1
|
Paladini F, Panico A, Masi A, Russo F, Sannino A, Pollini M. Silver-Treated Sutures for the Prevention of Biofilm-Associated Surgical Site Infections. Antibiotics (Basel) 2025; 14:49. [PMID: 39858335 PMCID: PMC11763188 DOI: 10.3390/antibiotics14010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES The huge concerns associated with biofilm-related infections in surgical procedures, along with the antibiotic resistance demonstrated by an increasing number of bacteria, have highlighted the need for alternative and effective prevention approaches. The aim of this research was to develop novel antimicrobial coatings on surgical sutures for the prevention of surgical site infections through nanotechnology-based methods. RESULTS The results demonstrated that although very low amounts of silver precursor were adopted for the treatments, the silver coating was effective against Staphylococcus aureus and antibiotic-resistant Pseudomonas aeruginosa in reducing the potential risk of infection. METHODS Nanostructured silver coatings were deposited onto the surface of polyglactin 910 absorbable braided sutures through a technology based on a photo-assisted chemical reaction. The materials were characterized in order to verify the efficacy of the coating in preventing biofilm formation and in reducing the bacterial colonization of the device. CONCLUSIONS As a broad-spectrum antimicrobial agent, silver represents an important option for the prevention and management of surgical site infections. The silver deposition technology adopted in this work provides an interesting strategy for preventing biofilm formation on medical devices such as surgical sutures.
Collapse
Affiliation(s)
- Federica Paladini
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.P.); (A.S.)
| | - Angelica Panico
- Caresilk S.r.l.s., c/o Dhitech, Via Monteroni, 73100 Lecce, Italy;
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.M.); (F.R.)
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.M.); (F.R.)
| | - Alessandro Sannino
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.P.); (A.S.)
| | - Mauro Pollini
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.P.); (A.S.)
| |
Collapse
|
2
|
Li J, Yang H, Cai Y, Gu R, Chen Y, Wang Y, Dong Y, Zhao Q. Ag quantum dots-doped poly (vinyl alcohol)/chitosan hydrogel coatings to prevent catheter-associated urinary tract infections. Int J Biol Macromol 2024; 282:136405. [PMID: 39423980 DOI: 10.1016/j.ijbiomac.2024.136405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
The prevention of catheter-associated urinary tract infections (CAUTIs) significantly impacts the reduction of morbidity and mortality associated with the use of indwelling urinary catheters. This study focused on developing an antibacterial double network hydrogel coating for latex urinary catheters, which incorporated Ag quantum dots (Ag QDs) in a polyvinyl alcohol (PVA)-chitosan (CS) double network hydrogel matrix. The PVA-CS-Ag QDs, referred to as the PCA hydrogel coating exhibited excellent mechanical and physiochemical properties with controlled release of Ag QDs. The antibacterial properties of the PCA hydrogel-coated urinary catheters were studied against both gram-negative Escherichia coli (E. coli, ATCC25922) and gram-positive Staphylococcus aureus (S. aureus, ATCC29213). The continuous release of CS oligomers and Ag QDs from the hydrogel coating contributed to the synergistic antibacterial and antiadhesion effects. Measurements of the Ag release rate revealed that even after 30 days, the concentration of Ag QDs from the PCA hydrogel-coated urinary catheters remained significantly higher than the effective antibacterial concentration of the total Ag (0.1 μg·L-1). These results indicated that the PCA hydrogel coating not only efficiently prevented bacteria attachment, but also exhibited long-term antibacterial activity, thereby inhibiting biofilm formation. Furthermore, the PCA hydrogel-coated urinary catheter demonstrated excellent biocompatibility and hemocompatibility. Overall, this novel PCA hydrogel-coated urinary catheter, with its exceptional antibacterial properties, holds great potential in reducing the incidence of CAUTIs.
Collapse
Affiliation(s)
- Jianxiang Li
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yongwei Cai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Ronghua Gu
- Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yao Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yimeng Wang
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Yuhang Dong
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | - Qi Zhao
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK.
| |
Collapse
|
3
|
Paladini F, Russo F, Masi A, Lanzillotti C, Sannino A, Pollini M. Silver-Treated Silk Fibroin Scaffolds for Prevention of Critical Wound Infections. Biomimetics (Basel) 2024; 9:659. [PMID: 39590231 PMCID: PMC11591968 DOI: 10.3390/biomimetics9110659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
The risk of infections in chronic wounds represents a serious issue, particularly in aged people and in patients affected by diseases such as diabetes and obesity. Moreover, the growing resistance demonstrated by many bacterial strains has significantly reduced the therapeutic options for clinicians and has become a great challenge for the researchers in the definition of novel approaches that promote the wound healing process and reduce the healing time. Tissue engineering approaches based on biomaterials and three-dimensional scaffolds have demonstrated huge potential in supporting cell proliferation; among them, Bombyx mori-derived silk fibroin is a very appealing possibility for the development of devices with regenerative properties for wound healing applications. However, due to the high risk of infections in chronic wounds, an antibacterial treatment is also strongly encouraged for preventing bacterial proliferation at the wound site. In this work, to develop a device with regenerative and antibacterial properties, antibacterial silver coatings were deposited onto silk fibroin scaffolds, and the effect of the treatment in terms of chemical-physical and microbiological properties was investigated. The results demonstrated that the silver treatment improved the mechanical properties of the protein scaffold and provided good antibacterial efficacy against representative bacterial strains in wound infection, namely Escherichia coli and antibiotic-resistant Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Federica Paladini
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.S.); (M.P.)
- Caresilk S.r.l.s., c/o Dhitech, Via Monteroni, 73100 Lecce, Italy;
| | - Francesca Russo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.R.); (A.M.)
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.R.); (A.M.)
| | | | - Alessandro Sannino
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.S.); (M.P.)
| | - Mauro Pollini
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy; (A.S.); (M.P.)
- Caresilk S.r.l.s., c/o Dhitech, Via Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
4
|
Sharma S, Basu B. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials 2021; 281:121331. [PMID: 35016066 DOI: 10.1016/j.biomaterials.2021.121331] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/14/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Urinary bladder is a dynamic organ performing complex physiological activities. Together with ureters and urethra, it forms the lower urinary tract that facilitates urine collection, low-pressure storage, and volitional voiding. However, pathological disorders are often liable to cause irreversible damage and compromise the normal functionality of the bladder, necessitating surgical intervention for a reconstructive procedure. Non-urinary autologous grafts, primarily derived from gastrointestinal tract, have long been the gold standard in clinics to augment or to replace the diseased bladder tissue. Unfortunately, such treatment strategy is commonly associated with several clinical complications. In absence of an optimal autologous therapy, a biomaterial based bioengineered platform is an attractive prospect revolutionizing the modern urology. Predictably, extensive investigative research has been carried out in pursuit of better urological biomaterials, that overcome the limitations of conventional gastrointestinal graft. Against the above backdrop, this review aims to provide a comprehensive and one-stop update on different biomaterial-based strategies that have been proposed and explored over the past 60 years to restore the dynamic function of the otherwise dysfunctional bladder tissue. Broadly, two unique perspectives of bladder tissue engineering and total alloplastic bladder replacement are critically discussed in terms of their status and progress. While the former is pivoted on scaffold mediated regenerative medicine; in contrast, the latter is directed towards the development of a biostable bladder prosthesis. Together, these routes share a common aspiration of designing and creating a functional equivalent of the bladder wall, albeit, using fundamentally different aspects of biocompatibility and clinical needs. Therefore, an attempt has been made to systematically analyze and summarize the evolution of various classes as well as generations of polymeric biomaterials in urology. Considerable emphasis has been laid on explaining the bioengineering methodologies, pre-clinical and clinical outcomes. Some of the unaddressed challenges, including vascularization, innervation, hollow 3D prototype fabrication and urinary encrustation, have been highlighted that currently delay the successful commercial translation. More importantly, the rapidly evolving and expanding concepts of bioelectronic medicine are discussed to inspire future research efforts towards the further advancement of the field. At the closure, crucial insights are provided to forge the biomaterial assisted reconstruction as a long-term therapeutic strategy in urological practice for patients' care.
Collapse
Affiliation(s)
- Swati Sharma
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
5
|
The urobiome, urinary tract infections, and the need for alternative therapeutics. Microb Pathog 2021; 161:105295. [PMID: 34801647 DOI: 10.1016/j.micpath.2021.105295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022]
Abstract
Improvements in bacterial culturing and DNA sequencing techniques have revealed a diverse, and hitherto unknown, urinary tract microbiome (urobiome). The potential role of this microbial community in contributing to health and disease, particularly in the context of urinary tract infections (UTIs) is of significant clinical importance. However, while several studies have confirmed the existence of a core urobiome, the role of its constituent microbes is not yet fully understood, particularly in the context of health and disease. Herein, we review the current state of the art, concluding that the urobiome represents an important component of the body's innate immune defences, and a potentially rich resource for the development of alternative treatment and control strategies for UTIs.
Collapse
|
6
|
Domingues B, Pacheco M, Cruz JE, Carmagnola I, Teixeira‐Santos R, Laurenti M, Can F, Bohinc K, Moutinho F, Silva JM, Aroso IM, Lima E, Reis RL, Ciardelli G, Cauda V, Mergulhão FJ, Gálvez FS, Barros AA. Future Directions for Ureteral Stent Technology: From Bench to the Market. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Beatriz Domingues
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Margarida Pacheco
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Julia E. Cruz
- Endourology‐Endoscopy Department Minimally Invasive Surgery Centre Jesús Usón Cáceres 10071 Spain
| | - Irene Carmagnola
- Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin 10129 Italy
- Polito BIOMedLAB Politecnico di Torino Turin 10129 Italy
| | - Rita Teixeira‐Santos
- LEPABE–Laboratory for Process Engineering Environment Biotechnology and Energy Faculty of Engineering University of Porto Porto 4200‐465 Portugal
| | - Marco Laurenti
- Department of Applied Science and Technology Politecnico di Torino Turin 10129 Italy
| | - Fusun Can
- Department of Medical Microbiology School of Medicine Koc University Istanbul 34450 Turkey
| | - Klemen Bohinc
- Faculty of Health Sciences University of Ljubljana Ljubljana 1000 Slovenia
| | - Fabíola Moutinho
- i3S‐Instituto de Investigação e Inovação em Saúde Universidade do Porto Porto 4200‐135 Portugal
- INEB‐Instituto de Engenharia Biomédica Universidade do Porto Porto 4200‐135 Portugal
| | - Joana M. Silva
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Ivo M. Aroso
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Estêvão Lima
- School of Health Sciences Life and Health Sciences Research Institute (ICVS) University of Minho Braga 4710‐057 Portugal
| | - Rui L. Reis
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering Politecnico di Torino Turin 10129 Italy
- Polito BIOMedLAB Politecnico di Torino Turin 10129 Italy
| | - Valentina Cauda
- Department of Applied Science and Technology Politecnico di Torino Turin 10129 Italy
| | - Filipe J. Mergulhão
- LEPABE–Laboratory for Process Engineering Environment Biotechnology and Energy Faculty of Engineering University of Porto Porto 4200‐465 Portugal
| | - Federico S. Gálvez
- Endourology‐Endoscopy Department Minimally Invasive Surgery Centre Jesús Usón Cáceres 10071 Spain
| | - Alexandre A. Barros
- 3B's Research Group‐Research Institute on Biomaterials Biodegradables and Biomimetics University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Avepark‐Parque Barco Guimarães 4805‐017 Portugal
- ICVS/3B's‐PT Government Associate Laboratory Braga/Guimarães 4805‐017 Portugal
| |
Collapse
|
7
|
Pollini M, Paladini F. Bioinspired Materials for Wound Healing Application: The Potential of Silk Fibroin. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3361. [PMID: 32751205 PMCID: PMC7436046 DOI: 10.3390/ma13153361] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Nature is an incredible source of inspiration for scientific research due to the multiple examples of sophisticated structures and architectures which have evolved for billions of years in different environments. Numerous biomaterials have evolved toward high level functions and performances, which can be exploited for designing novel biomedical devices. Naturally derived biopolymers, in particular, offer a wide range of chances to design appropriate substrates for tissue regeneration and wound healing applications. Wound management still represents a challenging field which requires continuous efforts in scientific research for definition of novel approaches to facilitate and promote wound healing and tissue regeneration, particularly where the conventional therapies fail. Moreover, big concerns associated to the risk of wound infections and antibiotic resistance have stimulated the scientific research toward the definition of products with simultaneous regenerative and antimicrobial properties. Among the bioinspired materials for wound healing, this review focuses attention on a protein derived from the silkworm cocoon, namely silk fibroin, which is characterized by incredible biological features and wound healing capability. As demonstrated by the increasing number of publications, today fibroin has received great attention for providing valuable options for fabrication of biomedical devices and products for tissue engineering. In combination with antimicrobial agents, particularly with silver nanoparticles, fibroin also allows the development of products with improved wound healing and antibacterial properties. This review aims at providing the reader with a comprehensive analysis of the most recent findings on silk fibroin, presenting studies and results demonstrating its effective role in wound healing and its great potential for wound healing applications.
Collapse
Affiliation(s)
- Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
8
|
Dutra GVS, Neto WS, Dutra JPS, Machado F. Implantable Medical Devices and Tissue Engineering: An Overview of Manufacturing Processes and the Use of Polymeric Matrices for Manufacturing and Coating their Surfaces. Curr Med Chem 2020; 27:1580-1599. [PMID: 30215330 DOI: 10.2174/0929867325666180914110119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/09/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022]
Abstract
Medical devices are important diagnosis and therapy tools for several diseases which include a wide range of products. Technological advances in this area have been proposed to reduce adverse complication incidences. New technologies and manufacturing processes, as well as the development of new materials or medical devices with modified surface and the use of biodegradable polymeric devices such as a substrate for cell culture in the field of tissue engineering, have attracted considerable attention in recent years by the scientific community intended to produce medical devices with superior properties and morphology. This review article focused on implantable devices, addresses the major advances in the biomedical field related to the devices manufacture processes such as 3D printing and hot melting extrusion, and the use of polymer matrices composed of copolymers, blends, nanocomposites or grafted with antiproliferative drugs for manufacturing and/or coating the devices surface.
Collapse
Affiliation(s)
- Gabriel Victor Simões Dutra
- Instituto de Quimica, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Weslany Silvério Neto
- Instituto de Quimica, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - João Paulo Simões Dutra
- Departamento de Medicina, Pontificia Universidade Catolica de Goias, Avenida Universitaria 1440 Setor Universitario, 74605-070 Goiania, GO, Brazil
| | - Fabricio Machado
- Instituto de Quimica, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
9
|
Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110219. [DOI: 10.1016/j.msec.2019.110219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 12/22/2022]
|
10
|
Majeed A, Sagar F, Latif A, Hassan H, Iftikhar A, Darouiche RO, Mohajer MA. Does antimicrobial coating and impregnation of urinary catheters prevent catheter-associated urinary tract infection? A review of clinical and preclinical studies. Expert Rev Med Devices 2019; 16:809-820. [PMID: 31478395 DOI: 10.1080/17434440.2019.1661774] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Catheter-associated urinary tract infection (CAUTI) is one of the most common nosocomial infections in hospitals, accounting for 36% of all health care-associated infections. Areas covered: We aimed to address the potential impact of antimicrobial coating of catheter materials for the prevention of CAUTI and to analyze the progress made in this field. We conducted literature searches in the PubMed, Embase, and Cochrane Library databases, and found 578 articles. Data from 60 articles in either the preclinical or clinical stage were analyzed in this expert review. Expert opinion: The literature review revealed many promising methods for preventing CAUTI. Recent studies have suggested the combination of silver-based products and antibiotics, owing to their synergistic effect, to help address the problem of antibiotic resistance. Other coating materials that have been tested include nitric oxide, chlorhexidine, antimicrobial peptides, enzymes, and bacteriophages. Because of heterogeneity among studies, it is difficult to reliably comment on the clinical efficacy of different coating materials. Future research should focus on double-blind randomized clinical trials for evaluating the role of these potential coating agents.
Collapse
Affiliation(s)
- Aneela Majeed
- Division of Infectious Diseases, Department of Medicine, Stanford University , Stanford , CA , USA
| | - Fnu Sagar
- Department of Medicine, University of Arizona , Tucson , AZ , USA
| | - Azka Latif
- Department of Medicine, Creighton University , Omaha , NE , USA
| | - Hamza Hassan
- Department of Medicine, Rochester General Hospital , Rochester , NY , USA
| | - Ahmad Iftikhar
- Department of Medicine, University of Arizona , Tucson , AZ , USA
| | - Rabih O Darouiche
- Section of Infectious Diseases, Michael E. DeBakey Veterans Affairs Medical Center Baylor College of Medicine , Houston , TX , USA.,Section of Infectious Diseases, Baylor College of Medicine , Houston , TX , USA
| | - Mayar Al Mohajer
- Section of Infectious Diseases, Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
11
|
Alves D, Vaz AT, Grainha T, Rodrigues CF, Pereira MO. Design of an Antifungal Surface Embedding Liposomal Amphotericin B Through a Mussel Adhesive-Inspired Coating Strategy. Front Chem 2019; 7:431. [PMID: 31275922 PMCID: PMC6591271 DOI: 10.3389/fchem.2019.00431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/27/2019] [Indexed: 01/19/2023] Open
Abstract
Microbial colonization of urinary catheters remains a serious problem for medicine as it often leads to biofilm formation and infection. Among the approaches reported to deal with this problem, surfaces functionalization to render them with antimicrobial characteristics, comprises the most promising one. Most of these strategies, however, are designed to target bacterial biofilms, while fungal biofilms are much less taken into account. In real-life settings, fungi will be inevitably found in consortium with bacteria, especially in the field of biomaterials. The development of antifungal coating strategies to be combined with antibacterial approaches will be pivotal for the fight of biomaterial-associated infections. The main goal of the present study was, therefore, to engineer an effective strategy for the immobilization of liposomal amphotericin B (LAmB) on polydimethylsiloxane (PDMS) surfaces to prevent Candida albicans colonization. Immobilization was performed using a two-step mussel-inspired coating strategy, in which PDMS is first immersed in dopamine solution. Its polymerization results in the deposition of a thin adherent film, called polydopamine (pDA), which allowed the incorporation of LAmB, afterwards. Different concentrations of LAmB were screened in order to obtain a contact-killing surface with no release of LAmB. Surface characterization confirmed the polymerization of dopamine and further functionalization with LAmB yielded surfaces with less roughness and more hydrophilic features. The proposed coating strategy rendered the surfaces of PDMS with the ability to prevent the attachment of C. albicans and kill the adherent cells, without toxicity toward mammalian cells. Overall results showed that LAmB immobilization on a surface retained its antifungal activity and reduced toxicity, holding therefore a great potential to be applied for the design of urinary catheters. Since the sessile communities commonly found associated to these devices exhibit a polymicrobial nature, the next challenge will be to co-immobilize LAmB with antibacterial agents to prevent the establishment of catheter-associated urinary tract infections (CAUTI).
Collapse
Affiliation(s)
- Diana Alves
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Ana Teresa Vaz
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Tânia Grainha
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Célia F Rodrigues
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- Laboratório de Investigação em Biofilmes Rosário Oliveira (LIBRO), Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| |
Collapse
|
12
|
Takaya CA, Cooper I, Berg M, Carpenter J, Muir R, Brittle S, Sarker DK. Offensive waste valorisation in the UK: Assessment of the potentials for absorbent hygiene product (AHP) recycling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 88:56-70. [PMID: 31079651 DOI: 10.1016/j.wasman.2019.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Offensive human waste refers to non-hazardous waste that contains body fluids from non-infectious humans, comprised of post-consumer Absorbent Hygiene Products (AHPs), swabs, dressings, bedding, gloves, and other materials. While this waste category requires more stringent handling, storage and disposal measures than general waste, its non-hazardous nature suggests that there are opportunities for waste valorisation. An inventory of 200 offensive human waste bags collected from various healthcare institutions in South-Eastern England show that about 76% of the waste is comprised of AHPs, most of which are adult incontinence pads and child nappies. Mixed plastics comprised of predominantly HDPE represent 9% of the waste. To evaluate the potentials for offensive human waste valorisation, small-scale separation tests involving artificially-soiled nappies and associated mixed plastic packaging wastes have been performed. Findings suggest that about 50% of the total superabsorbent polymer is recoverable from fluff pulp fractions, recoveries of which are unaffected by the presence of ionic species typically present in human waste. On the other hand, recovery of mixed plastic packaging is more challenging. Overall, however, findings suggest that viable AHP recycling is possible if recyclate materials are targeted towards non-food related markets outlets such as the construction and land remediation sectors.
Collapse
Affiliation(s)
- C A Takaya
- School of Pharmacy & Biomolecular Sciences, Moulsecoomb Campus, University of Brighton, BN2 4GJ, United Kingdom; Medisort Limited, Unit A, Fort Road, Littlehampton, West Sussex BN17 7QU, United Kingdom
| | - I Cooper
- School of Pharmacy & Biomolecular Sciences, Moulsecoomb Campus, University of Brighton, BN2 4GJ, United Kingdom
| | - M Berg
- School of Pharmacy & Biomolecular Sciences, Moulsecoomb Campus, University of Brighton, BN2 4GJ, United Kingdom
| | - J Carpenter
- Green Growth Platform, University of Brighton, Watts Building, Lewes Road, BN2 4GJ, United Kingdom
| | - R Muir
- Medisort Limited, Unit A, Fort Road, Littlehampton, West Sussex BN17 7QU, United Kingdom
| | - S Brittle
- Medisort Limited, Unit A, Fort Road, Littlehampton, West Sussex BN17 7QU, United Kingdom
| | - Dipak K Sarker
- School of Pharmacy & Biomolecular Sciences, Moulsecoomb Campus, University of Brighton, BN2 4GJ, United Kingdom.
| |
Collapse
|
13
|
Homeyer KH, Goudie MJ, Singha P, Handa H. Liquid-Infused Nitric-Oxide-Releasing Silicone Foley Urinary Catheters for Prevention of Catheter-Associated Urinary Tract Infections. ACS Biomater Sci Eng 2019; 5:2021-2029. [DOI: 10.1021/acsbiomaterials.8b01320] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Katie H. Homeyer
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Marcus J. Goudie
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
14
|
Laube N, Bernsmann F, Fisang C. Individualisierte Patientenversorgung mit urologischen Implantaten durch biofilmabweisende Oberflächenkonzepte. Urologe A 2019; 58:143-150. [DOI: 10.1007/s00120-018-0623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Thokala N, Kealey DC, Kennedy DJ, Brady DDB, Farrell DJ. Comparative activity of silver-based antimicrobial composites for urinary catheters. Int J Antimicrob Agents 2018; 52:166-171. [PMID: 29626618 DOI: 10.1016/j.ijantimicag.2018.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/09/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
Biomedical polymers are an integral component in a wide range of medical devices because of their many desirable properties. However, extensive use of polymer materials in medical devices has been associated with an increasing incidence of patient infections. Efforts to address this issue have included incorporating antimicrobial additives to develop novel antimicrobial polymeric materials. Silver, with its high toxicity towards bacteria, oligodynamic effect and good thermal stability, has been employed as an additive for polymeric medical devices. In the present study, commercially available elemental (Biogate) and ionic (Ultrafresh 16) silver additives were incorporated into a Polyamide 11 (PA 11) matrix using a compression press. These polymer composites were evaluated for their antimicrobial and ion-release properties. Elemental silver composites were shown to retain their antimicrobial properties for extended periods and actively released silver ions for 84 days; whereas ionic silver composites lost their ion-release activity and, therefore, their antibacterial activity after 56 days. Bacterial log reduction units of 3.87 for ionic silver and 2.41 for elemental silver were identified within 24 h, when tested in accordance with the ISO 22196 test standard; this indicates that ionic silver is more efficient for short-term applications than elemental silver.
Collapse
Affiliation(s)
- Nikhil Thokala
- Dept. of Mechanical & Polymer Engineering, Athlone Institute of Technology, Ireland; Materials Research Institute, Athlone Institute of Technology, Ireland
| | - Dr Carmel Kealey
- Dept. of Life & Physical Science, Athlone Institute of Technology, Ireland; Bioscience Research Institute, Athlone Institute of Technology, Ireland
| | | | - Dr Damien B Brady
- Dept. of Life & Physical Science, Athlone Institute of Technology, Ireland; Bioscience Research Institute, Athlone Institute of Technology, Ireland.
| | - Dr Joseph Farrell
- Dept. of Mechanical & Polymer Engineering, Athlone Institute of Technology, Ireland; Materials Research Institute, Athlone Institute of Technology, Ireland
| |
Collapse
|
16
|
Barde M, Davis M, Rangari S, Mendis HC, De La Fuente L, Auad ML. Development of antimicrobial-loaded polyurethane films for drug-eluting catheters. J Appl Polym Sci 2018. [DOI: 10.1002/app.46467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mehul Barde
- Center for Polymers and Advanced Composites; Auburn University; Auburn Alabama 36849
- Department of Chemical Engineering; Auburn University; Auburn Alabama 36849
| | - Montoia Davis
- Center for Polymers and Advanced Composites; Auburn University; Auburn Alabama 36849
- Department of Chemical Engineering; Auburn University; Auburn Alabama 36849
| | - Shivani Rangari
- Center for Polymers and Advanced Composites; Auburn University; Auburn Alabama 36849
- Department of Chemical Engineering; Auburn University; Auburn Alabama 36849
| | - Hajeewaka C. Mendis
- Department of Entomology and Plant Pathology; Auburn University; Auburn Alabama 36849
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology; Auburn University; Auburn Alabama 36849
| | - Maria L. Auad
- Center for Polymers and Advanced Composites; Auburn University; Auburn Alabama 36849
- Department of Chemical Engineering; Auburn University; Auburn Alabama 36849
| |
Collapse
|
17
|
Kumar M, Das A. Emerging nanotechnology based strategies for diagnosis and therapeutics of urinary tract infections: A review. Adv Colloid Interface Sci 2017; 249:53-65. [PMID: 28668171 DOI: 10.1016/j.cis.2017.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/31/2022]
Abstract
At present, various diagnostic and therapeutic approaches are available for urinary tract infections. But, still the quest for development of more rapid, accurate and reliable approach is an unending process. The pathogens, especially uropathogens are adapting to new environments and antibiotics day by day rapidly. Therefore, urinary tract infections are evolving as hectic and difficult to eradicate, increasing the economic burden to the society. The technological advances should be able to compete the adaptability characteristics of microorganisms to combat their growth in new environments and thereby preventing their infections. Nanotechnology is at present an extensively developing area of immense scientific interest since it has diverse potential applications in biomedical field. Nanotechnology may be combined with cellular therapy approaches to overcome the limitations caused by conventional therapeutics. Nanoantibiotics and drug delivery using nanotechnology are currently growing areas of research in biomedical field. Recently, various categories of antibacterial nanoparticles and nanocarriers for drug delivery have shown their potential in the treatment of infectious diseases. Nanoparticles, compared to conventional antibiotics, are more beneficial in terms of decreasing toxicity, prevailing over resistance and lessening costs. Nanoparticles present long term therapeutic effects since they are retained in body for relatively longer periods. This review focuses on recent advances in the field of nanotechnology, principally emphasizing diagnostics and therapeutics of urinary tract infections.
Collapse
|
18
|
Thokala N, Kealey C, Kennedy J, Brady DB, Farrell JB. Characterisation of polyamide 11/copper antimicrobial composites for medical device applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:1179-1186. [PMID: 28575955 DOI: 10.1016/j.msec.2017.03.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
Abstract
Direct incorporation of antimicrobial additive into the polymer matrix is a cost effective approach for the development of polymer/metal antimicrobial composites. Application of these antimicrobial composite systems for manufacturing medical devices addresses the issue of device related infections. In the present study, commercially available inorganic copper based additive, Plasticopper, was incorporated into a Polyamide 11(PA 11) matrix during the polymer processing stage. These polymer composites were evaluated for their morphological, mechanical, antimicrobial and ion release properties. Isothermal crystallisation studies showed that the copper additive acted as a nucleating agent and promoted faster crystallisation. Short term mechanical studies confirmed that the incorporation of copper has reinforcing effect on the composites with 5 and 10% copper loadings and did not adversely affect the short-term mechanical performance of the polymer composites. These composite systems were shown to be active against Escherichia coli ATCC 8739 with >99.99% reduction in bacterial population. Corresponding ion release profiles for these composites indicated long term antimicrobial activity.
Collapse
|