1
|
Bai L, Yi W, Chen J, Wang B, Tian Y, Zhang P, Cheng X, Si J, Hou X, Hou J. Two-Stage Targeted Bismuthene-Based Composite Nanosystem for Multimodal Imaging Guided Enhanced Hyperthermia and Inhibition of Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25050-25064. [PMID: 35608833 DOI: 10.1021/acsami.2c01128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A key challenge for nanomedicines in clinical application is to reduce the dose while achieving excellent efficacy, which has attracted extensive attention in dose toxicity and potential risks. It is thus necessary to reasonably design nanomedicine with high-efficiency targeting and accumulation. Here, we designed and synthesized a tetragonal bismuthene-based "all-in-one" composite nanosystem (TPP-Bi@PDA@CP) with two-stage targeting, multimodal imaging, photothermal therapy, and immune enhancement functions. Through the elaborate design of its structure, the composite nanosystem possesses multiple properties including (i) two-stage targeting function of hepatoma cells and mitochondria [the aggregation at the tumor site is 2.63-fold higher than that of traditional enhanced permeability and retention (EPR) effect]; (ii) computed tomography (CT) contrast-enhancement efficiency as high as ∼51.8 HU mL mg-1 (3.16-fold that of the clinically available iopromide); (iii) ultrahigh photothermal conversion efficiency (52.3%, 808 nm), promising photothermal therapy (PTT), and high-contrast infrared thermal (IRT)/photoacoustic (PA) imaging of tumor; (iv) benefitting from the two-stage targeting function and excellent photothermal conversion ability, the dose used in this strategy is one of the lowest doses in hyperthermia (the inhibition rate of tumor cells was 50% at a dose of 15 μg mL-1 and 75% at a dose of 25 μg mL-1); (v) the compound polysaccharide (CP) shell with hepatoma cell targeting and immune enhancement functions effectively inhibited the recurrence of tumor. Therefore, our work reduces the dose toxicity and potential risk of nanomedicines and highlights the great potential as an all-in-one theranostic nanoplatform for two-stage targeting, integrated diagnostic imaging, photothermal therapy, and inhibition of tumor recurrence.
Collapse
Affiliation(s)
- Lei Bai
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Wenhui Yi
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jing Chen
- College of Clinical Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Bojin Wang
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| | - Yilong Tian
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ping Zhang
- College of Science, Northwest A&F University, Xi'an, Shaanxi 712100, China
| | - Xin Cheng
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinhai Si
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xun Hou
- School of Electronic Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jin Hou
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi 710021, China
| |
Collapse
|
2
|
Gandolfi MG, Gardin C, Zamparini F, Ferroni L, Esposti MD, Parchi G, Ercan B, Manzoli L, Fava F, Fabbri P, Prati C, Zavan B. Mineral-Doped Poly(L-lactide) Acid Scaffolds Enriched with Exosomes Improve Osteogenic Commitment of Human Adipose-Derived Mesenchymal Stem Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E432. [PMID: 32121340 PMCID: PMC7153699 DOI: 10.3390/nano10030432] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/05/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
Exosomes derived from mesenchymal stem cells are extracellular vesicles released to facilitate cell communication and function. Recently, polylactic acid (PLA), calcium silicates (CaSi), and dicalcium phosphate dihydrate (DCPD) have been used to produce bioresorbable functional mineral-doped porous scaffolds-through thermally induced phase separation technique, as materials for bone regeneration. The aim of this study was to investigate the effect of mineral-doped PLA-based porous scaffolds enriched with exosome vesicles (EVs) on osteogenic commitment of human adipose mesenchymal stem cells (hAD-MSCs). Two different mineral-doped scaffolds were produced: PLA-10CaSi-10DCPD and PLA-5CaSi-5DCPD. Scaffolds surface micromorphology was investigated by ESEM-EDX before and after 28 days immersion in simulated body fluid (HBSS). Exosomes were deposited on the surface of the scaffolds and the effect of exosome-enriched scaffolds on osteogenic commitment of hAD-MSCs cultured in proximity of the scaffolds has been evaluated by real time PCR. In addition, the biocompatibility was evaluated by direct-contact seeding hAD-MSCs on scaffolds surface-using MTT viability test. In both formulations, ESEM showed pores similar in shape (circular and elliptic) and size (from 10-30 µm diameter). The porosity of the scaffolds decreased after 28 days immersion in simulated body fluid. Mineral-doped scaffolds showed a dynamic surface and created a suitable bone-forming microenvironment. The presence of the mineral fillers increased the osteogenic commitment of hAD-MSCs. Exosomes were easily entrapped on the surface of the scaffolds and their presence improved gene expression of major markers of osteogenesis such as collagen type I, osteopontin, osteonectin, osteocalcin. The experimental scaffolds enriched with exosomes, in particular PLA-10CaSi-10DCPD, increased the osteogenic commitment of MSCs. In conclusion, the enrichment of bioresorbable functional scaffolds with exosomes is confirmed as a potential strategy to improve bone regeneration procedures.
Collapse
Affiliation(s)
- Maria Giovanna Gandolfi
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy
| | - Chiara Gardin
- Medical Sciences Department, University of Ferrara, 44100 Ferrara, Italy
| | - Fausto Zamparini
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy
| | - Letizia Ferroni
- Medical Sciences Department, University of Ferrara, 44100 Ferrara, Italy
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy
| | - Greta Parchi
- Laboratory of Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, 06800 Ankara, Turkey
| | - Lucia Manzoli
- Cellular Signaling Laboratory, Institute of Human Anatomy, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Fabio Fava
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40136 Bologna, Italy
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, 40125 Bologna, Italy
| | - Barbara Zavan
- Medical Sciences Department, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
3
|
Zhao C, Zhang J, Hu H, Qiao M, Chen D, Zhao X, Yang C. Design of lactoferrin modified lipid nano-carriers for efficient brain-targeted delivery of nimodipine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:1031-1040. [DOI: 10.1016/j.msec.2018.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/07/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
|
4
|
Wang F, Li X, Li W, Bai H, Gao Y, Ma J, Liu W, Xi G. Dextran coated Fe3O4 nanoparticles as a near-infrared laser-driven photothermal agent for efficient ablation of cancer cells in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:46-56. [DOI: 10.1016/j.msec.2018.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 02/05/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
|
5
|
Gandolfi MG, Zamparini F, Degli Esposti M, Chiellini F, Aparicio C, Fava F, Fabbri P, Taddei P, Prati C. Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:163-181. [DOI: 10.1016/j.msec.2017.08.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/14/2017] [Accepted: 08/10/2017] [Indexed: 01/13/2023]
|