1
|
Li M, Hu D, Zhang D, Xu G, Wu D, Gao C, Meng L, Feng X, Cheng W, Wang Z, Yang Y, Tang X. Encapsulation of oleanolic acid into cyclodextrin metal-organic frameworks by co-crystallization: Preparation, structure characterization and its effect on a zebrafish larva NAFLD model. Food Res Int 2025; 204:115936. [PMID: 39986782 DOI: 10.1016/j.foodres.2025.115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
Oleanolic acid (OA) is a common pentacyclic triterpenoid and has been used to relieve metabolic-related diseases. However, its low water solubility severely limits its clinical application. In this study, OA was encapsulated by a cyclodextrin metal-organic framework material (CD-MOF) using the co-crystallization method to obtain the OA and CD-MOF inclusion complex (OA@CD-MOF). The OA@CD-MOF was characterized using scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis, which proved that OA was successfully loaded into the CD-MOF. Molecular docking data revealed that OA tends to occupy the cyclodextrin dimolecular cavity outside the CD-MOF. The formation of OA@CD-MOF significantly increased the apparent water solubility of OA to 269.27 ± 19.40 μg/mL. Further zebrafish experiments showed that the OA@CD-MOF exhibited better anti-steatosis, anti-lipid accumulation, and anti-oxidative stress activities than OA. Overall, this study presents a promising approach for delivering OA, enhancing its bioavailability in vivo and mitigating metabolic-related diseases such as non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Meng Li
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Dongxia Hu
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Dian Zhang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Guangya Xu
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Di Wu
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Chengcheng Gao
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Linghan Meng
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Xiao Feng
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Weiwei Cheng
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Zhenjiong Wang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China.
| | - Yuling Yang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China
| | - Xiaozhi Tang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023 China.
| |
Collapse
|
2
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
3
|
Wasim M, Bergonzi MC. Unlocking the Potential of Oleanolic Acid: Integrating Pharmacological Insights and Advancements in Delivery Systems. Pharmaceutics 2024; 16:692. [PMID: 38931816 PMCID: PMC11206505 DOI: 10.3390/pharmaceutics16060692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/28/2024] Open
Abstract
The growing interest in oleanolic acid (OA) as a triterpenoid with remarkable health benefits prompts an emphasis on its efficient use in pharmaceutical research. OA exhibits a range of pharmacological effects, including antidiabetic, anti-inflammatory, immune-enhancing, gastroprotective, hepatoprotective, antitumor, and antiviral properties. While OA demonstrates diverse pharmacological effects, optimizing its therapeutic potential requires overcoming significant challenges. In the field of pharmaceutical research, the exploration of efficient drug delivery systems is essential to maximizing the therapeutic potential of bioactive compounds. Efficiently delivering OA faces challenges, such as poor aqueous solubility and restricted bioavailability, and to unlock its full therapeutic efficacy, novel formulation strategies are imperative. This discussion thoroughly investigates different approaches and advancements in OA drug delivery systems with the aim of enhancing the biopharmaceutical features and overall efficacy in diverse therapeutic contexts.
Collapse
Affiliation(s)
| | - Maria Camilla Bergonzi
- Department of Chemistry, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
4
|
Shukla VN, Vikas, Mehata AK, Setia A, Kumari P, Mahto SK, Muthu MS, Mishra SK. EGFR targeted albumin nanoparticles of oleanolic acid: In silico screening of nanocarrier, cytotoxicity and pharmacokinetics for lung cancer therapy. Int J Biol Macromol 2023; 246:125719. [PMID: 37419266 DOI: 10.1016/j.ijbiomac.2023.125719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
This study aimed to develop cetuximab (CTX) functionalized albumin nanoparticles (ALB-NPs) of oleanolic acid for EGFR targeted lung cancer therapy. The molecular docking methodology has been applied for a selection of suitable nanocarrier. Various physicochemical parameters like particle size, polydispersity, zeta potential, morphology, entrapment efficiency, and in-vitro drug release of all the ALB-NPs were analyzed. Furthermore, the in-vitro qualitative and quantitative cellular uptake study revealed that higher uptake of CTX conjugated ALB-NPs than nontargeted ALB-NPs in A549 cells. The in-vitro MTT assay revealed that the IC50 value of CTX-OLA-ALB-NPs (4.34 ± 1.90 μg/mL) was significantly reduced (p < 0.001) than OLA-ALB-NPs (13.87 ± 1.28 μg/mL) in A-549 cells. CTX-OLA-ALB-NPs caused apoptosis in A-549 cells at concentrations equivalent to its IC50 value and blocked the cell cycle in the G0/G1 phases. The hemocompatibility, histopathology and lung safety study confirmed the biocompatibility of the developed NPs. In vivo ultrasound and photoacoustic imaging confirmed the targeted delivery of the NPs to lung cancer. The findings demonstrated that CTX-OLA-ALB-NPs have potential for site-specific delivery of OLA for effective and targeted therapy of lung carcinoma.
Collapse
Affiliation(s)
- Vishwa Nath Shukla
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Pooja Kumari
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|
5
|
Chen C, Ai Q, Shi A, Wang N, Wang L, Wei Y. Oleanolic acid and ursolic acid: therapeutic potential in neurodegenerative diseases, neuropsychiatric diseases and other brain disorders. Nutr Neurosci 2023; 26:414-428. [PMID: 35311613 DOI: 10.1080/1028415x.2022.2051957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Brain disorders such as neurodegenerative diseases and neuropsychiatric diseases have become serious threatens to human health and quality of life. Oleanolic acid (OA) and ursolic acid (UA) are pentacyclic triterpenoid isomers widely distributed in various plant foods and Chinese herbal medicines. Accumulating evidence indicates that OA and UA exhibit neuroprotective effects on multiple brain disorders. Therefore, this paper reviews researches of OA and UA on neurodegenerative diseases, neuropsychiatric diseases and other brain disorders including ischemic stroke, epilepsy, etc, as well as the potential underlying molecular mechanisms.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces and College of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, People's Republic of China
| | - Axi Shi
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Nan Wang
- Department of General medicine, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Lina Wang
- Department of Pediatric surgery, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuhui Wei
- Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
6
|
γ-Cyclodextrin-Encapsulated Cinnamaldehyde for Citrus Preservation and Its Potential Mechanisms against Penicillium digitatum. J Fungi (Basel) 2022; 8:jof8111199. [DOI: 10.3390/jof8111199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, a γ-cyclodextrin-cinnamaldehyde inclusion compound (γ-CDCL) was prepared to control green mold caused by Penicillium digitatum (P. digitatum) in citrus. The results showed that the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of γ-CDCL against the mycelial growth of P. digitatum were 2.0 g L−1 and 4.0 g L−1, respectively. Simultaneously, eight × MFC γ-CDCL could effectively reduce the incidence of green mold in citrus fruit without impairment of the fruit qualities, meanwhile, eight × MFC γ-CDCL was comparable to Prochloraz in controlling fruit under natural storage conditions. The structure of γ-CDCL was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and nuclear magnetic resonance (NMR) analyses. Results showed that the successful preparation of γ-CDCL was due to the spatial interaction between H-4,8 of cinnamaldehyde and H-5′ of γ-cyclodextrin. Meanwhile, the cell membrane permeability of P. digitatum was impaired by γ-CDCL through massive accumulation of reactive oxygen species, whereas the cell wall integrity was barely affected. These results indicated that γ-CDCL might inhibit the growth of P. digitatum through a membrane damage mechanism and it is a promising alternative to chemical fungicides in controlling the post-harvest citrus decay.
Collapse
|
7
|
Prodea A, Mioc A, Banciu C, Trandafirescu C, Milan A, Racoviceanu R, Ghiulai R, Mioc M, Soica C. The Role of Cyclodextrins in the Design and Development of Triterpene-Based Therapeutic Agents. Int J Mol Sci 2022; 23:ijms23020736. [PMID: 35054925 PMCID: PMC8775686 DOI: 10.3390/ijms23020736] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 12/25/2022] Open
Abstract
Triterpenic compounds stand as a widely investigated class of natural compounds due to their remarkable therapeutic potential. However, their use is currently being hampered by their low solubility and, subsequently, bioavailability. In order to overcome this drawback and increase the therapeutic use of triterpenes, cyclodextrins have been introduced as water solubility enhancers; cyclodextrins are starch derivatives that possess hydrophobic internal cavities that can incorporate lipophilic molecules and exterior surfaces that can be subjected to various derivatizations in order to improve their biological behavior. This review aims to summarize the most recent achievements in terms of triterpene:cyclodextrin inclusion complexes and bioconjugates, emphasizing their practical applications including the development of new isolation and bioproduction protocols, the elucidation of their underlying mechanism of action, the optimization of triterpenes’ therapeutic effects and the development of new topical formulations.
Collapse
Affiliation(s)
- Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Christian Banciu
- Department of Internal Medicine IV, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Cristina Trandafirescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
- Correspondence: (C.B.); (C.T.); Tel.: +40-256-494-604 (C.B. & C.T.)
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timisoara, Romania; (A.P.); (A.M.); (R.R.); (R.G.); (M.M.); (C.S.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
8
|
Fan JP, Lai XH, Zhang XH, Yang L, Yuan TT, Chen HP, Liang X. Synthesis and evaluation of the cancer cell growth inhibitory activity of the ionic derivatives of oleanolic acid and ursolic acid with improved solubility. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel) 2021; 13:polym13111684. [PMID: 34064190 PMCID: PMC8196804 DOI: 10.3390/polym13111684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.
Collapse
|
10
|
Gudoityte E, Arandarcikaite O, Mazeikiene I, Bendokas V, Liobikas J. Ursolic and Oleanolic Acids: Plant Metabolites with Neuroprotective Potential. Int J Mol Sci 2021; 22:4599. [PMID: 33925641 PMCID: PMC8124962 DOI: 10.3390/ijms22094599] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ursolic and oleanolic acids are secondary plant metabolites that are known to be involved in the plant defence system against water loss and pathogens. Nowadays these triterpenoids are also regarded as potential pharmaceutical compounds and there is mounting experimental data that either purified compounds or triterpenoid-enriched plant extracts exert various beneficial effects, including anti-oxidative, anti-inflammatory and anticancer, on model systems of both human or animal origin. Some of those effects have been linked to the ability of ursolic and oleanolic acids to modulate intracellular antioxidant systems and also inflammation and cell death-related pathways. Therefore, our aim was to review current studies on the distribution of ursolic and oleanolic acids in plants, bioavailability and pharmacokinetic properties of these triterpenoids and their derivatives, and to discuss their neuroprotective effects in vitro and in vivo.
Collapse
Affiliation(s)
- Evelina Gudoityte
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
- Celignis Limited, Unit 11 Holland Road, Plassey Technology Park Castletroy, County Limerick, Ireland
| | - Odeta Arandarcikaite
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
| | - Ingrida Mazeikiene
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Akademija, LT-58344 Kedainiai Distr., Lithuania;
| | - Vidmantas Bendokas
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Horticulture, Akademija, LT-58344 Kedainiai Distr., Lithuania;
| | - Julius Liobikas
- Laboratory of Biochemistry, Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (E.G.); (O.A.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
11
|
Wüpper S, Lüersen K, Rimbach G. Cyclodextrins, Natural Compounds, and Plant Bioactives-A Nutritional Perspective. Biomolecules 2021; 11:biom11030401. [PMID: 33803150 PMCID: PMC7998733 DOI: 10.3390/biom11030401] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
Cyclodextrins (CDs) are a group of cyclic oligosaccharides produced from starch or starch derivatives. They contain six (αCD), seven (βCD), eight (γCD), or more glucopyranose monomers linked via α-1,4-glycosidic bonds. CDs have a truncated cone shape with a hydrophilic outer wall and a less hydrophilic inner wall, the latter forming a more apolar internal cavity. Because of this special architecture, CDs are soluble in water and can simultaneously host lipophilic guest molecules. The major advantage of inclusion into CDs is increased aqueous solubility of such lipophilic substances. Accordingly, we present studies where the complexation of natural compounds such as propolis and dietary plant bioactives (e.g., tocotrienol, pentacyclic triterpenoids, curcumin) with γCD resulted in improved stability, bioavailability, and bioactivity in various laboratory model organisms and in humans. We also address safety aspects that may arise from increased bioavailability of plant extracts or natural compounds owing to CD complexation. When orally administered, α- and βCD—which are inert to intestinal digestion—are fermented by the human intestinal flora, while γCD is almost completely degraded to glucose units by α-amylase. Hence, recent reports indicate that empty γCD supplementation exhibits metabolic activity on its own, which may provide opportunities for new applications.
Collapse
|
12
|
Binding behavior, water solubility and in vitro cytotoxicity of inclusion complexes between ursolic acid and amino-appended β-cyclodextrins. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111993] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Liang J, Li F, Lin J, Song S, Liao X, Gao C, Yang B. Host-guest inclusion systems of mangiferin and polyamine-β-cyclodextrins: Preparation, characterization and anti-cancer activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Song S, Gao K, Niu R, Wang J, Zhang J, Gao C, Yang B, Liao X. Inclusion complexes between chrysin and amino-appended β-cyclodextrins (ACDs): Binding behavior, water solubility, in vitro antioxidant activity and cytotoxicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110161. [PMID: 31753384 DOI: 10.1016/j.msec.2019.110161] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/12/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
Abstract
Solid inclusion complexes between chrysin and four amino-appended β-cyclodextrins (ACDs) were prepared by suspension method and characterized in solid and solution states by kinds of analytical methods. The scanning electron microscopy (SEM) showed distinct micro-morphologies of them. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis revealed their unique thermal properties, such as decomposition temperatures and endothermic points. Powder X-ray diffractometry (XRD) analysis disclosed their unique crystal patterns. Their nuclear magnetic resonance (NMR) analyses provided the variations of chemical shifts before and after the formation of inclusion complexes. Their binding stability constants (Ks) were 574, 842, 704, and 474 L·mol-1, respectively, as determined by spectral titration. A 1:1 inclusion mode with self-assembly of their amino side chains inside the ACD cavity was proposed based on Job plot and 2D-ROESY experiments. Water solubility of chrysin was promoted up to 4411.98 μg·mL-1 after formation of inclusion complexes with ACDs, better than that of β-CD and its derivatives, i.e., HP- and SBE-β-CD. In vitro antioxidant activity of chrysin was also improved after inclusion complexation by the DPPH scavenging assay. Furthermore, in vitro cytotoxicity of solid inclusion complexes towards three human cancer cell lines, A549, HT-29 and HCT116 were enhanced significantly.
Collapse
Affiliation(s)
- Shuang Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Kai Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Raomei Niu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China; Jiangsu Xinchen Pharmaceutical Co., LTD, 222047 Lianyungang, China
| | - Jin Wang
- School of Pharmacy, Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, 224007 Yancheng, China
| | - Jihong Zhang
- Faculty of Medicine, Kunming University of Science and Technology, Kunming 650500, China; Research Centre for Pharmaceutical Care and Quality Management, First People's Hospital of Yunnan Province, Kunming 650500, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China.
| |
Collapse
|
15
|
Fumić B, Jablan J, Cinčić D, Zovko Končić M, Jug M. Cyclodextrin encapsulation of daidzein and genistein by grinding: implication on the glycosaminoglycan accumulation in mucopolysaccharidosis type II and III fibroblasts. J Microencapsul 2017; 35:1-12. [PMID: 29168930 DOI: 10.1080/02652048.2017.1409819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This work aimed to investigate the potential effect of cyclodextrin encapsulation on intrinsic ability of daidzein (DAD) and genistein (GEN) to inhibit the glycosaminoglycan (GAG) synthesis in fibroblasts originating from patients with mucopolysaccharidosis (MPS), type II and III. DAD or GEN encapsulation with either 2-hydroxypropyl-β-cyclodextrin or sulphobuthylether-β-cyclodextrin were achieved by neat grinding and were characterised by thermal analysis, X-ray powder diffraction, scanning electron microscopy and solubility testing which confirmed the complexes formation with increased solubility with respect to starting compounds. Both isoflavones, as well as their co-ground cyclodextrin complexes reduced GAG levels in the fibroblasts of MPS II and MPS III patients from 54.8-77.5%, in a dose dependent manner, without any significant cytotoxic effect. Cyclodextrin encapsulation did not change the intrinsically high effect of both DAD and GEN on the GAG level reduction in the treated cells, thus could be considered as a part of combination therapies of MPS.
Collapse
Affiliation(s)
- Barbara Fumić
- a Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy , University of Zagreb , Zagreb , Croatia.,b Department of Laboratory Diagnostics , University Hospital Centre Zagreb , Zagreb , Croatia
| | - Jasna Jablan
- c Faculty of Pharmacy and Biochemistry, Department of Analystical Chemistry , University of Zagreb , Zagreb , Croatia
| | - Dominik Cinčić
- d Faculty of Science, Chemistry Department , University of Zagreb , Zagreb , Croatia
| | - Marijana Zovko Končić
- a Faculty of Pharmacy and Biochemistry, Department of Pharmacognosy , University of Zagreb , Zagreb , Croatia
| | - Mario Jug
- e Faculty of Pharmacy and Biochemistry, Department of Pharmaceutical Technology , University of Zagreb , Zagreb , Croatia
| |
Collapse
|
16
|
Shen Z, Qin Q, Liao X, Yang B. Host-guest inclusion system of glycyrrhetic acid with polyamine-β-cyclodextrin: Preparation, characterization, and anticancer activity. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.07.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Ayeleso TB, Matumba MG, Mukwevho E. Oleanolic Acid and Its Derivatives: Biological Activities and Therapeutic Potential in Chronic Diseases. Molecules 2017; 22:molecules22111915. [PMID: 29137205 PMCID: PMC6150249 DOI: 10.3390/molecules22111915] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for natural products as an alternative therapy for chronic diseases has encouraged research into the pharmacological importance of bioactive compounds from plants. Recently, there has been a surge of interest in the therapeutic potential of oleanolic acid (OA) in the prevention and management of chronic diseases. Oleanolic acid is a pentacyclic triterpenoid widely found in plants, including fruits and vegetables with different techniques and chromatography platforms being employed in its extraction and isolation. Several studies have demonstrated the potential therapeutic effects of OA on different diseases and their symptoms. Furthermore, oleanolic acid also serves as a framework for the development of novel semi-synthetic triterpenoids that could prove vital in finding therapeutic modalities for various ailments. There are recent advances in the design and synthesis of chemical derivatives of OA to enhance its solubility, bioavailability and potency. Some of these derivatives have also been therapeutic candidates in a number of clinical trials. This review consolidates and expands on recent reports on the biological effects of oleanolic acid from different plant sources and its synthetic derivatives as well as their mechanisms of action in in vitro and in vivo study models. This review suggests that oleanolic acid and its derivatives are important candidates in the search for alternative therapy in the treatment and management of chronic diseases.
Collapse
Affiliation(s)
- Taiwo Betty Ayeleso
- Department of Biochemistry, North West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Mashudu Given Matumba
- Department of Biochemistry, North West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Emmanuel Mukwevho
- Department of Biochemistry, North West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
18
|
Folate receptor targeted bufalin/β-cyclodextrin supramolecular inclusion complex for enhanced solubility and anti-tumor efficiency of bufalin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:609-618. [DOI: 10.1016/j.msec.2017.04.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/14/2017] [Accepted: 04/16/2017] [Indexed: 11/20/2022]
|
19
|
Yang LJ, Wang SH, Zhou SY, Zhao F, Chang Q, Li MY, Chen W, Yang XD. Supramolecular system of podophyllotoxin and hydroxypropyl-β-cyclodextrin: Characterization, inclusion mode, docking calculation, solubilization, stability and cytotoxic activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1136-1145. [DOI: 10.1016/j.msec.2017.03.197] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/26/2022]
|
20
|
DENG YH, SU LN, PANG YH, GUO YF, WANG F, LIAO XL, YANG B. Preparation, Characterization and Water Solubility of Inclusion Complexes of Daidzein with Amino-Modified β -Cyclodextrins. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61012-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Oleanolic Acid Alters Multiple Cell Signaling Pathways: Implication in Cancer Prevention and Therapy. Int J Mol Sci 2017; 18:ijms18030643. [PMID: 28300756 PMCID: PMC5372655 DOI: 10.3390/ijms18030643] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Nowadays, much attention has been paid to diet and dietary supplements as a cost-effective therapeutic strategy for prevention and treatment of a myriad of chronic and degenerative diseases. Rapidly accumulating scientific evidence achieved through high-throughput technologies has greatly expanded the understanding about the multifaceted nature of cancer. Increasingly, it is being realized that deregulation of spatio-temporally controlled intracellular signaling cascades plays a contributory role in the onset and progression of cancer. Therefore, targeting regulators of oncogenic signaling cascades is essential to prevent and treat cancer. A plethora of preclinical and epidemiological evidences showed promising role of phytochemicals against several types of cancer. Oleanolic acid, a common pentacyclic triterpenoid, is mainly found in olive oil, as well as several plant species. It is a potent inhibitor of cellular inflammatory process and a well-known inducer of phase 2 xenobiotic biotransformation enzymes. Main molecular mechanisms underlying anticancer effects of oleanolic acid are mediated by caspases, 5' adenosine monophosphate-activated protein kinase, extracellular signal-regulated kinase 1/2, matrix metalloproteinases, pro-apoptotic Bax and bid, phosphatidylinositide 3-kinase/Akt1/mechanistic target of rapamycin, reactive oxygen species/apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase, nuclear factor-κB, cluster of differentiation 1, CKD4, s6k, signal transducer and activator of transcription 3, as well as aforementioned signaling pathways . In this work, we critically review the scientific literature on the molecular targets of oleanolic acid implicated in the prevention and treatment of several types of cancer. We also discuss chemical aspects, natural sources, bioavailability, and safety of this bioactive phytochemical.
Collapse
|