1
|
Pillai RR, Panickar R, Vaidya U, Lungu CT, Antony VB, Thomas V. Organic Dusty-Misty Plasma-Assisted Modeling of Natural Fiber Adsorbent-Bed for Mn (II) and Cd (II) from Aqueous System. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2025; 13:116759. [PMID: 40364830 PMCID: PMC12068854 DOI: 10.1016/j.jece.2025.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Heavy metal (HM) pollution poses a significant environmental risk globally, necessitating greener, efficient, and cost-effective remediation strategies. This study investigates low-temperature plasma (LTP) assisted modification of carbon and soy fibers for enhanced HM adsorption, targeting Mn (II) and Cd (II) ions in aqueous media. Carbon and soy fibers, fabricated using a wet-lay process, underwent surface modifications with plasma treatments utilizing various precursors, including 2-mercaptoethanol (MCE), ethylenediamine, acetic acid, and N-vinyl pyrrolidone (VP). Comprehensive characterization before and after plasma treatment, and post-HM adsorption, was performed using Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), and 3D imaging, while plasma density was assessed via Optical Emission Spectroscopy (OES). Atomic Absorption Spectrophotometry (AAS) was used to quantify HM removal from aqueous solutions, with MCE-modified fibers demonstrating the highest adsorption capacities (50 mg/g for Mn and 40 mg/g for Cd). Additional parameter studies highlighted optimal adsorption at 35 °C and pH 7. The findings underscore LTP's potential in enhancing HM adsorption efficiency on natural fibers, an approach with limited prior exploration. This research also addresses crucial challenges in HM remediation, such as improving adsorbent retrieval from environmental matrices and minimizing chemical waste during material processing, underscoring the method's environmental and practical significance.
Collapse
Affiliation(s)
- Renjith Rajan Pillai
- Department of Mechanical and Materials Engineering, The University of Alabama at Birmingham, AL 35294, USA
| | - Radhika Panickar
- Department of Materials Science & Engineering, Tuskegee University, Tuskegee, AL 36088, USA
| | - Uday Vaidya
- Energy and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37771, USA
- Institute for Advanced Composites Manufacturing Innovation (IACMI), Knoxville, TN, 37932 USA
| | - Claudiu T. Lungu
- Department of Environmental Health Sciences, School of Public Health, The University of Alabama at Birmingham, AL 35294, USA
| | - Veena B. Antony
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Vinoy Thomas
- Department of Mechanical and Materials Engineering, The University of Alabama at Birmingham, AL 35294, USA
- Center for Nanoscale Materials and Biointegration (CNMB), University of Alabama at Birmingham, AL 35294, USA
| |
Collapse
|
2
|
Bakare A, Mohanadas HP, Tucker N, Ahmed W, Manikandan A, Faudzi AAM, Mohamaddan S, Jaganathan SK. Advancements in textile techniques for cardiovascular tissue replacement and repair. APL Bioeng 2024; 8:041503. [PMID: 39431050 PMCID: PMC11488978 DOI: 10.1063/5.0231856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
In cardiovascular therapeutics, procedures such as heart transplants and coronary artery bypass graft are pivotal. However, an acute shortage of organ donors increases waiting times of patients, which is reflected in negative effects on the outcome for the patient. Post-procedural complications such as thrombotic events and atherosclerotic developments may also have grave clinical implications. To address these challenges, tissue engineering is emerging as a solution, using textile technologies to synthesize biomimetic scaffolds resembling natural tissues. This comprehensive analysis explains methodologies including electrospinning, electrostatic flocking, and advanced textile techniques developed from weaving, knitting, and braiding. These techniques are evaluated in the context of fabricating cardiac patches, vascular graft constructs, stent designs, and state-of-the-art wearable sensors. We also closely examine the interaction of distinct process parameters with the biomechanical and morphological attributes of the resultant scaffolds. The research concludes by combining current findings and recommendations for subsequent investigation.
Collapse
Affiliation(s)
- Abiola Bakare
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | | | - Nick Tucker
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - Waqar Ahmed
- School of Mathematics and Physics, College of Health and Science, Brayford Pool, Lincoln LN6 7TS, United Kingdom
| | - A. Manikandan
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ahmad Athif Mohd Faudzi
- School of Electrical Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Shahrol Mohamaddan
- Innovative Global Program College of Engineering, Shibaura Institute of Technology, Saitama, Japan
| | | |
Collapse
|
3
|
Kim W, Choi JH, Kim P, Youn J, Song JE, Motta A, Migliaresi C, Khang G. Preparation and evaluation of gellan gum hydrogel reinforced with silk fibers with enhanced mechanical and biological properties for cartilage tissue engineering. J Tissue Eng Regen Med 2021; 15:936-947. [PMID: 34388313 DOI: 10.1002/term.3237] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022]
Abstract
Various research about cartilage regeneration using biomaterials has been done recently. Particularly, gellan gum hydrogel (GG) is reported to be suitable as a biomaterial for cartilage tissue engineering (TE) for its water uptaking ability, producibility, and environmental resemblance of native cartilage. Despite these advantages, mechanical and cell adhesion properties are still difficult to modulate. Reinforcement is essential to overcome these problems. Herein, GG was modified by physically blending with different lengths of silk fiber (SF). As SF is expected to improve such disadvantages of GG, mechanical and biological properties were characterized to confirm its reinforcement ability. Mechanical properties such as degradation rate, swelling rate, compression strength, and viscosity were studied and it was confirmed that SF significantly reinforces the mechanical properties of GG. Furthermore, in vitro study was carried out to confirm morphology, biocompatibility, proliferation, and chondrogenesis of chondrocytes encapsulated in the hydrogels. Overall, chondrocytes in the GG blended with SF (SF/GG) showed enhanced cell viability and growth. According to this study, SF/GG can be a promising biomaterial for cartilage TE biomaterial.
Collapse
Affiliation(s)
- Wooyoup Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
| | - Joo Hee Choi
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
| | - Pilyun Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
| | - Jina Youn
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
| | - Jeong Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea
| | - Antonella Motta
- Department of Industrial Engineering and BIOtech Research Center, University of Trento, Trento, Italy
| | - Claudio Migliaresi
- Department of Industrial Engineering and BIOtech Research Center, University of Trento, Trento, Italy
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, Jeonju-si, Korea.,Department of PolymerNano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, Jeonju-si, Korea
| |
Collapse
|
4
|
Chen Y, Song J, Wang S, Liu W. PVA-Based Hydrogels: Promising Candidates for Articular Cartilage Repair. Macromol Biosci 2021; 21:e2100147. [PMID: 34272821 DOI: 10.1002/mabi.202100147] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/07/2021] [Indexed: 12/16/2022]
Abstract
The complex, gradient physiological structure of articular cartilage is a severe hindrance of its self-repair, leaving the clinical treatment of cartilage defects a demanding issue to be addressed. Currently applied tissue engineering treatments and traditional non-tissue engineering treatments have different limitations, for example, cell dedifferentiation, immune rejection, and prosthesis-related complications. Thus, studies have been focusing on seeking promising candidates for novel cartilage repair methods. Polyvinyl alcohol (PVA) hydrogels with excellent biocompatibility and tunable material properties have become the alternatives. For pure PVA hydrogels, the mechanical strength and lubricity are not capable of replacing articular cartilage until proper modifications are done. This paper summarizes the research progress in PVA hydrogels, including the preparation, modification, and cartilage-repair-aimed biomimetic improvements. Design guidance of PVA hydrogels is put forward as assistance to functional hydrogel preparation. Finally, the prospects and main obstacles of PVA hydrogels are discussed.
Collapse
Affiliation(s)
- Yuru Chen
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jian Song
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Song Wang
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China
| | - Weiqiang Liu
- Biomechanics and Biotechnology Lab, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China.,Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
5
|
Han S, Nie K, Li J, Sun Q, Wang X, Li X, Li Q. 3D Electrospun Nanofiber-Based Scaffolds: From Preparations and Properties to Tissue Regeneration Applications. Stem Cells Int 2021; 2021:8790143. [PMID: 34221024 PMCID: PMC8225450 DOI: 10.1155/2021/8790143] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
Electrospun nanofibers have been frequently used for tissue engineering due to their morphological similarities with the extracellular matrix (ECM) and tunable chemical and physical properties for regulating cell behaviors and functions. However, most of the existing electrospun nanofibers have a closely packed two-dimensional (2D) membrane with the intrinsic shortcomings of limited cellular infiltration, restricted nutrition diffusion, and unsatisfied thickness. Three-dimensional (3D) electrospun nanofiber-based scaffolds can provide stem cells with 3D microenvironments and biomimetic fibrous structures. Thus, they have been demonstrated to be good candidates for in vivo repair of different tissues. This review summarizes the recent developments in 3D electrospun nanofiber-based scaffolds (ENF-S) for tissue engineering. Three types of 3D ENF-S fabricated using different approaches classified into electrospun nanofiber 3D scaffolds, electrospun nanofiber/hydrogel composite 3D scaffolds, and electrospun nanofiber/porous matrix composite 3D scaffolds are discussed. New functions for these 3D ENF-S and properties, such as facilitated cell infiltration, 3D fibrous architecture, enhanced mechanical properties, and tunable degradability, meeting the requirements of tissue engineering scaffolds were discovered. The applications of 3D ENF-S in cartilage, bone, tendon, ligament, skeletal muscle, nerve, and cardiac tissue regeneration are then presented with a discussion of current challenges and future directions. Finally, we give summaries and future perspectives of 3D ENF-S in tissue engineering and clinical transformation.
Collapse
Affiliation(s)
- Shanshan Han
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Kexin Nie
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Qingqing Sun
- Center for Functional Sensor and Actuator, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
- National Center for International Joint Research of Micro-nano Moulding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Zhang L, Fu L, Zhang X, Chen L, Cai Q, Yang X. Hierarchical and heterogeneous hydrogel system as a promising strategy for diversified interfacial tissue regeneration. Biomater Sci 2021; 9:1547-1573. [DOI: 10.1039/d0bm01595d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A state-of-the-art review on the design and preparation of hierarchical and heterogeneous hydrogel systems for interfacial tissue regeneration.
Collapse
Affiliation(s)
- Liwen Zhang
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Lei Fu
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xin Zhang
- Institute of Sports Medicine
- Beijing Key Laboratory of Sports Injuries
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Linxin Chen
- Peking University Third Hospital
- Beijing 100191
- P. R. China
| | - Qing Cai
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic–Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| |
Collapse
|
7
|
Augustine R, Zahid AA, Hasan A, Dalvi YB, Jacob J. Cerium Oxide Nanoparticle-Loaded Gelatin Methacryloyl Hydrogel Wound-Healing Patch with Free Radical Scavenging Activity. ACS Biomater Sci Eng 2020; 7:279-290. [DOI: 10.1021/acsbiomaterials.0c01138] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Yogesh Bharat Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Science & Research, Tiruvalla 689101, Kerala, India
| | - Jessiya Jacob
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Science & Research, Tiruvalla 689101, Kerala, India
- School of Biosciences, Mar Athanasios College for Advanced Studies (MACFAST), Tiruvalla 689101, Kerala, India
| |
Collapse
|
8
|
James BD, Ruddick WN, Vasisth SE, Dulany K, Sulekar S, Porras A, Marañon A, Nino JC, Allen JB. Palm readings: Manicaria saccifera palm fibers are biocompatible textiles with low immunogenicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110484. [PMID: 31924028 DOI: 10.1016/j.msec.2019.110484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
Plant-based fibers are a potential alternative to synthetic polymer fibers that can yield enhanced biocompatibility and mechanical properties matching those properties of tissue. Given the unique morphology of the bract of the Manicaria saccifera palm, being an interwoven meshwork of fibers, we believe that these fibers with this built-in structure could prove useful as a tissue engineering scaffold material. Thus, we first investigated the fiber's in vitro biocompatibility and immunogenicity. We cultured NIH/3T3 mouse fibroblasts, human aortic smooth muscle cells, and human adipose-derived mesenchymal stem cells on the fiber mats, which all readily attached and over 21 days grew to engulf the fibers. Importantly, this was achieved without treating the plant tissue with extracellular matrix proteins or any adhesion ligands. In addition, we measured the gene expression and protein secretion of three target inflammatory cytokines (IL-1β, IL-8, and TNFα) from THP-1 human leukemia monocytes cultured in the presence of the biotextile as an in vitro immunological model. After 24 h of culture, gene expression and protein secretion were largely the same as the control, demonstrating the low immunogenicity of Manicaria saccifera fibers. We also measured the tensile mechanical properties of the fibers. Individual fibers after processing had a Young's modulus of 9.51 ± 4.38 GPa and a tensile strength of 68.62 ± 27.93 MPa. We investigated the tensile mechanical properties of the fiber mats perpendicular to the fiber axis (transverse loading), which displayed upwards of 100% strain, but with a concession in strength compared to longitudinal loading. Collectively, our in vitro assessments point toward Manicaria saccifera as a highly biocompatible biotextile, with a range of potential clinical and engineering applications.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611, USA
| | - William N Ruddick
- Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611, USA
| | - Shangradhanva E Vasisth
- Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611, USA
| | - Krista Dulany
- Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611, USA
| | - Soumitra Sulekar
- Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611, USA
| | - Alicia Porras
- Mechanical Engineering Department, Universidad de los Andes, CR 1 ESTE 19A 40, Bogota 111711, Colombia
| | - Alejandro Marañon
- Chemical Engineering Department, Universidad de los Andes, CR, 1 ESTE 19A 40, Bogota, 111711, Colombia
| | - Juan C Nino
- Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611, USA
| | - Josephine B Allen
- Department of Materials Science and Engineering, University of Florida, 100 Rhines Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
9
|
Martin N, Youssef G. Dynamic properties of hydrogels and fiber-reinforced hydrogels. J Mech Behav Biomed Mater 2018; 85:194-200. [PMID: 29908487 DOI: 10.1016/j.jmbbm.2018.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/23/2018] [Accepted: 06/05/2018] [Indexed: 12/26/2022]
Abstract
Hydrophilic polymers, or hydrogels, are used for a wide variety of biomedical applications, due to their inherent ability to withhold a high-water content. In recent years, a large effort has been focused on tailoring the mechanical properties of these hydrogels to become more appropriate materials for use as anatomical and physiological structural supports. A few of these such methods include using diverse types of polymers, both natural and synthetic, varying the type of molecular cross-linking, as well as combining these efforts to form interpenetrating polymer network hydrogels. While multiple research groups have characterized these various hydrogels under quasi-static conditions, their dynamic properties, representative of native physiological loading scenarios, have been scarcely reported. In this study, an E-glass fiber reinforced family of alginate/PAAm hydrogels cross-linked by both divalent and trivalent cations are fabricated and investigated. The effect of the reinforcement phase on the dynamic and hydration behaviors is then explicated. Additionally, a micromechanics framework for short cylindrical chopped fibers is utilized to discern the contribution of the matrix and fiber constituents on the hydrogel composite. The addition of E-glass fibers resulted in the storage modulus exhibiting a ~50%, 5%, and ~120%, increase with a mere addition of 2 wt% of the reinforcing fibers to Na-, Sr-, and Al-alginate/PAAm, respectively. In studying the cross-linking effect of various divalent (Ba, Ca, Sr) and trivalent (Al, Fe) cations, it was noteworthy that the hydrogels were found to be effective in dissipating energy while resisting mechanical deformation when they are cross-linked with higher molecular weight elements, regardless of valency. This report on the dynamic properties of these hydrogels will help to improve their optimization for future use in biomedical load-bearing applications.
Collapse
Affiliation(s)
- Nicholas Martin
- Mechanical Engineering Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - George Youssef
- Mechanical Engineering Department, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA.
| |
Collapse
|
10
|
Wood AT, Everett D, Kumar S, Mishra MK, Thomas V. Fiber length and concentration: Synergistic effect on mechanical and cellular response in wet-laid poly(lactic acid) fibrous scaffolds. J Biomed Mater Res B Appl Biomater 2018; 107:332-341. [DOI: 10.1002/jbm.b.34125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 02/19/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Andrew T. Wood
- Department of Materials Science and Engineering; University of Alabama at Birmingham; Birmingham Alabama
| | - Dominique Everett
- Department of Materials Science and Engineering; University of Alabama at Birmingham; Birmingham Alabama
| | - Sanjay Kumar
- Department of Biological Sciences, Cancer Biology Research and Training Program; Alabama State University; Montgomery Alabama
| | - Manoj K. Mishra
- Department of Biological Sciences, Cancer Biology Research and Training Program; Alabama State University; Montgomery Alabama
| | - Vinoy Thomas
- Department of Materials Science and Engineering; University of Alabama at Birmingham; Birmingham Alabama
- Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham; Birmingham Alabama
| |
Collapse
|
11
|
Deng C, Liu W, Zhang Y, Huang C, Zhao Y, Jin X. Environmentally friendly and breathable wet-laid hydroentangled nonwovens for personal hygiene care with excellent water absorbency and flushability. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171486. [PMID: 29765631 PMCID: PMC5936896 DOI: 10.1098/rsos.171486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/13/2018] [Indexed: 05/07/2023]
Abstract
Developing wet-laid papers with a good wet strength remains a longstanding challenge in the papermaking industry. In this study, hydroentanglement, a mechanical bonding technique is developed to consolidate the wet-laid fibre web. The results indicate that wet tensile strength, ductile stretching property, softness, air permeability and water absorbency of the wet-laid fibre web are significantly improved by hydroentanglement. In addition, the abrasion test shows that the dusting off rate of wet-laid fibre web can be effectively reduced through hydroentanglement. Moreover, the disintegration experiment proves that wet-laid hydroentangled nonwovens could be easily dispersed when compared with conventional carded hydroentangled nonwovens. Therefore, the new wet-laid hydroentangled nonwovens can maintain excellent performance in a wet state, showing a great potential for personal hygiene applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiangyu Jin
- Author for correspondence: Xiangyu Jin e-mail:
| |
Collapse
|
12
|
Khorshidi S, Karkhaneh A. A review on gradient hydrogel/fiber scaffolds for osteochondral regeneration. J Tissue Eng Regen Med 2018; 12:e1974-e1990. [PMID: 29243352 DOI: 10.1002/term.2628] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 07/17/2017] [Accepted: 11/27/2017] [Indexed: 12/31/2022]
Abstract
Osteochondral tissue regeneration is a complicated field due to the distinct properties and healing potential of osseous and chondral phases. In a natural osteochondral region, the composition, mechanics, and structure vary smoothly from bony to cartilaginous phase. Therefore, a homogeneous scaffold cannot satisfy the complexity of the osteochondral matrix. In essence, a natural extracellular matrix is composed of fibrous proteins elongated into a gelatinous background. A hydrogel/fiber scaffold possessing gradient in both phases would be of the utmost interest to imitate tissue arrangement of a native osteochondral interface. However, there are limited research works that exploit hydrogel/fiber scaffolds for osteochondral restoration. In the present review, currently used fibrous or gelatinous scaffolds for osteochondral damages are discussed. Moreover, superiority of using gradient hydrogel/fiber composites for osteochondral regeneration and practical approaches to develop those scaffolds is debated.
Collapse
Affiliation(s)
- Sajedeh Khorshidi
- Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
13
|
Khorshidi S, Karkhaneh A. Hydrogel/fiber conductive scaffold for bone tissue engineering. J Biomed Mater Res A 2017; 106:718-724. [DOI: 10.1002/jbm.a.36282] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/12/2017] [Accepted: 10/26/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Sajedeh Khorshidi
- Biomedical Engineering Faculty; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| | - Akbar Karkhaneh
- Biomedical Engineering Faculty; Amirkabir University of Technology (Tehran Polytechnic); Tehran Iran
| |
Collapse
|
14
|
Meng X, Zeng N, Zhang J, Jiang L, Dan Y. Polyvinyl alcohol-based hydrophilic monoliths from water-in-oil high internal phase emulsion template. J Colloid Interface Sci 2017; 497:290-297. [PMID: 28288375 DOI: 10.1016/j.jcis.2017.01.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/14/2017] [Accepted: 01/22/2017] [Indexed: 10/20/2022]
Abstract
Herein, we report a new approach to fabricate polyvinyl alcohol (PVA) based hydrophilic monoliths by alcoholysis of porous emulsion-templated polyvinyl acetate (PVAc). The precursory PVAc-based monolith is obtained by polymerization of a W/O high internal phase emulsion (HIPE) containing vinyl acetate as the external phase while water as the internal phase. As an alcoholysis-stable tri-functional commonomer, triallyl isocyanurate is chosen as the crosslinking agent to prevent possible collapse of the polymeric skeleton and the consequent losses in mechanical properties during the alcoholysis step. By alcoholysis of the resulting PVAc-based monolith, the PVA-based monoliths are successful prepared as confirmed by FTIR analysis. BET analysis and SEM observation confirm the formation of open-cell and highly interconnected porous structures of PVA-based monoliths with surface areas of around 16m2/g. Stemming from the intrinsic hydrophilicity of hydroxyl and morphology, PVA-based monoliths exhibit great enhancement in hydrophilicity with a much lower water contact angles than that of PVAc-based monoliths.
Collapse
Affiliation(s)
- Xiao Meng
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Ni Zeng
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jin Zhang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Long Jiang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| | - Yi Dan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
15
|
Huang KT, Fang YL, Hsieh PS, Li CC, Dai NT, Huang CJ. Non-sticky and antimicrobial zwitterionic nanocomposite dressings for infected chronic wounds. Biomater Sci 2017; 5:1072-1081. [DOI: 10.1039/c7bm00039a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zwitterionic poly(sulfobetaine acrylamide) (pSBAA)-based nanocomposite hydrogels can have high potential for the treatment of infected chronic wounds.
Collapse
Affiliation(s)
- Kang-Ting Huang
- Department of Biomedical Sciences and Engineering
- National Central University
- Taoyuan 320
- Taiwan
| | - Yun-Lung Fang
- Department of Biomedical Sciences and Engineering
- National Central University
- Taoyuan 320
- Taiwan
- Division of Plastic and Reconstructive Surgery
| | - Pai-Shan Hsieh
- Division of Plastic and Reconstructive Surgery
- Department of Surgery
- Tri-Service General Hospital
- National Defense Medical Center
- Taiwan
| | - Chun-Chang Li
- Division of Plastic Surgery
- Department of Surgery
- Wan Fan Hospital
- Taipei Medical University
- Taiwan
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery
- Department of Surgery
- Tri-Service General Hospital
- National Defense Medical Center
- Taiwan
| | - Chun-Jen Huang
- Department of Biomedical Sciences and Engineering
- National Central University
- Taoyuan 320
- Taiwan
- Department of Chemical & Materials Engineering
| |
Collapse
|