1
|
Chakraborty P, Bhattacharyya C, Sahu R, Dua TK, Kandimalla R, Dewanjee S. Polymeric nanotherapeutics: An emerging therapeutic approach for the management of neurodegenerative disorders. J Drug Deliv Sci Technol 2024; 91:105267. [DOI: 10.1016/j.jddst.2023.105267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Wu Y, Qian Y, Peng W, Qi X. Functionalized nanoparticles crossing the brain-blood barrier to target glioma cells. PeerJ 2023; 11:e15571. [PMID: 37426416 PMCID: PMC10327649 DOI: 10.7717/peerj.15571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Glioma is the most common tumor of the central nervous system (CNS), with a 5-year survival rate of <35%. Drug therapy, such as chemotherapeutic and immunotherapeutic agents, remains one of the main treatment modalities for glioma, including temozolomide, doxorubicin, bortezomib, cabazitaxel, dihydroartemisinin, immune checkpoint inhibitors, as well as other approaches such as siRNA, ferroptosis induction, etc. However, the filter function of the blood-brain barrier (BBB) reduces the amount of drugs needed to effectively target CNS tumors, making it one of the main reasons for poor drug efficacies in glioma. Thus, finding a suitable drug delivery platform that can cross the BBB, increase drug aggregation and retainment in tumoral areas and avoid accumulation in non-targeted areas remains an unsolved challenge in glioma drug therapy. An ideal drug delivery system for glioma therapy should have the following features: (1) prolonged drug life in circulation and effective penetration through the BBB; (2) adequate accumulation within the tumor (3) controlled-drug release modulation; (4) good clearance from the body without significant toxicity and immunogenicity, etc. In this regard, due to their unique structural features, nanocarriers can effectively span the BBB and target glioma cells through surface functionalization, providing a new and effective strategy for drug delivery. In this article, we discuss the characteristics and pathways of different nanocarriers for crossing the BBB and targeting glioma by listing different materials for drug delivery platforms, including lipid materials, polymers, nanocrystals, inorganic nanomaterials, etc.
Collapse
Affiliation(s)
- Yongyan Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yufeng Qian
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| | - Wei Peng
- Medical Research Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| |
Collapse
|
3
|
Wang Y, Li J, Tang M, Peng C, Wang G, Wang J, Wang X, Chang X, Guo J, Gui S. Smart stimuli-responsive hydrogels for drug delivery in periodontitis treatment. Biomed Pharmacother 2023; 162:114688. [PMID: 37068334 DOI: 10.1016/j.biopha.2023.114688] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease initiated by pathogenic biofilms and host immunity that damages tooth-supporting tissues, including the gingiva, periodontal ligament and alveolar bone. The physiological functions of the oral cavity, such as saliva secretion and chewing, greatly reduce the residence of therapeutic drugs in the area of a periodontal lesion. In addition, complex and diverse pathogenic mechanisms make effectively treating periodontitis difficult. Therefore, designing advanced local drug delivery systems and rational therapeutic strategies are the basis for successful periodontitis treatment. Hydrogels have attracted considerable interest in the field of periodontitis treatment due to their biocompatibility, biodegradability and convenient administration to the periodontal pocket. In recent years, the focus of hydrogel research has shifted to smart stimuli-responsive hydrogels, which can undergo flexible sol-gel transitions in situ and control drug release in response to stimulation by temperature, light, pH, ROS, glucose, or enzymes. In this review, we systematically introduce the development and rational design of emerging smart stimuli-responsive hydrogels for periodontitis treatment. We also discuss the state-of-the-art therapeutic strategies of smart hydrogels based on the pathogenesis of periodontitis. Additionally, the challenges and future research directions of smart hydrogels for periodontitis treatment are discussed from the perspective of developing efficient hydrogel delivery systems and potential clinical applications.
Collapse
Affiliation(s)
- Yuxiao Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jiaxin Li
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Maomao Tang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Chengjun Peng
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China
| | - Guichun Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jingjing Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Xinrui Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Xiangwei Chang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China
| | - Jian Guo
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China.
| | - Shuangying Gui
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui 230012, China.
| |
Collapse
|
4
|
Lv Z, Cao Y, Xue D, Zhang H, Zhou S, Yin N, Li W, Jin L, Wang Y, Zhang H. A multiphoton transition activated iron based metal organic framework for synergistic therapy of photodynamic therapy/chemodynamic therapy/chemotherapy for orthotopic gliomas. J Mater Chem B 2023; 11:1100-1107. [PMID: 36629834 DOI: 10.1039/d2tb02273g] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although photodynamic therapy (PDT) has exhibited good potential in therapy of gliomas, the limited penetration depth of light and the obstacle of the blood-brain barrier (BBB) lead to unsatisfactory treatment effects. Herein, a multifunctional nanodrug (UMD) was constructed with up-conversion nanoparticles (NaGdF4:Yb,Tm@NaYF4:Yb,Nd@NaYF4, UCNPs) as the core, the photosensitizer NH2-MIL-53 (Fe) as the shell and a carrier for loading chemotherapy drug doxorubicin hydrochloride (Dox) for synergistic therapy of gliomas. Lactoferrin (LF) was finally modified on the surface of the UMD to endow it with the ability to traverse the BBB and target cells (UMDL). The UCNP core can convert 808 nm near-infrared (NIR) light to ultraviolet light (UV light) for exciting NH2-MIL-53 (Fe), achieving NIR-mediated PDT. In addition, Fe3+ on the surface of the NH2-MIL-53 (Fe) shell could be reduced to Fe2+ in a tumor microenvironment (TME), and then reacted with over-expressed H2O2 in the TME to generate hydroxyl radicals (˙OH) for chemodynamic therapy (CDT). The Dox drug could be released in response to acidic conditions in the TME, inhibiting the growth of gliomas with low side effects. The synergistic effect of PDT/CDT/chemotherapy leads to effective suppression of orthotopic gliomas.
Collapse
Affiliation(s)
- Zhijia Lv
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China
| | - Yue Cao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130041, P. R. China
| | - Dongzhi Xue
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Hao Zhang
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Shijie Zhou
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China
| | - Na Yin
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Wanying Li
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Longhai Jin
- Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yinghui Wang
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Hongjie Zhang
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun, 130022, P. R. China. .,Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Hanurry EY, Birhan YS, Darge HF, Mekonnen TW, Arunagiri V, Chou HY, Cheng CC, Lai JY, Tsai HC. PAMAM Dendritic Nanoparticle-Incorporated Hydrogel to Enhance the Immunogenic Cell Death and Immune Response of Immunochemotherapy. ACS Biomater Sci Eng 2022; 8:2403-2418. [PMID: 35649177 DOI: 10.1021/acsbiomaterials.2c00171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The efficiency of chemotherapy is frequently affected by its multidrug resistance, immune suppression, and severe side effects. Its combination with immunotherapy to reverse immune suppression and enhance immunogenic cell death (ICD) has emerged as a new strategy to overcome the aforementioned issues. Herein, we construct a pH-responsive PAMAM dendritic nanocarrier-incorporated hydrogel for the co-delivery of immunochemotherapeutic drugs. The stepwise conjugation of moieties and drug load was confirmed by various techniques. In vitro experimental results demonstrated that PAMAM dendritic nanoparticles loaded with a combination of drugs exhibited spherical nanosized particles, facilitated the sustained release of drugs, enhanced cellular uptake, mitigated cell viability, and induced apoptosis. The incorporation of PAB-DOX/IND nanoparticles into thermosensitive hydrogels also revealed the formation of a gel state at a physiological temperature and further a robust sustained release of drugs at the tumor microenvironment. Local injection of this formulation into HeLa cell-grafted mice significantly suppressed tumor growth, induced immunogenic cell death-associated cytokines, reduced cancer cell proliferation, and triggered a CD8+ T-cell-mediated immune response without obvious systemic toxicity, which indicates a synergistic ICD effect and reverse of immunosuppression. Hence, the localized delivery of immunochemotherapeutic drugs by a PAMAM dendritic nanoparticle-incorporated hydrogel could provide a promising strategy to enhance antitumor activity in cancer therapy.
Collapse
Affiliation(s)
- Endris Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Vinothini Arunagiri
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan.,Department of Chemical Engineering & Materials Science, Yuan Ze University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
6
|
Qiao L, Yang H, Shao XX, Yin Q, Fu XJ, Wei Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol Pharm 2022; 19:1927-1951. [DOI: 10.1021/acs.molpharmaceut.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Huishu Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin-xin Shao
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Qiuyan Yin
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
- Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingcong Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
7
|
Kaur J, Gulati M, Kapoor B, Jha NK, Gupta PK, Gupta G, Chellappan DK, Devkota HP, Prasher P, Ansari MS, Aba Alkhayl FF, Arshad MF, Morris A, Choonara YE, Adams J, Dua K, Singh SK. Advances in designing of polymeric micelles for biomedical application in brain related diseases. Chem Biol Interact 2022; 361:109960. [PMID: 35533733 DOI: 10.1016/j.cbi.2022.109960] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/11/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022]
|
8
|
Lv Z, Jin L, Cao Y, Zhang H, Xue D, Yin N, Zhang T, Wang Y, Liu J, Liu X, Zhang H. A nanotheranostic agent based on Nd 3+-doped YVO 4 with blood-brain-barrier permeability for NIR-II fluorescence imaging/magnetic resonance imaging and boosted sonodynamic therapy of orthotopic glioma. LIGHT, SCIENCE & APPLICATIONS 2022; 11:116. [PMID: 35487896 PMCID: PMC9055055 DOI: 10.1038/s41377-022-00794-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 05/03/2023]
Abstract
The specific diagnosis and treatment of gliomas is a primary challenge in clinic due to their high invasiveness and blood-brain barrier (BBB) obstruction. It is highly desirable to find a multifunctional agent with good BBB penetration for precise theranostics. Herein, we design and construct a core-shell structured nanotheranostic agent (YVO4:Nd3+-HMME@MnO2-LF, marked as YHM) with YVO4:Nd3+ particles as the core and MnO2 nanosheets as the shell. Sonosensitizer hematoporphyrinmonomethyl ether (HMME) and lactoferrin (LF) were further loaded and modified on the surface, giving it a good ability to cross the BBB, near-infrared fluorescence imaging in the second window (NIR-II)/magnetic resonance imaging (MRI) bimodality, and highly efficient sonodynamic therapy (SDT) of orthotopic gliomas. The YVO4:Nd3+ (25%) core exhibited good NIR-II fluorescence properties, enabling YHM to act as promising probes for NIR-II fluorescence imaging of vessels and orthotopic gliomas. MnO2 shell can not only provide O2 in the tumor microenvironments (TME) to significantly improve the healing efficacy of SDT, but also release Mn2+ ions to achieve T1-weight MRI in situ. Non-invasive SDT can effectively restrain tumor growth. This work not only demonstrates that multifunctional YHM is promising for diagnosis and treatment of orthotopic glioma, but also provides insights into exploring the theranostic agents based on rare earth-doped yttrium vanadate nanoparticles.
Collapse
Affiliation(s)
- Zhijia Lv
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, 130022, Changchun, China
- University of Science and Technology of China, 230026, Hefei, Anhui, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, 341000, Ganzhou, Jiangxi, China
| | - Longhai Jin
- Department of Radiology, The Second Hospital of Jilin University, 130041, Changchun, China
| | - Yue Cao
- Department of Neurosurgery, The First Hospital of Jilin University, 130041, Changchun, China
| | - Hao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, 130022, Changchun, China
- University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Dongzhi Xue
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, 130022, Changchun, China
- University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Na Yin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, 130022, Changchun, China
- University of Science and Technology of China, 230026, Hefei, Anhui, China
| | - Tianqi Zhang
- Department of Radiology, The Second Hospital of Jilin University, 130041, Changchun, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, Anhui, China.
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, 130041, Changchun, China.
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, 130022, Changchun, China.
- University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, 341000, Ganzhou, Jiangxi, China.
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
9
|
Mojarad-Jabali S, Farshbaf M, Hemmati S, Sarfraz M, Motasadizadeh H, Shahbazi Mojarrad J, Atyabi F, Zakeri-Milani P, Valizadeh H. Comparison of three synthetic transferrin mimetic small peptides to promote the blood-brain barrier penetration of vincristine liposomes for improved glioma targeted therapy. Int J Pharm 2021; 613:121395. [PMID: 34933080 DOI: 10.1016/j.ijpharm.2021.121395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
The existence of the blood-brain barrier (BBB) makes the clinical chemotherapy of glioma a formidable challenge, because it hinders the passage of different chemotherapeutics into the brain and reduces the overall therapeutic efficiency. Therefore, it is necessary to design a drug delivery system in way that would favor the transportation of anti-cancer agents across the BBB and increase their selective accumulation within the tumor cells without affecting the normal tissues. Transferrin receptor (TfR) that shows an elevated level of expression on the BBB and glioma cells emerges as a promising tool for brain targeted delivery and glioma therapy. However, only a limited number of studies have comparatively evaluated the functionally of TfR targeting ligands. Herein, a series of liposomal formulations modified with the most well-known TfR targeting peptides including T12 (also known as THR), B6, and T7 was developed and their brain targeting capability and selective glioma accumulation was comparatively evaluated in vitro and in vivo. Among all TfR targeting or non-targeting groups, T7-modified liposomes (T7-LS) showed the highest BBB penetration capacity and brain distribution and displayed an enhanced accumulation in glioma cells. When loaded with vincristine (VCR), as a model chemotherapeutic, T7-LS/VCR could achieve the best anti-glioma outcome by means of targeted cytotoxicity and apoptosis in vitro. The obtained results suggested T7-LS as a potential platform for effective brain targeted delivery and glioma therapy in clinic.
Collapse
Affiliation(s)
- Solmaz Mojarad-Jabali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Atyabi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Pinheiro RGR, Coutinho AJ, Pinheiro M, Neves AR. Nanoparticles for Targeted Brain Drug Delivery: What Do We Know? Int J Mol Sci 2021; 22:11654. [PMID: 34769082 PMCID: PMC8584083 DOI: 10.3390/ijms222111654] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
The blood-brain barrier (BBB) is a barrier that separates the blood from the brain tissue and possesses unique characteristics that make the delivery of drugs to the brain a great challenge. To achieve this purpose, it is necessary to design strategies to allow BBB passage, in order to reach the brain and target the desired anatomic region. The use of nanomedicine has great potential to overcome this problem, since one can modify nanoparticles with strategic molecules that can interact with the BBB and induce uptake through the brain endothelial cells and consequently reach the brain tissue. This review addresses the potential of nanomedicines to treat neurological diseases by using nanoparticles specially developed to cross the BBB.
Collapse
Affiliation(s)
- Rúben G. R. Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Joyce Coutinho
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marina Pinheiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Ana Rute Neves
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- CQM—Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| |
Collapse
|
11
|
Pan S, Weng H, Hu G, Wang S, Zhao T, Yao X, Liao L, Zhu X, Ge Y. Lactoferrin may inhibit the development of cancer via its immunostimulatory and immunomodulatory activities (Review). Int J Oncol 2021; 59:85. [PMID: 34533200 DOI: 10.3892/ijo.2021.5265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/11/2021] [Indexed: 11/05/2022] Open
Abstract
Lactoferrin (Lf) is secreted by ectodermal tissue and has a structure similar to that of transferrin. Although Lf seems to be multifunctional, its main function is related to the natural defense system of mammals. The present review aims to highlight the major actions of Lf, including the regulation of cell growth, the inhibition of toxic compound formation, the removal of harmful free radicals and its important role in immune response regulation. Moreover, Lf has antibacterial, antiviral, antioxidant, anticancer and anti‑inflammatory activities. In addition, the use of Lf for functionalization of drug nanocarriers, with emphasis on tumor‑targeted drug delivery, is illustrated. Such effects serve as an important theoretical basis for its future development and application. In neurodegenerative diseases and the brains of elderly people, Lf expression is markedly upregulated. Lf may exert an anti‑inflammatory effect by inhibiting the formation of hydroxyl free radicals. Through its antioxidant properties, Lf can prevent DNA damage, thereby preventing tumor formation in the central nervous system. In addition, Lf specifically activates the p53 tumor suppressor gene.
Collapse
Affiliation(s)
- Sian Pan
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Huiting Weng
- Department of Clinical Nursing, The Second Xiangya Hospital of Central South University, Changsha, Hunan 430011, P.R. China
| | - Guohong Hu
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Shiwen Wang
- Department of Histology and Embryology, School of Basic Medicine Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Tian Zhao
- Department of Histology and Embryology, School of Basic Medicine Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Xueping Yao
- Department of Histology and Embryology, School of Basic Medicine Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Libin Liao
- Department of Histology and Embryology, School of Basic Medicine Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, P.R. China
| | - Xiaopeng Zhu
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China
| | - Yanshan Ge
- The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, The Third Affiliated Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
12
|
Mojarad-Jabali S, Farshbaf M, Walker PR, Hemmati S, Fatahi Y, Zakeri-Milani P, Sarfraz M, Valizadeh H. An update on actively targeted liposomes in advanced drug delivery to glioma. Int J Pharm 2021; 602:120645. [PMID: 33915182 DOI: 10.1016/j.ijpharm.2021.120645] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
High-grade glioma is one of the most aggressive types of cancer with a low survival rate ranging from 12 to 15 months after the first diagnosis. Though being the most common strategy for glioma therapy, conventional chemotherapy suffers providing the therapeutic dosage of common therapeutics mostly because of limited permeability of blood-brain barrier (BBB), and blood-brain tumor barrier (BBTB) to anticancer agents. Among various nanoformulations, liposomes are considered as the most popular carriers aimed for glioma therapy. However, non-targeted liposomes which passively accumulate in most of the cancer tissues mainly through the enhanced permeation and retention effect (EPR), may not be applicable for glioma therapy due to BBB tight junctions. In the recent decade, the surface modification of liposomes with different active targeting ligands has shown promising results by getting different chemotherapeutics across the BBB and BBTB and leading them into the glioma cells. The present review discusses the major barriers for drug delivery systems to glioma, elaborates the existing mechanisms for liposomes to traverse across the BBB, and explores the main strategies for incorporation of targeting ligands onto the liposomes. It subsequently investigates the most recent and relevant studies of actively targeted liposomes modified with antibodies, aptamers, monosaccharides, polysaccharides, proteins, and peptides applied for effective glioma therapy, and highlights the common challenges facing this area. Finally, the actively targeted liposomes undergoing preclinical and clinical studies for delivery of different anticancer agents to glioma cells will be reviewed.
Collapse
Affiliation(s)
- Solmaz Mojarad-Jabali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Farshbaf
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paul R Walker
- Center for Translational Research in Onco-Hematology, Department of Medicine, University of Geneva and Division of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003937. [PMID: 34026447 PMCID: PMC8132167 DOI: 10.1002/advs.202003937] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/20/2020] [Indexed: 05/04/2023]
Abstract
Neurological disorders such as Alzheimer's disease, stroke, and brain cancers are difficult to treat with current drugs as their delivery efficacy to the brain is severely hampered by the presence of the blood-brain barrier (BBB). Drug delivery systems have been extensively explored in recent decades aiming to circumvent this barrier. In particular, polymeric nanoparticles have shown enormous potentials owing to their unique properties, such as high tunability, ease of synthesis, and control over drug release profile. However, careful analysis of their performance in effective drug transport across the BBB should be performed using clinically relevant testing models. In this review, polymeric nanoparticle systems for drug delivery to the central nervous system are discussed with an emphasis on the effects of particle size, shape, and surface modifications on BBB penetration. Moreover, the authors critically analyze the current in vitro and in vivo models used to evaluate BBB penetration efficacy, including the latest developments in the BBB-on-a-chip models. Finally, the challenges and future perspectives for the development of polymeric nanoparticles to combat neurological disorders are discussed.
Collapse
Affiliation(s)
- Weisen Zhang
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Ami Mehta
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- IITB Monash Research AcademyBombayMumbai400076India
| | - Ziqiu Tong
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Lars Esser
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVIC3168Australia
- Department of Materials Science and EngineeringMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
14
|
Abstract
Hyaluronic acid (HA), an important component of the extracellular matrix, has high water solubility and biocompatibility, and good application prospects in biomedicine. Especially in tumour treatment, prodrug polymer micelles prepared from HA and chemotherapeutics can increase water solubility, prolong drug release time, improve organ distribution and therapeutic effects, and show good tumour targeting and biocompatibility. Therefore, this study introduces strategies for using HA to prepare prodrug polymer micelles and discusses recent research on HA prodrug micelles for antitumor applications.
Collapse
Affiliation(s)
- Jiao Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| |
Collapse
|
15
|
ZIF-8 nano confined protein-titanocene complex core-shell MOFs for efficient therapy of Neuroblastoma: Optimization, molecular dynamics and toxicity studies. Int J Biol Macromol 2021; 178:444-463. [PMID: 33636277 DOI: 10.1016/j.ijbiomac.2021.02.161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 01/08/2023]
Abstract
In the present study, we have developed the core-shell metal organic framework (MOF) of zinc, wherein titanocene dichloride (TC) loaded lactoferrin (Lf) functioned as a core. The complexation of TC to Lf was studies using molecular dynamics study, Quantum mechanical model and spectroscopic investigations. Plackett-Burman design was used to screen and select the critical factors affecting the responses (size, zeta potential and PDI) while the effect of those parameter on the quality attributes (size and yield) was studied by means of a Box-Behnken design. The optimised Lf-TC nanoparticles were loaded inside the ZIF-8 framework along with an anticancer agent 5 Fluorouracil and characterized using techniques like FTIR, PXRD, Raman spectroscopy, EDX and UV-NIR spectroscopy and morphological techniques like SEM, TEM, AFM. The compatibility of the loaded ZIF-8 framework was examined by haemocompatibility studies. The potential of developed nanoplatform against Neuroblastoma was assessed using a cell line studies along with in vivo toxicity studies to ascertain its safety for after in-vivo administration in Wistar rats. Therefore, we can conclude that by employing the approach of DOE we were able to optimize the size and yield of Lf-TC NPs and further by loading inside ZIF-8 framework along with an anticancer drug like 5 fluorouracil we were able to develop a potential nanoplatform for the multimodal therapy of Neuroblastoma.
Collapse
|
16
|
pH-sensitive polymeric nanocarriers for antitumor biotherapeutic molecules targeting delivery. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Patel D, Wairkar S, Yergeri MC. Current Developments in Targeted Drug Delivery Systems for Glioma. Curr Pharm Des 2021; 26:3973-3984. [PMID: 32329681 DOI: 10.2174/1381612826666200424161929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/01/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Glioma is one of the most commonly observed tumours, representing about 75% of brain tumours in the adult population. Generally, glioma treatment includes surgical resection followed by radiotherapy and chemotherapy. The current chemotherapy for glioma involves the use of temozolomide, doxorubicin, monoclonal antibodies, etc. however, the clinical outcomes in patients are not satisfactory. Primarily, the blood-brain barrier hinders these drugs from reaching the target leading to the recurrence of glioma post-surgery. In addition, these drugs are not target-specific and affect the healthy cells of the body. Therefore, glioma-targeted drug delivery is essential to reduce the rate of recurrence and treat the condition with more reliable alternatives. METHODS A literature search was conducted to understand glioma pathophysiology, its current therapeutic approaches for targeted delivery using databases like Pub Med, Web of Science, Scopus, and Google Scholar, etc. Results: This review gives an insight to challenges associated with current treatments, factors influencing drug delivery in glioma, and recent advancements in targeted drug delivery. CONCLUSION The promising results could be seen with nanotechnology-based approaches, like polymeric, lipidbased, and hybrid nanoparticles in the treatment of glioma. Biotechnological developments, such as carrier peptides and gene therapy, are future prospects in glioma therapy. Therefore, these targeted delivery systems will be beneficial in clinical practices for glioma treatment.
Collapse
Affiliation(s)
- Dhrumi Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra - 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra - 400056, India
| | - Mayur C Yergeri
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra - 400056, India
| |
Collapse
|
18
|
Curcio M, Cirillo G, Rouaen JRC, Saletta F, Nicoletta FP, Vittorio O, Iemma F. Natural Polysaccharide Carriers in Brain Delivery: Challenge and Perspective. Pharmaceutics 2020; 12:E1183. [PMID: 33291284 PMCID: PMC7762150 DOI: 10.3390/pharmaceutics12121183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Targeted drug delivery systems represent valuable tools to enhance the accumulation of therapeutics in the brain. Here, the presence of the blood brain barrier strongly hinders the passage of foreign substances, often limiting the effectiveness of pharmacological therapies. Among the plethora of materials used for the development of these systems, natural polysaccharides are attracting growing interest because of their biocompatibility, muco-adhesion, and chemical versatility which allow a wide range of carriers with tailored physico-chemical features to be synthetized. This review describes the state of the art in the field of targeted carriers based on natural polysaccharides over the last five years, focusing on the main targeting strategies, namely passive and active transport, stimuli-responsive materials and the administration route. In addition, in the last section, the efficacy of the reviewed carriers in each specific brain diseases is summarized and commented on in terms of enhancement of either blood brain barrier (BBB) permeation ability or drug bioavailability in the brain.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Jourdin R. C. Rouaen
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Federica Saletta
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children’s Cancer Institute, UNSW Sydney, Sydney 2031, NSW, Australia; (J.R.C.R.); (F.S.)
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney 2052, NSW, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (F.P.N.); (F.I.)
| |
Collapse
|
19
|
Lee HJ, Seo Y, Kim HS, Lee JW, Lee KY. Regulation of the Viscoelastic Properties of Hyaluronate-Alginate Hybrid Hydrogel as an Injectable for Chondrocyte Delivery. ACS OMEGA 2020; 5:15567-15575. [PMID: 32637832 PMCID: PMC7331060 DOI: 10.1021/acsomega.0c01763] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Modulation of the viscoelastic properties of hydrogels is critical in tissue engineering applications. In the present study, a hyaluronate-alginate hybrid (HAH) was synthesized by introducing alginate to the hyaluronate backbone with varying molecular weights (700-2500 kDa), and HAH hydrogels were prepared in the presence of calcium ions at the same cross-linking density. The storage shear moduli of the HAH hydrogels increased with the concomitant increase in the molecular weight of hyaluronate in the HAH polymer. The HAH hydrogels were also modified with arginine-glycine-aspartic acid (RGD) and histidine-alanine-valine (HAV) peptides to enhance cell-matrix and cell-cell interactions, respectively. The chondrogenic differentiation of ATDC5 cells encapsulated within the HAH hydrogels was enhanced with the increase in the storage shear moduli of the gels in vitro as well as in vivo. This approach of regulating the viscoelastic properties of hydrogels using polymers of varying molecular weights at the same cross-linking density may prove to be useful in various tissue engineering applications including cartilage regeneration.
Collapse
Affiliation(s)
- Hyun Ji Lee
- Department
of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yerang Seo
- Department
of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun Seung Kim
- Department
of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jae Won Lee
- Department
of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Kuen Yong Lee
- Department
of Bioengineering, Hanyang University, Seoul 04763, Republic of Korea
- Institute
of Nano Science and Technology, Hanyang
University, Seoul 04763, Republic of Korea
| |
Collapse
|
20
|
Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, Zhang L, Fu C, Chen D, Xie T. Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review. Int J Nanomedicine 2020; 15:2563-2582. [PMID: 32368041 PMCID: PMC7173867 DOI: 10.2147/ijn.s243223] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/21/2020] [Indexed: 12/22/2022] Open
Abstract
Gliomas are the most common tumor of the central nervous system. However, the presence of the brain barrier blocks the effective delivery of drugs and leads to the treatment failure of various drugs. The development of a nanoparticle drug delivery system (NDDS) can solve this problem. In this review, we summarized the brain barrier (including blood-brain barrier (BBB), blood-brain tumor barriers (BBTB), brain-cerebrospinal fluid barrier (BCB), and nose-to-brain barrier), NDDS of glioma (such as passive targeting systems, active targeting systems, and environmental responsive targeting systems), and NDDS efficacy improvement strategies and deficiencies. The research prospect of drug-targeted delivery systems for glioma is also discussed.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiaqian Zhao
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Tiantian Tan
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Mengmeng Liu
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhaowu Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yiying Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Lele Zhang
- School of Medicine, Chengdu University, Chengdu, People’s Republic of China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Dajing Chen
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
21
|
Kim YK, Kim SY, Lee SH, Lee MH, Lee KB. Stabilized Loading of Hyaluronic Acid-Containing Hydrogels into Magnesium-Based Cannulated Screws. ACS Biomater Sci Eng 2019; 6:715-726. [PMID: 33463217 DOI: 10.1021/acsbiomaterials.9b01057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cannulated screws have a structure for inserting a guide wire inside them to effectively correct complicated fractures. Magnesium, an absorbable metal used to manufacture cannulated screws, may decompose in the body after a certain period of implantation. The hydrogel formed by hyaluronic acid (HA) and polygalacturonic acid (PGA) has been used into Mg-based cannulated screws to prevent bone resorption owing to the rapid corrosion of Mg with unfavorable mechanical properties and a high ambient pH. In addition, Ca ions were added to the gel for cross-linking the carboxyl groups to modify the gelation rate and physical properties of the gel. The developed hydrogels were injected into the Mg-based cannulated screws, after which they released HA and Ca. The possibility of the application of this system as a cannulated screw was evaluated based on the corrosion resistance, gel degradation rate, HA release, toxicity toward osteocytes, and experiments involving the implantation of the screws into the femurs of rats. Ca ions first bound to PGA and delayed the gelation time and dissolution rate. However, they interfered with HA binding and increased the elution of HA at the beginning of gel degradation. Ca(NO3)2 concentrations higher than 0.01 M and low pH environments inhibited osteoblast differentiation and proliferation, owing to the elution of HA from the hydrogel. On the other hand, when the HA hydrogel with a proper amount of Ca was inserted into a magnesium screw, the degradation of Mg was delayed, and the presence of the gel contributed to new bone formation and osteocyte expansion.
Collapse
Affiliation(s)
- Yu-Kyoung Kim
- Department of Dental Biomaterials and Institute of Biodegradable Materials, Institute of Oral Bioscience and School of Dentistry (Plus BK21 Program), Chonbuk National University, Jeon Ju 561-756, South Korea
| | - Seo-Young Kim
- Department of Dental Biomaterials and Institute of Biodegradable Materials, Institute of Oral Bioscience and School of Dentistry (Plus BK21 Program), Chonbuk National University, Jeon Ju 561-756, South Korea
| | - Se Hwan Lee
- Department of Orthopedic Surgery, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Jeon Ju 561-756, South Korea
| | - Min-Ho Lee
- Department of Dental Biomaterials and Institute of Biodegradable Materials, Institute of Oral Bioscience and School of Dentistry (Plus BK21 Program), Chonbuk National University, Jeon Ju 561-756, South Korea
| | - Kwang-Bok Lee
- Department of Orthopedic Surgery, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University Medical School, Jeon Ju 561-756, South Korea
| |
Collapse
|
22
|
Luo L, Xu F, Peng H, Luo Y, Tian X, Battaglia G, Zhang H, Gong Q, Gu Z, Luo K. Stimuli-responsive polymeric prodrug-based nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis. J Control Release 2019; 318:124-135. [PMID: 31838206 DOI: 10.1016/j.jconrel.2019.12.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/08/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Functionalized drug delivery systems against malignant lung metastasis of breast cancer have been extensively studied, while metastasis remains a challenging issue. We propose a new strategy to achieve eradication of primary breast cancer cells and inhibition of pulmonary metastasis. A cathepsin B/pH dual-sensitive block copolymer with a molecular weight of 92 kDa was synthesized to conjugate with doxorubicin (DOX). The copolymer-DOX was further loaded with nifuroxazide (NFX) to self-assemble co-prodrug-loaded micelles (CLM). CLM displayed a drug release pattern in response to pH/enzyme dual stimuli and was enzymatically biodegradable. CLM was demonstrated to reduce viability and inhibit migration and invasion of 4T1 murine breast cancer cells in vitro. After i.v. injection of CLM, its nanoscale size and stimuli-responsiveness facilitated delivery of drugs to the tumor site in mice. Enhanced anti-tumor efficacy and great anti-metastatic effects were found in both orthotropic and lung metastasis 4T1 breast cancer mice models. Meanwhile, histological immunofluorescence and immunohistochemical analyses revealed a high level of apoptosis, suppressed expression of matrix metalloproteinases and reduction in MDSCs infiltration, and all these contributed to inhibit pulmonary metastasis. CLM may be explored as a potential nanomedicine against breast cancer metastasis.
Collapse
Affiliation(s)
- Lei Luo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China.
| | - Fanshu Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Huilan Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Yonghuang Luo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, PR China
| | - Xiaohe Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Giuseppe Battaglia
- Department of Chemistry, Department of Chemical Engineering, University College London, UK
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
23
|
Luo X, Wang S, Xu S, Lang M. Relevance of the Polymeric Prodrug and Its Drug Loading Efficiency: Comparison between Computer Simulation and Experiment. MACROMOL THEOR SIMUL 2019. [DOI: 10.1002/mats.201900026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xueli Luo
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Shenchun Wang
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Sishi Xu
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Meidong Lang
- School of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
24
|
Zheng G, Zheng M, Yang B, Fu H, Li Y. Improving breast cancer therapy using doxorubicin loaded solid lipid nanoparticles: Synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomed Pharmacother 2019; 116:109006. [PMID: 31152925 DOI: 10.1016/j.biopha.2019.109006] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/03/2019] [Accepted: 05/17/2019] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the leading cause of cancer mortality in women worldwide. To overcome the toxic side effects and multidrug resistance (MDR) during doxorubicin (DOX) chemotherapy, an arginine-glycine-aspartic (RGD) tripeptide modified, pH-sensitive solid lipid nanoparticles (SLNs) is employed in this study. In this study, a RGD conjugated, pH sensitive lipid was synthesized using glycerin monostearate (GMS) and adipic acid dihydrazide (HZ) as lipid materials and named RGD-HZ-GMS. RGD-HZ-GMS was applied to encapsulate DOX to construct a RGD modified, DOX loaded SLNs (RGD-DOX-SLNs). To evaluate the anticancer effect of RGD-DOX-SLNs, breast cancer cell line (MCF-7 cells) and DOX resistant cell line (MCF-7/ADR cells) were used. in vivo tumor suspension and toxicity effects were evaluated on mice bearing MCF-7/ADR cells breast cancer model. RGD-DOX-SLNs had a uniformly spherical shape. The mean particle size and zeta potential of the RGD-DOX-SLNs was 96.3 nm and 35.6 mV, respectively. RGD-DOX-SLNs showed 5.58 fold higher area under the plasma concentration - time curve (AUC) compared with DOX solution. Terminal half life (T1/2) and peak concentration (Cmax) of RGD-DOX-SLNs was 10.85 h and 39.12 ± 2.71 L/kg/h. in vitro and in vivo antitumor results indicate that RGD-DOX-SLNs might be a promising novel lipid carrier which could improve breast cancer therapy.
Collapse
Affiliation(s)
- Gang Zheng
- Department of Surgical Ward 2, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China
| | - Meizhu Zheng
- Department of Surgical Ward 2, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China
| | - Ben Yang
- Department of Surgical Ward 2, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China
| | - Hui Fu
- Department of Surgical Ward 2, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China
| | - Yongqing Li
- Department of Surgical Ward 1, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Ji'nan, Shandong Province, PR China.
| |
Collapse
|
25
|
Fu C, Duan X, Cao M, Jiang S, Ban X, Guo N, Zhang F, Mao J, Huyan T, Shen J, Zhang LM. Targeted Magnetic Resonance Imaging and Modulation of Hypoxia with Multifunctional Hyaluronic Acid-MnO 2 Nanoparticles in Glioma. Adv Healthc Mater 2019; 8:e1900047. [PMID: 30920772 DOI: 10.1002/adhm.201900047] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/21/2019] [Indexed: 12/31/2022]
Abstract
Manganese dioxide (MnO2 )-based nanoparticles are a promising tumor microenvironment-responsive nanotheranostic carrier for targeted magnetic resonance imaging (MRI) and for alleviating tumor hypoxia. However, the complexity and potential toxicity of the present common synthesis methods limit their clinical application. Herein, multifunctional hyaluronic acid-MnO2 nanoparticles (HA-MnO2 NPs) are synthesized in a simple way by directly mixing sodium permanganate with HA aqueous solutions, which serve as both a reducing agent and a surface-coating material. The obtained HA-MnO2 NPs show an improved water-dispersibility, fine colloidal stability, low toxicity, and responsiveness to the tumor microenvironment (high H2 O2 and high glutathione, low pH). After intravenous injection, HA-MnO2 NPs exhibit a high imaging sensitivity for detecting rat intracranial glioma with MRI for a prolonged period of up to 3 d. These nanoparticles also effectively alleviate the tumor hypoxia in a rat model of intracranial glioma. The downregulation of VEGF and HIF-1α expression in intracranial glioma validates the sustained attenuation effect of HA-MnO2 NPs on tumor hypoxia. These results show that HA-MnO2 NPs can be used for sensitive, targeted MRI detection of gliomas and simultaneous attenuation of tumor hypoxia.
Collapse
Affiliation(s)
- Chaoping Fu
- Institute of Biomaterials and Tissue Engineering College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, China
- PCFM Lab and GDHPPC Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaohui Duan
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Minghui Cao
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Shuqi Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaohua Ban
- Department of Radiology, Sun Yat-sen University Cancer Centre, Sun Yat-sen University, Guangzhou, 510060, China
| | - Na Guo
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Fang Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jiaji Mao
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Ting Huyan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Ontario, M5S 3M2, Canada
| | - Jun Shen
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Li Ming Zhang
- PCFM Lab and GDHPPC Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
26
|
Hyaluronic acid tethered pH-responsive alloy-drug nanoconjugates for multimodal therapy of glioblastoma: An intranasal route approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:419-436. [DOI: 10.1016/j.msec.2018.12.139] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 12/23/2018] [Accepted: 12/31/2018] [Indexed: 01/03/2023]
|
27
|
Zheng Y, Shi S, Liu Y, Zhao Y, Sun Y. Targeted pharmacokinetics of polymeric micelles modified with glycyrrhetinic acid and hydrazone bond in H22 tumor-bearing mice. J Biomater Appl 2019; 34:141-151. [DOI: 10.1177/0885328219841487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yan Zheng
- College of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Shudan Shi
- College of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Yaru Liu
- College of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Yandan Zhao
- College of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| | - Yuqi Sun
- College of Pharmacy, Jinzhou Medical University, Jinzhou, PR China
| |
Collapse
|
28
|
Zhang W, Jin X, Li H, Wei CX, Wu CW. Onion-structure bionic hydrogel capsules based on chitosan for regulating doxorubicin release. Carbohydr Polym 2019; 209:152-160. [DOI: 10.1016/j.carbpol.2019.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 01/30/2023]
|
29
|
Seidi F, Jenjob R, Phakkeeree T, Crespy D. Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. J Control Release 2018; 284:188-212. [DOI: 10.1016/j.jconrel.2018.06.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022]
|
30
|
Rodriguez‐Otormin F, Duro‐Castano A, Conejos‐Sánchez I, Vicent MJ. Envisioning the future of polymer therapeutics for brain disorders. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 11:e1532. [DOI: 10.1002/wnan.1532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Aroa Duro‐Castano
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Valencia Spain
| | | | - María J. Vicent
- Polymer Therapeutics Laboratory Centro de Investigación Príncipe Felipe Valencia Spain
| |
Collapse
|
31
|
Rahoui N, Jiang B, Taloub N, Hegazy M, Huang YD. Synthesis and evaluation of water soluble pH sensitive poly (vinyl alcohol)-doxorubicin conjugates. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1482-1497. [PMID: 29661115 DOI: 10.1080/09205063.2018.1466470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The accuracy of spatiotemporal control cargo delivery and release are primordial to enhance the therapeutic efficiency and decrease the undesirable effects, in this context a novel prodrug were developed based on biocompatible polyvinyl alcohol (PVA) substrate. PVA was conjugated to doxorubicin (PVA-DOX) via an acid-labile hydrazone linkage. PVA was first functionalized with acidic groups, then reacted with hydrazine hydrate to form an amide bond. The amine group of PVA hydrazide was linked to carbonyl group (C = O) of DOX to form a pH sensitive hydrazone bond. The molecular structure of the PVA-DOX was confirmed by FTIR, XPS, and 1H-NMR analysis methods. The degree of grafting were evaluated by TGA and confirmed by XPS, which reveals the successful bond attachment of DOX to PVA. Our findings confirm pH dependent DOX release from PVA-DOX prodrug with faster release rate in acidic environment (pH 5.0, pH 6.0) and slower release rate in neutral pH environment (pH 7.4). Compared to the primary DOX, our synthesized PVA-DOX conjugates could exhibit a promising therapeutic effect, high biocompatibility and zero premature release. The results prove the successful synthesis of PVA-DOX conjugates with high efficiency.
Collapse
Affiliation(s)
- Nahla Rahoui
- a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , People's Republic of China
| | - Bo Jiang
- a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , People's Republic of China
| | - Nadia Taloub
- a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , People's Republic of China
| | - Mohammad Hegazy
- a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , People's Republic of China
| | - Yu Dong Huang
- a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin , People's Republic of China
| |
Collapse
|
32
|
Abstract
Incorporating labile bonds inside polymer backbone and side chains yields interesting polymer materials that are responsive to change of environmental stimuli. Drugs can be conjugated to various polymers through different conjugation linkages and spacers. One of the key factors influencing the release profile of conjugated drugs is the hydrolytic stability of the conjugated linkage. Generally, the hydrolysis of acid-labile linkages, including acetal, imine, hydrazone, and to some extent β-thiopropionate, are relatively fast and the conjugated drug can be completely released in the range of several hours to a few days. The cleavage of ester linkages are usually slow, which is beneficial for continuous and prolonged release. Another key structural factor is the water solubility of polymer-drug conjugates. Generally, the release rate from highly water-soluble prodrugs is fast. In prodrugs with large hydrophobic segments, the hydrophobic drugs are usually located in the hydrophobic core of micelles and nanoparticles, which limits the access to the water, hence lowering significantly the hydrolysis rate. Finally, self-immolative polymers are also an intriguing new class of materials. New synthetic pathways are needed to overcome the fact that much of the small molecules produced upon degradation are not active molecules useful for biomedical applications.
Collapse
Affiliation(s)
- Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Ratchapol Jenjob
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering , Vidyasirimedhi Institute of Science and Technology , Rayong 21210 , Thailand
| |
Collapse
|
33
|
Amphiphilic polysaccharides as building blocks for self-assembled nanosystems: molecular design and application in cancer and inflammatory diseases. J Control Release 2018; 272:114-144. [DOI: 10.1016/j.jconrel.2017.12.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/09/2023]
|
34
|
Zhang W, Jin X, Li H, Zhang RR, Wu CW. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release. Carbohydr Polym 2018; 186:82-90. [PMID: 29456012 DOI: 10.1016/j.carbpol.2018.01.008] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/17/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Hydrogels based on chitosan/hyaluronic acid/β-sodium glycerophosphate demonstrate injectability, body temperature sensitivity, pH sensitive drug release and adhesion to cancer cell. The drug (doxorubicin) loaded hydrogel precursor solutions are injectable and turn to hydrogels when the temperature is increased to body temperature. The acidic condition (pH 4.00) can trigger the release of drug and the cancer cell (Hela) can adhere to the surface of the hydrogels, which will be beneficial for tumor site-specific administration of drug. The mechanical strength, the gelation temperature, and the drug release behavior can be tuned by varying hyaluronic acid content. The mechanisms were characterized using dynamic mechanical analysis, Fourier transform infrared spectroscopy, scanning electron microscopy and fluorescence microscopy. The carboxyl group in hyaluronic acid can form the hydrogen bondings with the protonated amine in chitosan, which promotes the increase of mechanical strength of the hydrogels and depresses the initial burst release of drug from the hydrogel.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Xin Jin
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Heng Li
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Run-Run Zhang
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Cheng-Wei Wu
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
35
|
Ramasamy T, Ruttala HB, Gupta B, Poudel BK, Choi HG, Yong CS, Kim JO. Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review. J Control Release 2017; 258:226-253. [PMID: 28472638 DOI: 10.1016/j.jconrel.2017.04.043] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/28/2017] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
|
36
|
Liu Y, Li J, Li Z, Tang X, Zhang Z. Pharmacokinetics of a ternary conjugate based pH-responsive 10-HCPT prodrug nano-micelle delivery system. Asian J Pharm Sci 2017; 12:542-549. [PMID: 32104367 PMCID: PMC7032114 DOI: 10.1016/j.ajps.2017.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 02/07/2023] Open
Abstract
A pH-responsive conjugate based 10-hydroxycamptothecin-thiosemicarbazide-polyethene glycol 2000 (10-HCPT-hydro-PEG) nano-micelles were prepared in our previous study. In the present study, ultra-performance liquid chromatography (UPLC-MS) method is developed to investigate its pharmacokinetics and biodistribution in tumor bearing mice. The results demonstrated that the conjugate circulated for a much longer time in the blood circulation system than commercial 10-HCPT injection, and bioavailability was significantly improved compared with 10-HCPT. In vivo biodistribution study showed that the conjugate could enhance the targeting and residence time in tumor site.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.,School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China.,Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Zhengzhou 450001, China
| | - Juan Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Zhi Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| | - Xing Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, China
| |
Collapse
|