1
|
Al-Hashimi N, Dahmash EZ, Khoder M, Alany R, Elshaer A. Engineering pH-Dependent Orally Disintegrating Tablets for Modified Indomethacin Release: A Polymer-Based Approach. AAPS PharmSciTech 2025; 26:93. [PMID: 40140231 DOI: 10.1208/s12249-025-03082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The application of pH-sensitive polymers has been widely explored in pharmaceutical industry because of their versatile properties. This work aims to delay the release of indomethacin (IND), a commonly used anti-inflammatory drug, using a pH-dependent polymer within orally disintegrating tablets (ODTs) and to investigate the effect of the polymer particle size on the ODTs. When developing delayed-release formulations for orally disintegrating tablets (ODTs), it's essential to balance the pellet's matrix properties to maintain integrity and delayed release. Different sizes of Eudragit L100 were used to create IND-containing pellets via extrusion spheronization, which were then embedded into the matrix of ODTs. The particle sizes displayed good elastic properties with low Young's modulus (YM) values, and there was no significant difference between the different sizes (45, 60, 93 µm; p > 0.05). The tensile strength of the pellets was directly proportional to YM (p < 0.05), providing enough support to maintain their integrity under compression. Pellets made from 63 µm Eudragit L100 had a suitable balance of mechanical and pharmaceutical properties compared to other sizes. 63 µm pellets had an aspect ratio of 1.49 ± 0.26 and 61% yield, while their ODTs showed a fast disintegration time of 14 ± 0.6 s, while modifying the drug release. Furthermore, IND exhibited modified release in acidic media (pH 1.2) and immediate release in buffer media (pH 6.8). Overall, protecting pellet integrity was crucial to delay release in acidic media and enable immediate release in alkaline media. The newly developed formulation will improve compliance and reduce side effects associated with IND and other irritant drugs particularly in elderly populations.
Collapse
Affiliation(s)
- Nihad Al-Hashimi
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston Upon Thames, KT1 2EE, UK
| | - Eman Zmaily Dahmash
- Department of Chemical and Pharmaceutical Sciences, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston Upon Thames, KT1 2EE, UK.
- Faculty of Pharmacy, Isra University, Amman, Jordan.
| | - Mouhamad Khoder
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston Upon Thames, KT1 2EE, UK
| | - Raid Alany
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston Upon Thames, KT1 2EE, UK
| | - Amr Elshaer
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston Upon Thames, KT1 2EE, UK.
| |
Collapse
|
2
|
Arınmış K, Kıyan HT, Öztürk AA. Preparation, Characterization, Antioxidant Activities, and Determination of Anti-Alzheimer Effects of PLGA-Based DDSs Containing Ferulic Acid. ACS OMEGA 2024; 9:11321-11338. [PMID: 38497027 PMCID: PMC10938454 DOI: 10.1021/acsomega.3c07289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 03/19/2024]
Abstract
Nanoparticle (NP) systems have attracted the attention of researchers in recent years due to their advantages, such as modified release features, increased therapeutic efficacy, and reduced side effects. Ferulic acid (FA) has therapeutic effects such as anti-inflammatory, anti-Alzheimer's, antioxidant, antimicrobial, anticancer, antihyperlipidemic, and antidiabetic. In this study, FA-loaded PLGA-based NPs were prepared by a nanoprecipitation method and the effect of varying concentrations of Poloxamer 188 and Span 60 on NP properties was investigated. FA-loaded A-FA coded formulation was chosen as optimum. High encapsulation efficiency has been achieved due to the low affinity of FA to the water phase and, therefore, its lipophilic nature, which tends to migrate to the organic phase. It was determined that the release of FA from the A-FA was slower than pure FA and prolonged release in 24 h. Antioxidant and anti-Alzheimer's effects of A-FA coded NP formulation were investigated by biological activity studies. A-FA coded NP formulation showed strong DPPH free radical scavenging, ABTS cation decolorizing, and reducing antioxidant activity. Since it has both AChE inhibitor and antioxidant properties according to the results of its anti-Alzheimer activity, it was concluded that the formulation prepared in this study shows promise in the treatment of both oxidative stress-related diseases and Alzheimer's.
Collapse
Affiliation(s)
- Kübra
Nur Arınmış
- Graduate
School of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical
Technology, Anadolu University, Eskişehir 26470, Türkiye
| | - H. Tuba Kıyan
- Faculty
of Pharmacy, Department of Pharmacognosy, Anadolu University, Eskişehir 26470, Türkiye
| | - A. Alper Öztürk
- Faculty
of Pharmacy, Department of Pharmaceutical Technology, Anadolu University, Eskişehir 26470, Türkiye
| |
Collapse
|
3
|
Akbari V, Ghobadi S. Evaluation of the effect of phenylpropanoids on the binding of heparin to human serum albumin and glycosylated human serum albumin concerning anticoagulant activity: A comparison study. Int J Biol Macromol 2024; 257:128732. [PMID: 38092116 DOI: 10.1016/j.ijbiomac.2023.128732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The nonenzymatic advanced glycation end products (AGEs) and the accumulation of AGEs are the two main factors associated with the long-term pathogenesis of diabetes. Human serum albumin (HSA) as the most abundant serum protein has a higher fortuity to be modified by nonenzymatic glycation. In this study, the interaction of three phenylpropanoids (caffeic acid (Caf), p-coumaric acid (Cou), and cinnamic acid (Cin)) toward HSA and glycosylated HSA (gHSA) was analyzed by multiple spectroscopic techniques combined with molecular docking. The formation of fibrils in HSA and gHSA was confirmed by the Thioflavin T (ThT) assay. The phenylpropanoids have shown anti-fibrillation properties in vitro. The obtained thermodynamic parameters indicated that hydrogen bonding and van der Waals forces are the main forces in the binding interaction, and the quenching mechanism of the protein fluorescence is static. Molecular docking results, as well as the in vitro results, showed that Caf, Cou, and Cin exhibit more stable interactions with HSA, respectively. In addition, molecular docking analysis showed that Caf and Cou interact well with K199. Given the critical role of K199 in HSA glycosylation in diabetic patients, this process inhibits the interaction of stabilizer compounds and thus accelerates gHSA aggregation.
Collapse
Affiliation(s)
- Vali Akbari
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Sirous Ghobadi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| |
Collapse
|
4
|
Shukla D, Nandi NK, Singh B, Singh A, Kumar B, Narang RK, Singh C. Ferulic acid-loaded drug delivery systems for biomedical applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Zhang K, Shen X, Yang L, Chen Q, Wang N, Li Y, Song P, Jiang M, Bai G, Yang P, Yang Z. Exploring the Q-markers of Angelica sinensis (Oliv.) Diels of anti-platelet aggregation activity based on spectrum-effect relationships. Biomed Chromatogr 2022; 36:e5422. [PMID: 35677958 DOI: 10.1002/bmc.5422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 11/07/2022]
Abstract
The radix of Angelica sinensis (Oliv.) Diels (RAS) is widely used in medicinal and dietary applications in China, and has the function for replenishing and invigorating the blood, stopping pain and moistening the intestines. In this study, RAS from the main geoherb regions showed better efficacy in inhibiting Adenosine diphosphate- or arachidonic acid-induced platelet aggregation than those from non-geoherb regions. In addition, the HPLC fingerprints of 30 batches of RAS, as part of the comprehensive evaluation of RAS, were established and used for spectral efficiency to screen the quality markers for anti-platelet aggregation activities. Five compounds in RAS-senkyunolide I, uridine, guanine, ferulic acid and adenosine-were demonstrated to contribute significantly to the anti-platelet aggregation activity. These bioactive compounds, especially senkyunolide I and ferulic acid with stronger activities, could be used as quality markers of RAS for quality control of RAS.
Collapse
Affiliation(s)
- Kaixue Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xue Shen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Li Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qin Chen
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ningning Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yimeng Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Min Jiang
- College of Pharmacy, Nankai University, Tianjin, China
| | - Gang Bai
- College of Pharmacy, Nankai University, Tianjin, China
| | | | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
- Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
6
|
Rezaeiroshan A, Saeedi M, Morteza-Semnani K, Akbari J, Hedayatizadeh-Omran A, Goli H, Nokhodchi A. Vesicular Formation of Trans-Ferulic Acid: an Efficient Approach to Improve the Radical Scavenging and Antimicrobial Properties. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09543-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purposes
Reactive oxygen species production is harmful to human’s health. The presence of antioxidants in the body may help to diminish reactive oxygen species. Trans-ferulic acid is a good antioxidant, but its low water solubility excludes its utilization. The study aims to explore whether a vesicular drug delivery could be a way to overcome the poor absorption of trans-ferulic acid hence improving its antimicrobial efficiency and antioxidant effect.
Methods
Niosomal vesicles containing the drug were prepared by film hydration method. The obtained vesicles were investigated in terms of morphology, size, entrapment efficiency, release behavior, cellular cytotoxicity, antioxidant, cellular protection study, and antimicrobial evaluations.
Results
The optimized niosomal formulation had a particle size of 158.7 nm and entrapment efficiency of 21.64%. The results showed that the optimized formulation containing 25 μM of trans-ferulic acid could enhance the viability of human foreskin fibroblast HFF cell line against reactive oxygen species production. The minimum effective dose of the plain drug and the niosomal formulation against Staphylococcus aurous (ATCC 29213) was 750 µg/mL and 375 µg/mL, respectively, and for Escherichia coli (ATCC 25922), it was 750 µg/mL and 187/5 µg/mL, respectively. The formulation could also improve the minimum bactericidal concentration of the drug in Staphylococcus aurous, Escherichia coli, and Acinobacter baumannii (ATCC 19606).
Conclusion
These results revealed an improvement in both antibacterial and antioxidant effects of the drug in the niosomal formulation.
Collapse
|
7
|
Yu JY, Roh SH, Park HJ. Characterization of ferulic acid encapsulation complexes with maltodextrin and hydroxypropyl methylcellulose. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106390] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Microencapsulation of drug with enteric polymer Eudragit L100 for controlled release using the particles from gas saturated solutions (PGSS) process. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2020.105044] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Rudnik LAC, Farago PV, Manfron Budel J, Lyra A, Barboza FM, Klein T, Kanunfre CC, Nadal JM, Bandéca MC, Raman V, Novatski A, Loguércio AD, Zanin SMW. Co-Loaded Curcumin and Methotrexate Nanocapsules Enhance Cytotoxicity against Non-Small-Cell Lung Cancer Cells. Molecules 2020; 25:molecules25081913. [PMID: 32326159 PMCID: PMC7221560 DOI: 10.3390/molecules25081913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 11/16/2022] Open
Abstract
Background: As part of the efforts to find natural alternatives for cancer treatment and to overcome the barriers of cellular resistance to chemotherapeutic agents, polymeric nanocapsules containing curcumin and/or methotrexate were prepared by an interfacial deposition of preformed polymer method. Methods: Physicochemical properties, drug release experiments and in vitro cytotoxicity of these nanocapsules were performed against the Calu-3 lung cancer cell line. Results: The colloidal suspensions of nanocapsules showed suitable size (287 to 325 nm), negative charge (-33 to -41 mV) and high encapsulation efficiency (82.4 to 99.4%). Spherical particles at nanoscale dimensions were observed by scanning electron microscopy. X-ray diffraction analysis indicated that nanocapsules exhibited a non-crystalline pattern with a remarkable decrease of crystalline peaks of the raw materials. Fourier-transform infrared spectra demonstrated no chemical bond between the drug(s) and polymers. Drug release experiments evidenced a controlled release pattern with no burst effect for nanocapsules containing curcumin and/or methotrexate. The nanoformulation containing curcumin and methotrexate (NCUR/MTX-2) statistically decreased the cell viability of Calu-3. The fluorescence and morphological analyses presented a predominance of early apoptosis and late apoptosis as the main death mechanisms for Calu-3. Conclusions: Curcumin and methotrexate co-loaded nanocapsules can be further used as a novel therapeutic strategy for treating non-small-cell lung cancer.
Collapse
Affiliation(s)
- Loanda Aparecida Cabral Rudnik
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Paulo Vitor Farago
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, 81020-430 Curitiba, Brazil;
| | - Jane Manfron Budel
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
- Correspondence: ; Tel.: +55-42-3220-3124
| | - Amanda Lyra
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Fernanda Malaquias Barboza
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Traudi Klein
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Carla Cristine Kanunfre
- Postgraduate Program in Biomedical Science, Department of General Biology, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil;
| | - Jessica Mendes Nadal
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | | | - Vijayasankar Raman
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Andressa Novatski
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Alessandro Dourado Loguércio
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa, 84030-900 Ponta Grossa, Brazil; (L.A.C.R.); (P.V.F.); (A.L.); (F.M.B.); (T.K.); (J.M.N.); (A.N.); (A.D.L.)
| | - Sandra Maria Warumby Zanin
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, 81020-430 Curitiba, Brazil;
| |
Collapse
|
10
|
Shepard KB, Adam MS, Morgen MM, Mudie DM, Regan DT, Baumann JM, Vodak DT. Impact of process parameters on particle morphology and filament formation in spray dried Eudragit L100 polymer. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Neelam, Khatkar A, Sharma KK. Phenylpropanoids and its derivatives: biological activities and its role in food, pharmaceutical and cosmetic industries. Crit Rev Food Sci Nutr 2019; 60:2655-2675. [PMID: 31456411 DOI: 10.1080/10408398.2019.1653822] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phenylpropanoids and their derivatives are plant secondary metabolites widely present in fruits, vegetables, cereal grains, beverages, spices and herbs. They are known to have multifaceted effects which include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer activities and as well as exhibits renoprotective, neuroprotective, cardioprotective and hepatoprotective effects. Owing to their antioxidant, antimicrobial and photoprotective properties, these compounds have wide application in the food (preservation, packaging films and edible coating), pharmaceutical, cosmetic and other industries such as textile (colorant), biofuel (antioxidant additive) and sensors (sensing biologically relevant molecules). Phenylpropanoids are present in commercially available dietary supplements and skin care products. In this review, we have presented the current knowledge on the biosynthesis, occurrence, biological activities of phenylpropanoids and their derivatives, along with the mechanism of action and their potential applications in various industries.
Collapse
Affiliation(s)
- Neelam
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anurag Khatkar
- Department of Pharmaceutical sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
12
|
Homayun B, Lin X, Choi HJ. Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals. Pharmaceutics 2019; 11:E129. [PMID: 30893852 PMCID: PMC6471246 DOI: 10.3390/pharmaceutics11030129] [Citation(s) in RCA: 454] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 01/08/2023] Open
Abstract
Routes of drug administration and the corresponding physicochemical characteristics of a given route play significant roles in therapeutic efficacy and short term/long term biological effects. Each delivery method has favorable aspects and limitations, each requiring a specific delivery vehicles design. Among various routes, oral delivery has been recognized as the most attractive method, mainly due to its potential for solid formulations with long shelf life, sustained delivery, ease of administration and intensified immune response. At the same time, a few challenges exist in oral delivery, which have been the main research focus in the field in the past few years. The present work concisely reviews different administration routes as well as the advantages and disadvantages of each method, highlighting why oral delivery is currently the most promising approach. Subsequently, the present work discusses the main obstacles for oral systems and explains the most recent solutions proposed to deal with each issue.
Collapse
Affiliation(s)
- Bahman Homayun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Xueting Lin
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
13
|
Vass P, Démuth B, Hirsch E, Nagy B, Andersen SK, Vigh T, Verreck G, Csontos I, Nagy ZK, Marosi G. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release 2019; 296:162-178. [PMID: 30677436 DOI: 10.1016/j.jconrel.2019.01.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
In chronic intestinal diseases like inflammatory bowel disease, parenteral administration of biopharmaceuticals is associated with numerous disadvantages including immune reactions, infections, low patient compliance, and toxicity caused by high systemic bioavailability. One alternative that can potentially overcome these limitations is oral administration of biopharmaceuticals, where the local delivery will reduce the systemic exposure and furthermore the manufacturing costs will be lower. However, the development of oral dosage forms that deliver the biologically active form to the intestines is one of the greatest challenges for pharmaceutical technologists due to the sensitive nature of biopharmaceuticals. The present article discusses the various drug delivery technologies used to produce orally administered solid dosage forms of biopharmaceuticals with an emphasis on colon-targeted delivery. Solid oral dosage compositions containing different types of colon-targeting biopharmaceuticals are compiled followed by a review of currently applied and emerging drying technologies for biopharmaceuticals. The different drying technologies are compared in terms of their advantages, limitations, costs and their effect on product stability.
Collapse
Affiliation(s)
- Panna Vass
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Balázs Démuth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Sune K Andersen
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium.
| | - Tamás Vigh
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Geert Verreck
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - István Csontos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary.
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| |
Collapse
|
14
|
Gomes MLS, da Silva Nascimento N, Borsato DM, Pretes AP, Nadal JM, Novatski A, Gomes RZ, Fernandes D, Farago PV, Zanin SMW. Long-lasting anti-platelet activity of cilostazol from poly(ε-caprolactone)-poly(ethylene glycol) blend nanocapsules. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:694-702. [PMID: 30423756 DOI: 10.1016/j.msec.2018.10.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/20/2018] [Accepted: 10/05/2018] [Indexed: 01/03/2023]
Abstract
Cilostazol (CLZ) acts as a vasodilator and antiplatelet agent and is the main drug for the treatment of intermittent claudication (IC) related to peripheral arterial disease (PAD). The usual oral dose is 100 mg twice a day, which represents a disadvantage in treatment compliance. CLZ presents several side effects, such as headache, runny nose, and dizziness. This paper aimed to obtain novel polymeric nanocapsules prepared from poly(ε-caprolactone)-poly(ethylene glycol) (PCL-PEG) blend containing CLZ. Nanocapsules showed pH values between 6.1 and 6.3, average size lower than 137 nm, low polydispersity index (<0.22) and negative zeta potential. These nanoformulations demonstrated spherical shape with smooth surface. Results achieved by X-ray diffraction (XRD) and differential scanning calorimetry (DSC) indicated drug amorphization compared to pure CLZ. Fourier-transformed infrared spectroscopy (FTIR) showed no chemical bonds between drug and polymers. Formulations presented suitable stability for physical parameters. The in vitro drug release demonstrated prolonged release with no burst effect. Drug release was controlled by both mechanisms of polymer relaxation/degradation and Fickian diffusion. Moreover, chosen CLZ-loaded nanocapsules provided an in vivo prolonged antiplatelet effect for CLZ statistically similar to aspirin. These formulations can be further used as a feasible oral drug delivery carrier for controlled release of CLZ in order to treat PAD and IC events.
Collapse
Affiliation(s)
- Mona Lisa Simionatto Gomes
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| | - Núbia da Silva Nascimento
- Department of Medicine, Postgraduate Program in Health Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Débora Maria Borsato
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Ana Paula Pretes
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Jessica Mendes Nadal
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Andressa Novatski
- Department of Medicine, Postgraduate Program in Health Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Ricardo Zanetti Gomes
- Department of Medicine, Postgraduate Program in Health Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Daniel Fernandes
- Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil
| | - Paulo Vitor Farago
- Department of Medicine, Postgraduate Program in Health Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil; Department of Pharmaceutical Sciences, Postgraduate Program in Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Brazil.
| | - Sandra Maria Warumby Zanin
- Department of Pharmacy, Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
15
|
Cytoprotection of Antioxidant Biocompounds from Grape Pomace: Further Exfoliant Phytoactive Ingredients for Cosmetic Products. COSMETICS 2018. [DOI: 10.3390/cosmetics5030046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The goal of this study was to investigate the efficacy and the safety of grape pomace (Vitis labrusca L.) obtained from the winemaking process as an antioxidant raw material for cosmetic formulations. Grape pomace was dried and submitted to extraction with solvents. The extracts were filtered and freeze-dried. The extraction carried out with 75% acetone-water showed a better yield (1.9 g·g−1). High performance liquid chromatography (HPLC) analysis confirmed the presence of ellagic acid as an active biocompound in the extracts. The Total phenolic content of freeze-dried extracts reached 69.83 ± 1.02 mg for 75% acetone-water system. Antioxidant activity determined by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) method revealed there was no statistical difference between the extract (EC50 6.9 ± 0.21) and butylated hydroxytoluene (BHT) (EC50 7.6 ± 0.71). Results of cytotoxicity showed that extracts from grape pomace were safe, even at the highest concentration tested (200 mg·mL−1) against the 3T3 cell line. Scanning Electron Microscopy (SEM) analysis revealed that there were no morphological cell changes of cells treated. Cytoprotection of cells towards the oxidation promoted by the peroxide solution was observed in the lowest concentration tested (0.73 mg·mL−1). Grape pomace from the winemaking process revealed a significant antioxidant activity attributed to its biocompounds. The safety and efficacy of extracts of grape pomace as raw material for cosmetic formulations was proposed through cell culture assays.
Collapse
|
16
|
Homayun B, Sun C, Kumar A, Montemagno C, Choi HJ. Facile fabrication of microparticles with pH-responsive macropores for small intestine targeted drug formulation. Eur J Pharm Biopharm 2018; 128:316-326. [PMID: 29753774 PMCID: PMC5998383 DOI: 10.1016/j.ejpb.2018.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/24/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022]
Abstract
Oral drugs present the most convenient, economical, and painless route for self-administration. Despite commercialization of multiple technologies relying on micro- and nanocrystalline drugs, research on microparticles (MPs) based oral biopharmaceuticals delivery systems has still not culminated well enough in commercial products. This is largely due to the drugs being exposed to the destabilizing environment during MP synthesis process, and partly because of complicated process conditions. Hence, we developed a solvent swelling-evaporation method of producing pH-responsive MPs with micron-sized macropores using poly(methacrylic acid-co-ethyl acrylate) in 1:1 ratio (commercial name: Eudragit® L100-55 polymer). We investigated the effects of temperature and evaporation time on pore formation, freeze-drying induced pore closure, and the release profile of model drugs (fluorescent beads, lactase, and pravastatin sodium) encapsulated MPs in simulated gastrointestinal tract conditions. Encapsulated lactase/pravastatin maintained >60% of their activity due to the preservation of pore closure, which proved the potential of this proof-of-concept microencapsulation system. Importantly, the presence of macropores on MPs can be beneficial for easy drug loading, and solve the problem of bioactivity loss during the conventional MP fabrication-drug encapsulation steps. Therefore, pH-sensing MPs with macropores can contribute to the development of oral drug formulations for a wide variety of drugs and bio-macromolecules, having a various size ranging from genes to micron-sized ingredients with high therapeutic efficacy.
Collapse
Affiliation(s)
- Bahman Homayun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Chengmeng Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Ankit Kumar
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Carlo Montemagno
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; Southern Illinois University, 1263 Lincoln Dr, Carbondale, IL 62901, USA.
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
17
|
Kierys A, Sienkiewicz A, Grochowicz M, Kasperek R. Polymer-amino-functionalized silica composites for the sustained-release multiparticulate system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 85:114-122. [PMID: 29407139 DOI: 10.1016/j.msec.2017.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/07/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
This study presents an interesting and promising strategy for producing an oral multiparticulate formulation of the sustained-release of diclofenac sodium (DS) consisting of subunits closed inside hard gelatin capsules (each capsule contains ~50mg of diclofenac sodium). The subunits in the form of beads were produced through the encapsulation of diclofenac sodium dispersed within a nondisintegrating polymer carrier by a silica gel functionalized with the 3-aminopropyl groups. The hybrid silica gel, which plays the role of enteric coating, was fabricated by the gelation of the liquid silica precursors mixture (i.e. tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES)) in the vapor phase of ammonia. The conducted studies reveal that the introduction of the hybrid silica gel into the solid DS dispersion facilitates prolonged release in the neutral environment of the intestine. Since the ability of the multiparticulate formulation to control the release of the drug depends on the properties of its subunits, studies involving the low temperature N2 sorption, DSC analysis together with spectroscopic techniques (XRD, SEM, 29Si MAS NMR) were conducted.
Collapse
Affiliation(s)
- Agnieszka Kierys
- Maria Curie-Sklodowska University, Faculty of Chemistry, Department of Adsorption, 3 M. Curie-Sklodowska Sq., Lublin 20-031, Poland.
| | - Andrzej Sienkiewicz
- Maria Curie-Sklodowska University, Faculty of Chemistry, Department of Adsorption, 3 M. Curie-Sklodowska Sq., Lublin 20-031, Poland
| | - Marta Grochowicz
- Maria Curie-Skłodowska University, Faculty of Chemistry, Department of Polymer Chemistry, 33 Gliniana Str., 20-614 Lublin, Poland
| | - Regina Kasperek
- Medical University of Lublin, Faculty of Pharmacy, Department of Applied Pharmacy, 1 Chodzki Str., Lublin 20-093, Poland
| |
Collapse
|
18
|
Seo YD, Jin SE, Kim D, Lee DH, Yang SG. Fabrication of Eudragit polymeric nanoparticles using ultrasonic nebulization method for enhanced oral absorption of megestrol acetate. Pharm Dev Technol 2017; 23:407-413. [PMID: 29095656 DOI: 10.1080/10837450.2017.1400049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Megestrol acetate (MGA) is used as a progestagen to treat advanced cancers in the breast or uterus and anorexia-cachexia syndrome in cancer patients. Due to its low solubility (BCS class II), MGA bioavailability needs to be enhanced for efficacy and safety. We developed MGA-encapsulated Eudragit® L100 (EUD) nanoparticles (MGA-EUD (1:1) and MGA-EUD (2:1)) using an ultrasonic nebulization method. MGA-EUD (1:1) and MGA-EUD (2:1) consisted of MGA and EUD at the mass ratios of 1:1 and 2:1. Their physicochemical properties, i.e. particle size, loading efficiency, morphology, and crystallinity were determined. Dissolution tests were performed using USP method II. For pharmacokinetics, they were orally administered at 50 mg/kg to mice. Microcrystalline MGA suspension (MGA-MC, Megace®, BMS) was used as control. MGA-EUD (1:1) and MGA-EUD (2:1) had a smooth and spherical shape of 0.70 and 1.05 µm in diameter with loading efficiencies of 93 and 95% showing amorphous states of MGA. They significantly enhanced the dissolution potential of MGA. Oral bioavailability of MGA-EUD (1:1) and MGA-EUD (2:1) increased 2.0- and 1.7-fold compared to that of MGA-MC. It suggests that ultrasonic nebulization method for the fabrication of polymeric nanoparticles is a promising approach to improve the bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Young Dai Seo
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| | - Su-Eon Jin
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| | - Daehyun Kim
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| | - Don Haeng Lee
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| | - Su-Geun Yang
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| |
Collapse
|
19
|
Tawfeek HM, Abdellatif AAH, Dennison TJ, Mohammed AR, Sadiq Y, Saleem IY. Colonic delivery of indometacin loaded PGA-co-PDL microparticles coated with Eudragit L100-55 from fast disintegrating tablets. Int J Pharm 2017; 531:80-89. [PMID: 28818458 DOI: 10.1016/j.ijpharm.2017.08.069] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/02/2017] [Accepted: 08/08/2017] [Indexed: 01/23/2023]
Abstract
The aim of this work was to investigate the efficient targeting and delivery of indometacin (IND), as a model anti-inflammatory drug to the colon for treatment of inflammatory bowel disease. We prepared fast disintegrating tablets (FDT) containing IND encapsulated within poly(glycerol-adipate-co-ɷ-pentadecalactone), PGA-co-PDL, microparticles and coated with Eudragit L100-55 at different ratios (1:1.5, 1:1, 1:0.5). Microparticles encapsulated with IND were prepared using an o/w single emulsion solvent evaporation technique and coated with Eudragit L-100-55 via spray drying. The produced coated microparticles (PGA-co-PDL-IND/Eudragit) were formulated into optimised FTD using a single station press. The loading, in vitro release, permeability and transport of IND from PGA-co-PDL-IND/Eudragit microparticles was studied in Caco-2 cell lines. IND was efficiently encapsulated (570.15±4.2μg/mg) within the PGA-co-PDL microparticles. In vitro release of PGA-co-PDL-IND/Eudragit microparticles (1:1.5) showed significantly (p<0.05, ANOVA/Tukey) lower release of IND 13.70±1.6 and 56.46±3.8% compared with 1:1 (89.61±2.5, 80.13±2.6%) and 1:0.5 (39.46±0.9 & 43.38±3.12) after 3 and 43h at pH 5.5 and 6.8, respectively. The permeability and transport studies indicated IND released from PGA-co-PDL-IND/Eudragit microparticles had a lower permeability coefficient of 13.95±0.68×10-6cm/s compared to free IND 23.06±3.56×10-6cm/s. These results indicate the possibility of targeting anti-inflammatory drugs to the colon using FDTs containing microparticles coated with Eudragit.
Collapse
Affiliation(s)
- Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | - Ahmed A H Abdellatif
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | | | | | - Younis Sadiq
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK
| | - Imran Y Saleem
- School of Pharmacy and Biomolecular Science, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
20
|
Chaves LL, Costa Lima SA, Vieira ACC, Barreiros L, Segundo MA, Ferreira D, Sarmento B, Reis S. pH-sensitive nanoparticles for improved oral delivery of dapsone: risk assessment, design, optimization and characterization. Nanomedicine (Lond) 2017; 12:1975-1990. [DOI: 10.2217/nnm-2017-0105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To optimize the production of pH-sensitive dapsone (DAP) nanoparticles based on Eugradit L100 (NPs-EL100-DAP) for oral delivery. Materials & methods: NPs-EL100-DAP were optimized using a Plackett–Burman design and a Box-Behnken design. The physicochemical properties of the obtained nanoparticles were monitored by microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, differential scanning calorimetry, in vitro release assays, and examined for cytotoxicity and permeation across intestinal barrier. Results: The in vitro release assay of NPs-EL100-DAP confirmed the nanoparticles’ pH sensitivity and the ability to deliver DAP at intestinal environment. NPs-EL100-DAP demonstrated enhanced intestinal interactions in comparison to free DAP, across Caco-2 monolayers. Conclusion: These studies demonstrate the potential of NPs-EL100-DAP as a therapeutic platform for oral treatment of leprosy.
Collapse
Affiliation(s)
- Luíse L Chaves
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sofia A Costa Lima
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- CESPU, Instituto de Investigacão e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal
| | - Alexandre CC Vieira
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Barreiros
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Marcela A Segundo
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Domingos Ferreira
- UCIBIO, REQUIMTE, Laboratório de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigacão e Formação Avançada em Ciências e Tecnologias da Saúde & Instituto Universitário de Ciências da Saúde, Gandra, Portugal
- I3S, Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Salette Reis
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
21
|
Al-Khattawi A, Bayly A, Phillips A, Wilson D. The design and scale-up of spray dried particle delivery systems. Expert Opin Drug Deliv 2017; 15:47-63. [DOI: 10.1080/17425247.2017.1321634] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Andrew Bayly
- School of Chemical and Process Engineering, University of Leeds, Leeds, UK
| | | | - David Wilson
- Chemical Development, AstraZeneca, Macclesfield, UK
| |
Collapse
|