1
|
Hassan RF, Jeber JN, Abd-Alrazack HF, Hammood MK, Abd MM. Sensitive determination of chlorpromazine in pharmaceutical formulations and biological fluids using solid phase extraction followed by HPLC-UV and spectrophotometric analysis. RSC Adv 2025; 15:11478-11490. [PMID: 40225774 PMCID: PMC11987593 DOI: 10.1039/d5ra01298h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025] Open
Abstract
An environmentally friendly analytical method was developed to detect trace amounts of chlorpromazine in pharmaceutical formulations, urine, and serum samples. The method integrates magnetic solid-phase extraction (MSPE) with UV detection (MSPE-UV), utilizing environmentally friendly materials and procedures. The MSPE system employed 3-chloropropyltriethoxysilane-coated magnetic nanoparticles (Fe3O4@CPTES) as adsorbents, offering a sustainable and efficient alternative to conventional methods. The proposed technique eliminates the need for toxic organic solvents commonly used in pre-concentration steps, aligning with the principles of green chemistry. Optimization of extraction parameters, including pH, ionic strength, and adsorbent dosage, revealed high extraction efficiencies (98% for pharmaceutical solutions, 52% for urine, and 33% for serum), with corresponding enrichment factors of 102, 52, and 41, respectively, and detection limits as low as 0.08 ng mL-1 for pharmaceutical solutions. The method demonstrates excellent linearity (R 2 > 0.9988) over a wide range (0.15-400 ng mL-1) and high precision (RSD < 7%). The Fe3O4@CPTES nanoparticles enable rapid, reusable, and efficient extraction, reducing both analysis time and resource consumption. While tablet analysis validates method robustness, the primary application lies in trace CPZH detection in biological matrices. This green analytical approach offers a reliable, sensitive, and eco-friendly protocol for CPZH detection, highlighting its potential for broader applications in pharmaceutical and biomedical analysis.
Collapse
Affiliation(s)
- Raed F Hassan
- Department of Chemistry, College of Science, University of Baghdad Baghdad 10071 Iraq +009647702519630
| | - Jalal N Jeber
- Department of Chemistry, College of Science, University of Baghdad Baghdad 10071 Iraq +009647702519630
| | | | - Mohammad K Hammood
- Department of Chemistry, College of Science, University of Baghdad Baghdad 10071 Iraq +009647702519630
| | | |
Collapse
|
2
|
Smajdor J, Fendrych K, Górska-Ratusznik A. Carbon Materials in Voltammetry: An Overview of Versatile Platforms for Antidepressant Drug Detection. MICROMACHINES 2025; 16:423. [PMID: 40283298 PMCID: PMC12029611 DOI: 10.3390/mi16040423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
This review concentrates on the application of carbon-based materials in the development and fabrication of voltammetric sensors of antidepressant drugs used in the treatment of moderate to severe depression, anxiety disorders, personality disorders, and various phobias. Voltammetric techniques offer outstanding sensitivity and selectivity, accuracy, low detection limit, high reproducibility, instrumental simplicity, cost-effectiveness, and short time of direct determination of antidepressant drugs in pharmaceutical and clinical samples. Moreover, the combination of voltammetric approaches with the unique characteristics of carbon and its derivatives has led to the development of powerful electrochemical sensing tools for detecting antidepressant drugs, which are highly desirable in healthcare, environmental monitoring, and the pharmaceutical industry. In this review, carbon-based materials, such as glassy carbon and boron-doped diamond, and a wide spectrum of carbon nanoparticles, including graphene, graphene oxides, reduced graphene oxides, single-walled carbon nanotubes, and multi-walled carbon nanotubes were described in terms of the sensing performance of agomelatine, alprazolam, amitriptyline, aripiprazole, carbamazepine, citalopram, clomipramine, clozapine, clonazepam, desipramine, desvenlafaxine, doxepin, duloxetine, flunitrazepam, fluoxetine, fluvoxamine, imipramine, nifedipine, olanzapine, opipramol, paroxetine, quetiapine, serotonin, sertraline, sulpiride, thioridazine, trazodone, venlafaxine, and vortioxetine.
Collapse
Affiliation(s)
- Joanna Smajdor
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Katarzyna Fendrych
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Krakow, Poland;
| | - Anna Górska-Ratusznik
- Lukasiewicz Research Network—Krakow Institute of Technology, 73 Zakopianska St., 30-418 Krakow, Poland
| |
Collapse
|
3
|
Barry SCL, Franke C, Mulaudzi T, Pokpas K, Ajayi RF. Review on Surface-Modified Electrodes for the Enhanced Electrochemical Detection of Selective Serotonin Reuptake Inhibitors (SSRIs). MICROMACHINES 2023; 14:1334. [PMID: 37512646 PMCID: PMC10386609 DOI: 10.3390/mi14071334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Selective serotonin re-uptake inhibitors (SSRIs) are one of the most commonly prescribed classes of antidepressants used for the treatment of moderate to severe depressive disorder, personality disorders and various phobias. This class of antidepressants was created with improved margins of safety. However, genetic polymorphism may be responsible for the high variability in patients' responses to treatment, ranging from failure to delayed therapeutic responses to severe adverse effects of treatment. It is crucial that the appropriate amount of SSRI drugs is administered to ensure the optimum therapeutic efficacy and intervention to minimise severe and toxic effects in patients, which may be the result of accidental and deliberate cases of poisoning. Determining SSRI concentration in human fluids and the environment with high sensitivity, specificity and reproducibility, and at a low cost and real-time monitoring, is imperative. Electrochemical sensors with advanced functional materials have drawn the attention of researchers as a result of these advantages over conventional techniques. This review article aims to present functional materials such as polymers, carbon nanomaterials, metal nanomaterials as well as composites for surface modification of electrodes for sensitive detection and quantification of SSRIs, including fluoxetine, citalopram, paroxetine, fluvoxamine and sertraline. Sensor fabrication, sensor/analyte interactions, design rationale and properties of functional material and the electrocatalytic effect of the modified electrode on SSRI detection are discussed.
Collapse
Affiliation(s)
- Simone C L Barry
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Candice Franke
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Takalani Mulaudzi
- Biotechnology Department, Life Sciences Building, University of the Western Cape, Bellville 7535, South Africa
| | - Keagan Pokpas
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Rachel Fanelwa Ajayi
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
4
|
Rebelo P, Pacheco JG, Voroshylova IV, Seguro I, Cordeiro MNDS, Delerue-Matos C. Computational Modelling and Sustainable Synthesis of a Highly Selective Electrochemical MIP-Based Sensor for Citalopram Detection. Molecules 2022; 27:3315. [PMID: 35630794 PMCID: PMC9143463 DOI: 10.3390/molecules27103315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
A novel molecularly imprinted polymer (MIP) has been developed based on a simple and sustainable strategy for the selective determination of citalopram (CTL) using screen-printed carbon electrodes (SPCEs). The MIP layer was prepared by electrochemical in situ polymerization of the 3-amino-4 hydroxybenzoic acid (AHBA) functional monomer and CTL as a template molecule. To simulate the polymerization mixture and predict the most suitable ratio between the template and functional monomer, computational studies, namely molecular dynamics (MD) simulations, were carried out. During the experimental preparation process, essential parameters controlling the performance of the MIP sensor, including CTL:AHBA concentration, number of polymerization cycles, and square wave voltammetry (SWV) frequency were investigated and optimized. The electrochemical characteristics of the prepared MIP sensor were evaluated by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Based on the optimal conditions, a linear electrochemical response of the sensor was obtained by SWV measurements from 0.1 to 1.25 µmol L-1 with a limit of detection (LOD) of 0.162 µmol L-1 (S/N = 3). Moreover, the MIP sensor revealed excellent CTL selectivity against very close analogues, as well as high imprinting factor of 22. Its applicability in spiked river water samples demonstrated its potential for adequate monitoring of CTL. This sensor offers a facile strategy to achieve portability while expressing a willingness to care for the environment.
Collapse
Affiliation(s)
- Patrícia Rebelo
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (P.R.); (I.S.); (C.D.-M.)
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4619-007 Porto, Portugal;
| | - João G. Pacheco
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (P.R.); (I.S.); (C.D.-M.)
| | - Iuliia V. Voroshylova
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4619-007 Porto, Portugal;
| | - Isabel Seguro
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (P.R.); (I.S.); (C.D.-M.)
| | - Maria Natália D. S. Cordeiro
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4619-007 Porto, Portugal;
| | - Cristina Delerue-Matos
- REQUIMTE, LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal; (P.R.); (I.S.); (C.D.-M.)
| |
Collapse
|
5
|
Madej M, Matoga D, Skaźnik K, Porada R, Baś B, Kochana J. A voltammetric sensor based on mixed proton-electron conducting composite including metal-organic framework JUK-2 for determination of citalopram. Mikrochim Acta 2021; 188:184. [PMID: 33977404 PMCID: PMC8113198 DOI: 10.1007/s00604-021-04835-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
A voltammetric sensor has been developed based on glassy carbon electrode (GCE) modification with nanocomposite consisting of manganese-based metal-organic framework (JUK-2), multi-walled carbon nanotubes (MWCNTs), and gold nanoparticles (AuNPs) for detection of citalopram (CIT). The composition and morphology of JUK-2-MWCNTs-AuNPs/GCE were characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), energy dispersion spectroscopy (EDS), and scanning electron microscopy (SEM). The electrochemical properties investigated using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) indicated that the fabricated hybrid material exhibits the properties of mixed ion-electron conductor (MIEC). Using staircase voltammetry (SCV), under optimized conditions, the fabricated sensor shows a linear response in three CIT concentration ranges, 0.05-1.0, 1.0-10.0 and 15.0-115.0 μmol L-1, with a detection limit of 0.011 μmol L-1. The JUK-2-MWCNTs-AuNPs/GCE was successfully employed for the determination of CIT in pharmaceutical, environmental waters, and biological samples with satisfactory recoveries (98.6-104.8%).
Collapse
Affiliation(s)
- Maria Madej
- Faculty of Chemistry, Department of Analytical Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
| | - Dariusz Matoga
- Faculty of Chemistry, Department of Inorganic Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Klaudia Skaźnik
- Faculty of Chemistry, Department of Analytical Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| | - Radosław Porada
- Faculty of Materials and Ceramics, Department of Analytical Chemistry, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Kraków, Poland
| | - Bogusław Baś
- Faculty of Materials and Ceramics, Department of Analytical Chemistry, AGH University of Science and Technology, A. Mickiewicza 30, 30-059, Kraków, Poland
| | - Jolanta Kochana
- Faculty of Chemistry, Department of Analytical Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland
| |
Collapse
|
6
|
Topal BD, Sener CE, Kaya B, Ozkan SA. Nano-sized Metal and Metal Oxide Modified Electrodes for Pharmaceuticals Analysis. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200513110313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
:
The electrochemical analysis offers a number of important advantages such as providing
information on pharmaceuticals analysis and their in vivo redox processes and pharmacological activity.
The interest in developing electrochemical sensing devices for use in clinical assays is growing rapidly.
Metallic nanoparticles can be synthesized and modified with various chemical functional groups,
which allow them to be conjugated with antibodies, ligands, and drugs of interest.
:
In this article, the novel developments to enhance the performance of sensor modified with metal nanoparticles
of pharmaceuticals were reviewed. A discussion of the properties of metal nanostructures
and their application in drug analysis is presented. Their application as a modifier agent in determining
low levels of drugs in pharmaceutical dosage forms and biological samples is discussed. It has been
found that the electrocatalytic effect of the electrode, sensitivity and selectivity were increased using
various working electrodes modified with nano-sized metal, metal oxide and metal/metal oxide
particles.
Collapse
Affiliation(s)
- Burcu Dogan Topal
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| | - Ceren Elif Sener
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| | - Basak Kaya
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| | - Sibel Aysıl Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara,Turkey
| |
Collapse
|
7
|
Li R, Liang H, Zhu M, Lai M, Wang S, Zhang H, Ye H, Zhu R, Zhang W. Electrochemical dual signal sensing platform for the simultaneous determination of dopamine, uric acid and glucose based on copper and cerium bimetallic carbon nanocomposites. Bioelectrochemistry 2021; 139:107745. [PMID: 33524654 DOI: 10.1016/j.bioelechem.2021.107745] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
A highly sensitive electrochemical sensor for the simultaneous dual signal determination of dopamine (DA), uric acid (UA) and glucose (Glu) has been obtained using nanocomposites based on the copper and cerium bimetallic nanoparticles and carbon nanomaterials of graphene and single-walled carbon nanotubes in the presence of Tween 20 (GR-SWCNT-Ce-Cu-Tween 20) modified glassy carbon electrode. The surface morphology of the nanocomposites was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), and the electrochemical behavior of the sensor was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with potassium ferricyanide as probe. In the coexistence system of DA, UA and Glu, three clear and well-isolated voltammetric peaks were obtained by CV and differential pulse voltammetry (DPV), and oxidation peak currents of DA and UA are positively correlated with their concentrations respectively, while the peak current of Glu is negatively correlated with its concentration. Linearity was obtained in the ranges of 0.1-100 µM for dopamine, 0.08-100 µM for uric acid and 1-1000 µM for glucose with DPV, and the detection limits (S/N = 3) of 0.0072 µM, 0.0063 µM, and 0.095 µM for DA, UA and Glu, respectively. The method was successfully applied to the determination of DA, UA and Glu in blood serum samples, which provided a reference for further sensor research.
Collapse
Affiliation(s)
- Rui Li
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Huanru Liang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Mingfang Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China.
| | - Mushen Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, PR China; Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangzhou, PR China
| | - Hongwu Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Hongqing Ye
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Rongkun Zhu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Wenhao Zhang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| |
Collapse
|
8
|
One-step electroreduction preparation of multilayered reduced graphene oxide/gold-palladium nanohybrid as a proficient electrocatalyst for development of sensitive hydrazine sensor. J Colloid Interface Sci 2020; 566:473-484. [DOI: 10.1016/j.jcis.2020.01.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/18/2020] [Accepted: 01/28/2020] [Indexed: 12/25/2022]
|
9
|
Wang W, Mi J, Shen Q, Yong Y. Shewanella oneidensis
Assisted Biosynthesis of Pd/Reductive‐Graphene‐Oxide Nanocomposites for Oxygen Reduction Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202000530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wei Wang
- Institute for Advanced Materials, School of Materials Science and EngineeringJiangsu University Zhenjiang 212013 P. R. China
- Biofuels Institute, School of Environment and Safety EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Jian‐Li Mi
- Institute for Advanced Materials, School of Materials Science and EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Qian‐Cen Shen
- Institute for Advanced Materials, School of Materials Science and EngineeringJiangsu University Zhenjiang 212013 P. R. China
| | - Yang‐Chun Yong
- Biofuels Institute, School of Environment and Safety EngineeringJiangsu University Zhenjiang 212013 P. R. China
| |
Collapse
|
10
|
Abstract
Introduction:Schizophrenia is seizures accompanied by severe psychotic symptoms, and a steady state of continuation in the form of periods of stagnation. Antipsychotics are now the basis of treatment for schizophrenia and there is no other molecule that is antipsychotic priority in treatment. Antipsychotics can be classified into two groups; dopamine receptor antagonists such as promazine, fluphenazine etc. and serotonin-dopamine antagonists including risperidone, olanzapine, ziprasidone, aripiprazole etc.Materials and Methods:Electrochemical methods have been used for the determination of antipsychotic agent just as used in the determination of many drug agents. Nearly all of the antipsychotics are electroactive and can be analyzed by electrochemical methods. Electroanalytical methods offer generally high sensitivity, are compatible with modern techniques, have low cost, low requirements, and compact design. Among the most commonly used types, there are cyclic voltammetry, differential pulse voltammetry, square wave voltammetry and linear sweep voltammetry.Conclusion:The aim of this review is to evaluate the main line and the advantages and uses of electroanalytical methods that employed for the determination of antipsychotic medication agents used in schizophrenia. Moreover, applications of the methods to pharmaceutical analysis of Antipsychotics upto- date is also summarized in a table.
Collapse
Affiliation(s)
- Leyla Karadurmus
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Duru Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sevinc Kurbanoglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Sibel A. Ozkan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Au/Pd@rGO nanocomposite decorated with poly (L-Cysteine) as a probe for simultaneous sensitive electrochemical determination of anticancer drugs, Ifosfamide and Etoposide. Biosens Bioelectron 2018; 120:22-29. [DOI: 10.1016/j.bios.2018.08.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/21/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023]
|
12
|
Experimental Analysis on the Molten-Phase Dewetting Characteristics of AuPd Alloy Films on Topographically-Structured Substrates. METALS 2017. [DOI: 10.3390/met7090327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Zhang Q, Wu Z, Li N, Pu Y, Wang B, Zhang T, Tao J. Advanced review of graphene-based nanomaterials in drug delivery systems: Synthesis, modification, toxicity and application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:1363-1375. [DOI: 10.1016/j.msec.2017.03.196] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/21/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022]
|