vibration triggered by swallowing, speaking and writing with good sensitivity and reproducibility. Furthermore, a three-component model was developed to evaluate response sensitivity and recoverability of the hydrogel fiber fabric-based pressure sensors, which facilitated understanding transient response of polymer-based hydrogel strain and pressure sensors.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China
| | - Ruquan Zhang
- School of Mathematical and Physical Sciences, Wuhan Textile University, 430200 Wuhan, China.
| | - Yongzhen Tao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China; School of Material Science and Engineering, Wuhan Textile University, Wuhan 430073, China.
| |
Collapse
|
6
|
Effect of Rheological Properties of Polymer Solution on Polymer Flooding Characteristics. Polymers (Basel) 2022; 14:polym14245555. [PMID: 36559922 PMCID: PMC9787871 DOI: 10.3390/polym14245555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Polymer flooding is an appropriate enhanced oil recovery (EOR) process that can increase macroscopic sweep efficiency. We examined two polymeric superpushers at different salinities (10,000 and 42,000 ppm of NaCl and 18,000 ppm of CaCl2) and temperatures (30 to 75 °C) as polymer-flooding agents for the EOR process. Rheological and thixotropic tests were attempted to find shear viscosity change when the polymer solutions were introduced under different salinity and temperatures, followed by describing the rheological behavior with the two most common rheological models used for polymer solutions, and then a quadratic model with Design-Expert to detect the effective parameters. Core flooding tests were conducted afterward to determine the final proposed fluid. An increase in the concentration of monovalent ions and the addition of divalent ions adversely affected both types of polymers used, which was similar to the effects of a temperature increase. The Flopaam 3630S at 1000 ppm has more stability under harsh conditions and enables 22% and 38% oil recovery in carbonate and sandstone core rocks, respectively. Consequently, Flopaam 3630S can be the perfect polymer agent for different chemical flooding procedures in high-salinity oil reservoirs.
Collapse
|
7
|
Palacio-Pastrana C, Muñoz-Villegas P, Dániel-Dorantes F, Sánchez-Ríos A, Olvera-Montaño O, Martínez-Montoya YI, Quintana-Hau JD, Baiza-Durán LM. Evaluation of the Rheological Properties, Preclinical Safety, and Clinical Effectiveness of a New Dispersive Ophthalmic Viscoelastic Device for Cataract Surgery. MEDICAL DEVICES (AUCKLAND, N.Z.) 2022; 15:293-305. [PMID: 36046598 PMCID: PMC9421612 DOI: 10.2147/mder.s379050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022]
Abstract
Purpose To evaluate the rheological properties of the ophthalmic viscoelastic device (OVD) PRO-149, its preclinical safety, and its effectiveness when used during cataract surgery in patients with age-related cataract. Material and Methods Control (HEC) and test (PRO-149) OVDs were compared through rheological measures, by two preclinical safety studies in rabbits, and under normal-use conditions during cataract removal and lens implantation in a parallel randomized clinical trial. Results Rheological properties were determined. Preclinical studies did not find any evidence of safety issues or toxicity. In the clinical trial, 36 subjects were included. After 29 days, there were no statistically significant differences in mean percentage of endothelial cell count change or in the postoperative intraocular pressure between groups. There were no significant differences between OVDs for any safety parameter studied. Finally, PRO-149 showed a statistically significant improvement in surgeon rating for ease of use during extraction (p < 0.05). Conclusion PRO-149 is a dispersive OVD. The rabbit models did not find evidence of clinical alterations or toxicity. The results of the clinical study support that the two studied OVDs were clinically similar in terms of safety and effectiveness for cataract surgery. Trial Registration The trial is registered at Clinical Trials.gov at NCT04702802 (21–01-11).
Collapse
Affiliation(s)
| | | | | | - Alejandra Sánchez-Ríos
- Regional Medical Affairs Department, Laboratorios Sophia SA de CV, Zapopan, Jalisco, México
| | - Oscar Olvera-Montaño
- Regional Medical Affairs Department, Laboratorios Sophia SA de CV, Zapopan, Jalisco, México
| | | | | | - Leopoldo M Baiza-Durán
- Regional Medical Affairs Department, Laboratorios Sophia SA de CV, Zapopan, Jalisco, México
| |
Collapse
|
8
|
Milan EP, Martins VC, Horn MM, Plepis AM. Influence of blend ratio and mangosteen extract in chitosan/collagen gels and scaffolds: Rheological and release studies. Carbohydr Polym 2022; 292:119647. [DOI: 10.1016/j.carbpol.2022.119647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
|
9
|
Tailoring physicochemical properties of collagen-based composites with ionic liquids and wool for advanced applications. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Palmquist KH, Tiemann SF, Ezzeddine FL, Yang S, Pfeifer CR, Erzberger A, Rodrigues AR, Shyer AE. Reciprocal cell-ECM dynamics generate supracellular fluidity underlying spontaneous follicle patterning. Cell 2022; 185:1960-1973.e11. [DOI: 10.1016/j.cell.2022.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/14/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
|
11
|
Zhang R, Xu Q, Tao Y, Wang X. Rheological and pH dependent properties of injectable and controlled release hydrogels based on mushroom hyperbranched polysaccharide and xanthan gum. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
12
|
Lin F, Zhao X, Yang S, He F, Qin W, Gong H, Yu G, Feng Y, Li J. Interfacial regulation and visualization of Pickering emulsion stabilized by Ca2+-triggered amphiphilic alginate-based fluorescent aggregates. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Lewandowska K, Szulc M. Characterisation of Hyaluronic Acid Blends Modified by Poly( N-Vinylpyrrolidone). Molecules 2021; 26:molecules26175233. [PMID: 34500667 PMCID: PMC8433758 DOI: 10.3390/molecules26175233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
The viscosity behaviour and physical properties of blends containing hyaluronic acid (HA) and poly(N-vinylpyrrolidone) (PVP) were studied by the viscometric technique, steady shear tests, tensile tests and infrared spectroscopy. Viscometric and rheological measurements were carried out using blends of HA/PVP with different HA weight fractions (0, 0.2, 0.5, 0.8 and 1). The polymer films and HA/PVP blend films were prepared using the solution casting method. The study of HA blends by viscometry showed that HA/PVP was miscible with the exception of the blend with high HA content. HA and its blends showed a shear-thinning flow behaviour. The non-Newtonian indices (n) of HA/PVP blends were calculated by the Ostwald-de Waele equation, indicating a shear-thinning effect in which pseudoplasticity increased with increasing HA contents. Mechanical properties, such as tensile strength and elongation at the break, were higher for HA/PVP films with wHA = 0.5 compared to those with higher HA contents. The elongation at the break of HA/PVP blend films displayed a pronounced increase compared to HA films. Moreover, infrared analysis confirmed the existence of interactions between HA and PVP. The blending of HA with PVP generated films with elasticity and better properties than homopolymer films.
Collapse
|
14
|
Tian Z, Wang Y, He J. Nanofiber formation of self‐crosslinking dialdehyde carboxymethyl cellulose/collagen composites. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Zhenhua Tian
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an China
- National Demonstration Center for Experimental Light Chemistry Engineering Education Shaanxi University of Science and Technology Xi'an China
| | - Ying Wang
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an China
| | - Jingxuan He
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science and Technology Xi'an China
| |
Collapse
|
15
|
Zheng T, Tang P, Shen L, Bu H, Li G. Rheological behavior of collagen/chitosan blended solutions. J Appl Polym Sci 2021. [DOI: 10.1002/app.50840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tingting Zheng
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education) Sichuan University Chengdu China
| | - Pingping Tang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education) Sichuan University Chengdu China
| | - Lirui Shen
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education) Sichuan University Chengdu China
| | - Honghong Bu
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education) Sichuan University Chengdu China
| | - Guoying Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education) Sichuan University Chengdu China
- National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu China
| |
Collapse
|
16
|
Zhao X, Fang X, Yang S, Zhang S, Yu G, Liu Y, Zhou Y, Feng Y, Li J. Light-tuning amphiphility of host-guest Alginate-based supramolecular assemblies for photo-responsive Pickering emulsions. Carbohydr Polym 2021; 251:117072. [DOI: 10.1016/j.carbpol.2020.117072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 01/10/2023]
|
17
|
Lewandowska K. Miscibility Studies of Hyaluronic Acid and Poly(Vinyl Alcohol) Blends in Various Solvents. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4750. [PMID: 33114237 PMCID: PMC7660636 DOI: 10.3390/ma13214750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/22/2022]
Abstract
In this study, blends based on hyaluronic acid (HA) and poly(vinyl alcohol) (PVA) were characterized by the viscometric method, steady shear rheological tests and FTIR spectroscopy (Fourier Transform Infrared Spectroscopy). Viscometric studies showed the miscibility of HA and PVA in distilled water: 0.1 mol dm-3 NaCl and 0.1 mol dm-3 HCl. The method proposed by Garcia et al. was applied to assess the miscibility of polymers, while Δ[η] and Δb were introduced to determine of miscibility from the Huggins plots. The viscometric data showed that the attractive forces of HA and PVA were dominant when dissolved in 0.1 mol dm-3 NaCl and 0.1 mol dm-3 HCl, while, in distilled water, repulsive forces played the leading role. All polymer solutions were well characterized using a power law model, and exhibited non-Newtonian behavior with pseudoplasticity increasing with the increasing weight fraction of HA in 0.1 mol dm-3 NaCl and 0.1 mol dm-3 HCl. FTIR studies exhibited the formation of new intermolecular interactions between HA and PVA via hydrogen bonding.
Collapse
Affiliation(s)
- Katarzyna Lewandowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
| |
Collapse
|
18
|
The Influence of UV Light on Rheological Properties of Collagen Extracted from Silver Carp Skin. MATERIALS 2020; 13:ma13194453. [PMID: 33049939 PMCID: PMC7579024 DOI: 10.3390/ma13194453] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 11/16/2022]
Abstract
Acid soluble collagen (ASC) was extracted from Silver Carp fish skin. Collagen was dissolved in acetic acid at varying concentrations and its rheological properties were studied. Steady shear flow properties of collagen solutions at concentrations of 5 and 10 mg/mL were characterized using rheometry at 20 °C. Collagen solutions were irradiated with UV light (wavelength 254 nm) for up to 2 h and rheological properties were measured. All the collagen solutions showed a shear-thinning flow behavior. A constant viscosity region was observed after 1 h of UV irradiation, which showed that collagen molecules were fully denatured. A short treatment with collagen solution by UV (ultraviolet) light led to an increase in viscosity; however, the denaturation temperature of UV-irradiated collagen decreased. Depending on the time of UV treatment, collagen extracted from Silver Carp fish skin may undergo physical crosslinking or photodegradation. Physically crosslinked collagen may find applications in functional food, cosmetic, biomedical, and pharmaceutical industries.
Collapse
|
19
|
Modification of Collagen Properties with Ferulic Acid. MATERIALS 2020; 13:ma13153419. [PMID: 32756407 PMCID: PMC7435917 DOI: 10.3390/ma13153419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022]
Abstract
Collagen materials are widely used in biomedicine and in cosmetics. However, their properties require improvement for several reasons. In this work, collagen solution as well as collagen films were modified by the addition of ferulic acid (FA). Thin collagen films containing FA were obtained by solvent evaporation. The properties of collagen solution have been studied by steady shear tests. The structure and surface properties of collagen thin films were studied. It was found that for collagen solution with 5% addition of FA, the apparent viscosity was the highest, whereas the collagen solutions with other additions of FA (1%, 2%, and 10%), no significant difference in the apparent viscosity was observed. Thin films prepared from collagen with 1 and 2% FA addition were homogeneous, whereas films with 5% and 10% FA showed irregularity in the surface properties. Mechanical properties, such as maximum tensile strength and elongation at break, were significantly higher for films with 10% FA than for films with smaller amount of FA. Young modulus was similar for films with 1% and 10% FA addition, but bigger than for 2% and 5% of FA in collagen films. The cross-linking of collagen with ferulic acid meant that prepared thin films were elastic with better mechanical properties than collagen films.
Collapse
|
20
|
Patarroyo JL, Florez-Rojas JS, Pradilla D, Valderrama-Rincón JD, Cruz JC, Reyes LH. Formulation and Characterization of Gelatin-Based Hydrogels for the Encapsulation of Kluyveromyces lactis-Applications in Packed-Bed Reactors and Probiotics Delivery in Humans. Polymers (Basel) 2020; 12:polym12061287. [PMID: 32512791 PMCID: PMC7362005 DOI: 10.3390/polym12061287] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
One of the main issues when orally administering microorganism-based probiotics is the significant loss of bioactivity as they pass through the gastrointestinal (GI) tract. To overcome these issues, here, we propose to encapsulate the probiotic yeast Kluyveromyces lactis on chemically crosslinked gelatin hydrogels as a means to protect the bioactive agents in different environments. Hydrogels were prepared by the chemical crosslinking of gelatin, which is commercially available and inexpensive. This is crucial to ensure scalability and cost-effectiveness. To explore changes in key physicochemical parameters and their impact on cell viability, we varied the concentration of the crosslinking agent (glutaraldehyde) and the gelatin. The synthesized hydrogels were characterized in terms of morphological, physical-chemical, mechanical, thermal and rheological properties. This comprehensive characterization allowed us to identify critical parameters to facilitate encapsulation and enhance cell survival. Mainly due to pore size in the range of 5-10 μm, sufficient rigidity (breaking forces of about 1 N), low brittleness and structural stability under swelling and relatively high shear conditions, we selected hydrogels with a high concentration of gelatin (7.5% (w/v)) and concentrations of the crosslinking agent of 3.0% and 5.0% (w/w) for cell encapsulation. Yeasts were encapsulated with an efficiency of about 10% and subsequently tested in bioreactor operation and GI tract simulated media, thereby leading to cell viability levels that approached 95% and 50%, respectively. After testing, the hydrogels' firmness was only reduced to half of the initial value and maintained resistance to shear even under extreme pH conditions. The mechanisms underlying the observed mechanical response will require further investigation. These encouraging results, added to the superior structural stability after the treatments, indicate that the proposed encapsulates are suitable to overcome most of the major issues of oral administration of probiotics and open the possibility to explore additional biotech applications further.
Collapse
Affiliation(s)
- Jorge Luis Patarroyo
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, DC 111711, USA; (J.L.P.); (J.S.F.-R.); (D.P.)
| | - Juan Sebastian Florez-Rojas
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, DC 111711, USA; (J.L.P.); (J.S.F.-R.); (D.P.)
| | - Diego Pradilla
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, DC 111711, USA; (J.L.P.); (J.S.F.-R.); (D.P.)
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, DC 111711, USA
- Correspondence: (J.C.C.); (L.H.R.); Tel.: +57-1-339-4949 (ext. 1789) (J.C.C.); +57-1-339-4949 (ext. 1702) (L.H.R.)
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical Engineering, Universidad de los Andes, Bogotá, DC 111711, USA; (J.L.P.); (J.S.F.-R.); (D.P.)
- Correspondence: (J.C.C.); (L.H.R.); Tel.: +57-1-339-4949 (ext. 1789) (J.C.C.); +57-1-339-4949 (ext. 1702) (L.H.R.)
| |
Collapse
|
21
|
Silva HA, Paiva EG, Lisboa HM, Duarte E, Cavalcanti-Mata M, Gusmão T, de Gusmão R. Role of chitosan and transglutaminase on the elaboration of gluten-free bread. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:1877-1886. [PMID: 32327798 PMCID: PMC7171014 DOI: 10.1007/s13197-019-04223-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
The increasing sensitivity to gluten has aroused interest in gluten-free products like bread. However, one of the biggest challenges of producing gluten-free bread is to get a good quality structure. We hypothesize that using chitosan along with transglutaminase, a network of crosslinks would be generated, guaranteeing a better structure. Thus, in the present work, we produced gluten-free bread using red rice flour and cassava flour, transglutaminase, and chitosan at concentrations of 0%, 1%, and 2%. Loaves of bread were characterized, and the instrumental texture properties during five days were determined. Bread produced with chitosan and transglutaminase presented lighter brown coloration due to incomplete Maillard reaction and low specific volumes varying from 1.64 to 1.48 cm3/g, possibly due to chitosan interfering with yeast fermentation. Rheological tests revealed increases in viscosity before and after fermentation when chitosan was used. Bread with chitosan presented high initial firmness but a lower rate of staling, possibly due to water retention. According to results, a possible network involving chitosan and other proteins promoted by transglutaminase was formed and after optimization could yield better gluten-free bread.
Collapse
Affiliation(s)
- Hanndson Araujo Silva
- Unidade Academica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso, 882, Campina Grande, Paraíba 58428-900 Brazil
| | - Eudeson G. Paiva
- Unidade Academica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso, 882, Campina Grande, Paraíba 58428-900 Brazil
| | - Hugo M. Lisboa
- Unidade Academica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso, 882, Campina Grande, Paraíba 58428-900 Brazil
| | - Elita Duarte
- Unidade Academica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso, 882, Campina Grande, Paraíba 58428-900 Brazil
| | - Mario Cavalcanti-Mata
- Unidade Academica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso, 882, Campina Grande, Paraíba 58428-900 Brazil
| | - Thaisa Gusmão
- Unidade Academica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso, 882, Campina Grande, Paraíba 58428-900 Brazil
| | - Rennan de Gusmão
- Unidade Academica Engenharia de Alimentos, Universidade Federal Campina Grande, Av. Aprigio Veloso, 882, Campina Grande, Paraíba 58428-900 Brazil
| |
Collapse
|
22
|
Bao Z, Gao M, Fan X, Cui Y, Yang J, Peng X, Xian M, Sun Y, Nian R. Development and characterization of a photo-cross-linked functionalized type-I collagen (Oreochromis niloticus) and polyethylene glycol diacrylate hydrogel. Int J Biol Macromol 2020; 155:163-173. [PMID: 32229213 DOI: 10.1016/j.ijbiomac.2020.03.210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 12/23/2022]
Abstract
Collagen hydrogels have been widely investigated as scaffolds for tissue engineering due to their biocompatibility and capacity to promote cell adhesion. However, insufficient mechanical strength and rapid degradation properties remain the major obstacles for their applications. In the present study, type-I tilapia collagen (TC) was functionalized to form methacrylated tilapia collagen (MATC) by introducing methacrylic acid, developing a photo-cross-linked PEGDA-MATC hydrogel. The mechanical strength of PEGDA-MATC hydrogel could be tuned by adjusting the pH of the precursor solutions, which was decreased with the pH increased. At a pH 5 condition, PEGDA-MATC showed the highest compressive fracture stress (1.31 MPa). Compared to the PEGDA-TC hydrogel, PEGDA-MATC hydrogel exhibited similar swelling behavior to PEGDA-TC hydrogel in PBS solutions, but higher residual mass ratio (PEGDA-MATC, 213.2 ± 2.8%) than PEGDA-TC hydrogel (199.4 ± 3.8%) when cultured with type-I collagenase. PEGDA-MATC hydrogel showed sustained BSA release capacity for 6 days, and the BSA release ratio was significantly (p < 0.05) decreased with increasing concentration of loaded-BSA (68.6% at 4 mg mL-1, 42.2% at 8 mg mL-1). The PEGDA-MATC hydrogel allowed cell adhesion and proliferation in vitro. These results demonstrated that PEGDA-MATC hydrogel might be a potential scaffold for tissue engineering applications.
Collapse
Affiliation(s)
- Zixian Bao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Minghong Gao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Yuting Cui
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Junqing Yang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Xinying Peng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Yue Sun
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China.
| |
Collapse
|
23
|
He L, Lan W, Zhao Y, Chen S, Liu S, Cen L, Cao S, Dong L, Jin R, Liu Y. Characterization of biocompatible pig skin collagen and application of collagen-based films for enzyme immobilization. RSC Adv 2020; 10:7170-7180. [PMID: 35493877 PMCID: PMC9049748 DOI: 10.1039/c9ra10794k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/06/2020] [Indexed: 11/21/2022] Open
Abstract
Based on the excellent biocompatibility of collagen, collagen was extracted from pig skin by acid-enzymatic method. The films were prepared by the self-aggregation behavior of collagen, and the catalase was immobilized by adsorption, cross-linking and embedding. The experiment investigated the effects of glutaraldehyde on the mechanical properties, external sensory properties, and denaturation temperature of the films. The results showed that self-aggregating material could maintain the triple helix structure of pig skin collagen. The self-aggregation treatment and cross-linking treatment can improve the mechanical properties to 53 MPa, while the glutaraldehyde cross-linking agent can increase the denaturation temperature of the pig skin collagen self-aggregating membrane by 20.35% to 84.48 °C. This means that its application to immobilized catalase has better stability. The comparison shows that the catalase immobilized by the adsorption method has strong activity and high operational stability, and the cross-linking agent glutaraldehyde and the initial enzyme concentration have a significant effect on the immobilization, and the activity can reach 175 U g-1. After 16 uses of the film, the catalase was completely inactivated. This study provides a reference for the preparation of a catalase sensor that can be used to detect hydrogen peroxide in food by a catalase sensor.
Collapse
Affiliation(s)
- Li He
- College of Food Science, Sichuan Agricultural University Yaan 625014 China +86-0835-2883219 +86-0835-2883219
| | - Wenting Lan
- College of Food Science, Sichuan Agricultural University Yaan 625014 China +86-0835-2883219 +86-0835-2883219
| | - Yuqing Zhao
- College of Food Science, Sichuan Agricultural University Yaan 625014 China +86-0835-2883219 +86-0835-2883219
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University Yaan 625014 China +86-0835-2883219 +86-0835-2883219
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University Yaan 625014 China +86-0835-2883219 +86-0835-2883219
| | - Liyuan Cen
- College of Food Science, Sichuan Agricultural University Yaan 625014 China +86-0835-2883219 +86-0835-2883219
| | - Shu Cao
- College of Food Science, Sichuan Agricultural University Yaan 625014 China +86-0835-2883219 +86-0835-2883219
| | - Lei Dong
- College of Food Science, Sichuan Agricultural University Yaan 625014 China +86-0835-2883219 +86-0835-2883219
| | - Ruoyun Jin
- College of Food Science, Sichuan Agricultural University Yaan 625014 China +86-0835-2883219 +86-0835-2883219
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University Yaan 625014 China +86-0835-2883219 +86-0835-2883219
- California NanoSystems Institute, University of California Los Angeles CA 90095 USA
| |
Collapse
|
24
|
Chou S, Meng X, Cui H, Zhang S, Wang H, Li B. Rheological and pasting properties of maize, wheat and rice starch as affected by apple polyphenols. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1671452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Shurui Chou
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Shuyi Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Hanchen Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
25
|
Wu M, Gao F, Yin DM, Luo Q, Fu ZQ, Zhou YG. Processing of Superfine Grinding Corn Straw Fiber-Reinforced Starch Film and the Enhancement on Its Mechanical Properties. Polymers (Basel) 2018; 10:E855. [PMID: 30960780 PMCID: PMC6403546 DOI: 10.3390/polym10080855] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/30/2018] [Accepted: 07/30/2018] [Indexed: 01/01/2023] Open
Abstract
In this study, corn straw (CS) was reduced in size using the superfine grinding process to generate powders with particles of varying sizes (9~16 μm). The lignin, hemicellulose, and cellulose content; particle size distribution; and scanning electron microscopy (SEM) of the CS samples were analyzed. Superfine CS, of varying particle sizes, was added to the starch-based films (SF) in various amounts. The resulting corn straw starch-based films (CS/SFs) appeared to have significantly different properties, compared to the original starch-based film (SF, p < 0.05). The power law model and Burger's model were used to investigate the dynamic mechanical analysis, which indicated that the mechanical properties of CS/SF performed better than that of SF, especially CS/SFs at 0.5⁻1.5 h ball milling and CS/SFs at a 15% addition amount. The power law model and Burger's model also presented a strong correlation with the experimental data (>0.90).
Collapse
Affiliation(s)
- Min Wu
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Fei Gao
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Dong-Min Yin
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Qi Luo
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
| | - Zong-Qiang Fu
- School of Materials Science and Mechanical Engineering, Beijing Technology and Business University, No. 11 Fucheng Road, Haidian District, Beijing 100048, China.
| | - Yu-Guang Zhou
- College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing 100083, China.
- Key Laboratory of Clean Production and Utilization of Renewable Energy, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
- National Center for International Research of BioEnergy Science and Technology, Ministry of Science and Technology, Beijing 100083, China.
| |
Collapse
|
26
|
Research on the rheological properties of cross-linked polymer microspheres with different microstructures. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.03.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Yang H, Duan L, Li Q, Tian Z, Li G. Experimental and modeling investigation on the rheological behavior of collagen solution as a function of acetic acid concentration. J Mech Behav Biomed Mater 2018; 77:125-134. [DOI: 10.1016/j.jmbbm.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
|
28
|
Chen K, Yu G, He F, Zhou Q, Xiao D, Li J, Feng Y. A pH-responsive emulsion stabilized by alginate-grafted anisotropic silica and its application in the controlled release of λ-cyhalothrin. Carbohydr Polym 2017; 176:203-213. [DOI: 10.1016/j.carbpol.2017.07.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/04/2017] [Accepted: 07/15/2017] [Indexed: 01/10/2023]
|
29
|
Sharma R, Rana V. Effect of carboxymethylation on rheological and drug release characteristics of Terminalia catappa gum. Carbohydr Polym 2017; 175:728-738. [PMID: 28917923 DOI: 10.1016/j.carbpol.2017.08.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/13/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
Abstract
The carboxymethylation of galactomannans, arabinogalactans, arbinoxylan, etc is known to modify solubility, swelling index, rheological behaviour, powder characteristics, etc. Therefore, an attempt had been made to study the effect of carboxymethylation on Terminalia catappa (TC) gum. For this, modified Williamson synthesis reaction was utilized employing Quality by Design (QbD) approach. Grafting of carboxymethyl group on Terminalia catappa was confirmed by ATR-FTIR, H1NMR and DSC analyses. The rheological attributes revealed that the carboxymethylation of TC lowers the viscosity, enhance thermal stability (high activation energy), disentanglement was near to re-entanglement, and weak gelling characteristic. However, the soluble fluconazole loaded gel formulation of CMTC showed diffusion based kinetic model indicating good reservoir for effective application on skin/tissue surfaces.
Collapse
Affiliation(s)
- Radhika Sharma
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | - Vikas Rana
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
30
|
Chen K, Chen M, Feng Y, Yu G, Zhang L, Li J. Application and rheology of anisotropic particle stabilized emulsions: Effects of particle hydrophobicity and fractal structure. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Insights into the rheological behaviors evolution of alginate dialdehyde crosslinked collagen solutions evaluated by numerical models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:727-737. [PMID: 28576043 DOI: 10.1016/j.msec.2017.04.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 02/07/2023]
Abstract
The elaboration of the rheological behaviors of alginate dialdehyde (ADA) crosslinked collagen solutions, along with the quantitative analysis via numerical models contribute to the controllable design of ADA crosslinked solution system's fluid mechanics performance during manufacturing process for collagen biomaterials. In the present work, steady shear flow, dynamical viscoelasticity, creep-recovery, thixotropy tests were performed to characterize the rheological behaviors of the collagen solutions incorporating of ADA from the different aspects and fitted with corresponding numerical models. It was found that pseudoplastic properties of all samples enhanced with increasing amounts of ADA, which was confirmed by the parameters calculated from the Ostwald-de Waele model, Carreau and Cross model, for instance, the non-Newtonian index (n) decreased from 0.786 to 0.201 and a great increase by 280 times in value of viscosity index (K) was obtained from Ostwald-de Waele model. The forth-mode Leonov model was selected to fit all dynamic modulus-frequency curves due to its higher fitting precision (R2>0.99). It could be found that the values of correlation shear viscosity (ηk) increased and the values of relaxation time (θk) decreased with increasing ADA at the fixed k value, suggesting that the incorporation of ADA accelerated the transformation of the collagen solutions from liquid-like to gel-like state due to more formation of CN linkages between aldehyde groups and lysine residues. Also, the curves of creep and recovery phase of the native and crosslinked collagen solutions were simulated well using Burger model and a semi-empirical model, respectively. The ability to resist to deformation and elasticity strengthened for the samples with higher amounts of ADA, accompanied with the important fact that compliance value (J50) decreased from 56.317Pa-1 to 2.135Pa-1 and the recovery percentage (Rcreep) increased from 2.651% to 28.217%. Finally, it was found that the area of thixotropic loop increased from 8.942Pa/s to 17.823Pa/s with increasing introduction of ADA, suggesting that stronger thixotropic behavior was associated with higher amount of ADA. Furthermore, Herschel-Bulkley model was employed to describe the up and down curves of all samples and it was confirmed that all collagen solutions belonged to pseudoplastic fluid (the flow index<1) without apparent yield stress and shear-thinning behaviors were more obvious with increasing additions of ADA according to the increasing consistency coefficient K values. Overall, this work contributed a new insight into the interactions between collagen and ADA based on quantitative rheological methods reflecting the different rheological properties and the results obtained should be of great utility in the extensive application of ADA crosslinked collagen solutions into diverse collagen-based materials.
Collapse
|
32
|
Structural and rheological characterizations of nanoparticles of environment-sensitive hydrophobic alginate in aqueous solution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:617-627. [DOI: 10.1016/j.msec.2016.08.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/02/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
|