1
|
Liu KP, Cheng AY, You JL, Chang YH, Tseng CC, Ger MD. Biocompatibility and corrosion resistance of drug coatings with different polymers for magnesium alloy cardiovascular stents. Colloids Surf B Biointerfaces 2024; 245:114202. [PMID: 39255751 DOI: 10.1016/j.colsurfb.2024.114202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
Recently, advances in enhancing corrosion properties through various techniques, and the clinical application of biodegradable cardiovascular stents made from magnesium (Mg) alloys face challenges to corrosion resistance, blood compatibility, and biocompatibility. Drug-eluting stents (DES) offer a solution to enhance the corrosion resistance of Mg alloys while simultaneously reducing the occurrence of restenosis. In this study, WE43 Mg alloy was pretreated using electropolishing technology, and different polymers (PEG and PLLA) were used as drug-polymer coatings for the Mg alloy. At the same time, PTX, an anticoagulant, was incorporated to achieve drug coating of different polymers on WE43 Mg alloy. The corrosion resistance of different polymer-drug coatings was assessed using a plasma solution. Furthermore, in vitro and in vivo tests were used to evaluate the blood biocompatibility of these coatings. The results indicated the PTX-PEG-coated WE43 Mg alloy exhibited the highest corrosion resistance and the most stable drug release profile among the tested coatings. Its hemolysis rate of 0.6 % was within the clinical requirements (<5 %). The incorporation of PEG prevents non-specific protein adsorption and nanoparticle aggregation, enhancing the surface hemocompatibility of WE43 Mg alloy. Therefore, the PTX-PEG coating shows promising potential for application in the development of drug-coated Mg alloy.
Collapse
Affiliation(s)
- Kuei-Ping Liu
- Graduate School of Defense Science, Chung Cheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan
| | - An-Yu Cheng
- Department of Chemical & Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan; System Engineering and Technology Program, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Jhu-Lin You
- Department of Chemical & Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan; System Engineering and Technology Program, National Chiao Tung University, Hsinchu 300, Taiwan.
| | - Yen-Hao Chang
- Combination Medical Device Technology Division, Medical Devices R&D Service Department, Metal Industries Research & Development Centre, Kaohsiung 802, Taiwan
| | - Chun Chieh Tseng
- Combination Medical Device Technology Division, Medical Devices R&D Service Department, Metal Industries Research & Development Centre, Kaohsiung 802, Taiwan
| | - Ming-Der Ger
- Department of Chemical & Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan; System Engineering and Technology Program, National Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
2
|
Babu S, Shanmugavadivu A, Selvamurugan N. Tunable mechanical properties of chitosan-based biocomposite scaffolds for bone tissue engineering applications: A review. Int J Biol Macromol 2024; 272:132820. [PMID: 38825286 DOI: 10.1016/j.ijbiomac.2024.132820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Bone tissue engineering (BTE) aims to develop implantable bone replacements for severe skeletal abnormalities that do not heal. In the field of BTE, chitosan (CS) has become a leading polysaccharide in the development of bone scaffolds. Although CS has several excellent properties, such as biodegradability, biocompatibility, and antibacterial properties, it has limitations for use in BTE because of its poor mechanical properties, increased degradation, and minimal bioactivity. To address these issues, researchers have explored other biomaterials, such as synthetic polymers, ceramics, and CS coatings on metals, to produce CS-based biocomposite scaffolds for BTE applications. These CS-based biocomposite scaffolds demonstrate superior properties, including mechanical characteristics, such as compressive strength, Young's modulus, and tensile strength. In addition, they are compatible with neighboring tissues, exhibit a controlled rate of degradation, and promote cell adhesion, proliferation, and osteoblast differentiation. This review provides a brief outline of the recent progress in making different CS-based biocomposite scaffolds and how to characterize them so that their mechanical properties can be tuned using crosslinkers for bone regeneration.
Collapse
Affiliation(s)
- Sushma Babu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
3
|
Chen X, Xia Y, Shen S, Wang C, Zan R, Yu H, Yang S, Zheng X, Yang J, Suo T, Gu Y, Zhang X. Research on the Current Application Status of Magnesium Metal Stents in Human Luminal Cavities. J Funct Biomater 2023; 14:462. [PMID: 37754876 PMCID: PMC10532415 DOI: 10.3390/jfb14090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
The human body comprises various tubular structures that have essential functions in different bodily systems. These structures are responsible for transporting food, liquids, waste, and other substances throughout the body. However, factors such as inflammation, tumors, stones, infections, or the accumulation of substances can lead to the narrowing or blockage of these tubular structures, which can impair the normal function of the corresponding organs or tissues. To address luminal obstructions, stenting is a commonly used treatment. However, to minimize complications associated with the long-term implantation of permanent stents, there is an increasing demand for biodegradable stents (BDS). Magnesium (Mg) metal is an exceptional choice for creating BDS due to its degradability, good mechanical properties, and biocompatibility. Currently, the Magmaris® coronary stents and UNITY-BTM biliary stent have obtained Conformité Européene (CE) certification. Moreover, there are several other types of stents undergoing research and development as well as clinical trials. In this review, we discuss the required degradation cycle and the specific properties (anti-inflammatory effect, antibacterial effect, etc.) of BDS in different lumen areas based on the biocompatibility and degradability of currently available magnesium-based scaffolds. We also offer potential insights into the future development of BDS.
Collapse
Affiliation(s)
- Xiang Chen
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China;
| | - Yan Xia
- School of Stomatology, Anhui Medical College, Hefei 230601, China;
| | - Sheng Shen
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Chunyan Wang
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
- Department of General Surgery, Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Rui Zan
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Han Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| | - Shi Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| | - Xiaohong Zheng
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Jiankang Yang
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (S.S.); (R.Z.); (T.S.)
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai 200032, China;
| | - Yaqi Gu
- School of Medicine, Anhui University of Science and Technology, Huainan 232000, China;
- Department of Hepatopancreatobiliary Surgery, Huainan Xinhua Hospital Affiliated to Anhui University of Science and Technology, Huainan 232000, China; (X.Z.); (J.Y.)
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; (H.Y.); (S.Y.)
| |
Collapse
|
4
|
Ganjoo R, Sharma S, Verma C, Quraishi MA, Kumar A. Heteropolysaccharides in sustainable corrosion inhibition: 4E (Energy, Economy, Ecology, and Effectivity) dimensions. Int J Biol Macromol 2023; 235:123571. [PMID: 36750168 DOI: 10.1016/j.ijbiomac.2023.123571] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Carbohydrate polymers (polysaccharides) and their derivatives are widely utilized in sustainable corrosion inhibition (SCI) because of their various fascinating properties including multiple adsorption sites, high solubility and high efficiency. Contrary to traditional synthetic polymer-based corrosion inhibitors, polysaccharides are related to the 4E dimension, which stands for Energy, Economy, Ecology, and Effectivity. Furthermore, they are relatively more environmentally benign, biodegradable, and non-bioaccumulative. The current review describes the SCI features of various heteropolysaccharides, including gum Arabic (GA), glycosaminoglycans (chondroitin-4-sulfate (CS), hyaluronic acid (HA), heparin, etc.), pectin, alginates, and agar for the first time. They demonstrate impressive anticorrosive activity for different metals and alloys in a variety of corrosive electrolytes. Through their adsorption at the metal/electrolyte interface, heteropolysaccharides function by producing a corrosion-protective film. In general, their adsorption follows the Langmuir isotherm model. In their molecular structures, heteropolysaccharides contain several polar functional groups like -OH, -NH2, -COCH3, -CH2OH, cyclic and bridging O, -CH2SO3H, -SO3OH, -COOH, -NHCOCH3, -OHOR, etc. that serve as adsorption centers when they bind to metallic surfaces.
Collapse
Affiliation(s)
- Richika Ganjoo
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India
| | - Shveta Sharma
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India
| | - Chandrabhan Verma
- Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - M A Quraishi
- Center of Research Excellence in Corrosion, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Ashish Kumar
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Punjab, India; NCE, Department of Science and Technology, Government of Bihar, India.
| |
Collapse
|
5
|
Singh N, Batra U, Kumar K, Ahuja N, Mahapatro A. Progress in bioactive surface coatings on biodegradable Mg alloys: A critical review towards clinical translation. Bioact Mater 2023; 19:717-757. [PMID: 35633903 PMCID: PMC9117289 DOI: 10.1016/j.bioactmat.2022.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023] Open
Abstract
Mg and its alloys evince strong candidature for biodegradable bone implants, cardiovascular stents, and wound closing devices. However, their rapid degradation rate causes premature implant failure, constraining clinical applications. Bio-functional surface coatings have emerged as the most competent strategy to fulfill the diverse clinical requirements, besides yielding effective corrosion resistance. This article reviews the progress of biodegradable and advanced surface coatings on Mg alloys investigated in recent years, aiming to build up a comprehensive knowledge framework of coating techniques, processing parameters, performance measures in terms of corrosion resistance, adhesion strength, and biocompatibility. Recently developed conversion and deposition type surface coatings are thoroughly discussed by reporting their essential therapeutic responses like osteogenesis, angiogenesis, cytocompatibility, hemocompatibility, anti-bacterial, and controlled drug release towards in-vitro and in-vivo study models. The challenges associated with metallic, ceramic and polymeric coatings along with merits and demerits of various coatings have been illustrated. The use of multilayered hybrid coating comprising a unique combination of organic and inorganic components has been emphasized with future perspectives to obtain diverse bio-functionalities in a facile single coating system for orthopedic implant applications.
Collapse
Affiliation(s)
- Navdeep Singh
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Uma Batra
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Kamal Kumar
- Department of Mechanical Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Neeraj Ahuja
- Department of Metallurgical and Materials Engineering, Punjab Engineering College, Chandigarh, 160012, India
| | - Anil Mahapatro
- Department of Biomedical Engineering, Wichita State University, Wichita, KS, 67260, United States
| |
Collapse
|
6
|
Surface Heparinization of a Magnesium-Based Alloy: A Comparison Study of Aminopropyltriethoxysilane (APTES) and Polyamidoamine (PAMAM) Dendrimers. J Funct Biomater 2022; 13:jfb13040296. [PMID: 36547556 PMCID: PMC9786707 DOI: 10.3390/jfb13040296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Magnesium (Mg)-based alloys are biodegradable metallic biomaterials that show promise in minimizing the risks of permanent metallic implants. However, their clinical applications are restricted due to their rapid in vivo degradation and low surface hemocompatibilities. Surface modifications are critically important for controlling the corrosion rates of Mg-based alloys and improving their hemocompatibilities. In the present study, two heparinization methods were developed to simultaneously increase the corrosion resistance and hemocompatibility of the AZ31 Mg alloy. In the first method, the surface of the AZ31 alloy was modified by alkali-heat treatment and then aminolyzed by 3-amino propyltriethoxy silane (APTES), a self-assembly molecule, and heparin was grafted onto the aminolyzed surface. In the second method, before heparinization, polyamidoamine dendrimers (PAMAM4-4) were grafted onto the aminolyzed surface with APTES to increase the number of surface functional groups, and heparinization was subsequently performed. The presence of a peak with a wavelength of about 1560 cm-1 in the FTIR spectrum for the sample modified with APTES and dendrimers indicated aminolysis of the surface. The results indicated that the corrosion resistance of the Mg alloy was significantly improved as a result of the formation of a passive layer following the alkali-heat treatment. The results obtained from a potentiodynamic polarization (PDP) test showed that the corrosion current in the uncoated sample decreased from 25 µA to 3.7 µA in the alkali-heat-treated sample. The corrosion current density was reduced by 14 and 50 times in samples treated with the self-assembly molecules, APTES and dendrimers, respectively. After heparinization, the clotting time for pristine Mg was greatly improved. Clotting time increased from 480 s for the pristine Mg sample to 630 s for the APTES- and heparin-modified samples and to 715 s for the PAMAM- and heparin-modified samples. Cell culture data showed a slight improvement in the cell-supporting behavior of the modified samples.
Collapse
|
7
|
Li H, Guo Y, Ma B, Qian Y, Sun W, Zhou X. The polydopamine‐assisted heparin anchor enhances the hydrophilicity, hemocompatibility, and biocompatibility of polyurethane. J Appl Polym Sci 2022. [DOI: 10.1002/app.53352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Heng Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Yu Guo
- Center of Stomatology The Second Affiliated Hospital of Soochow University Suzhou China
| | - Buyun Ma
- Nano Science and Technology Institute University of Science and Technology of China Suzhou China
| | - Yunzhu Qian
- Center of Stomatology The Second Affiliated Hospital of Soochow University Suzhou China
| | - Wentao Sun
- Nano Science and Technology Institute University of Science and Technology of China Suzhou China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
8
|
Liu S, Zhi J, Chen Y, Song Z, Wang L, Tang C, Li S, Lai X, Xu N, Liu T. Biomimetic modification on the microporous surface of cardiovascular materials to accelerate endothelialization and regulate intimal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112666. [DOI: 10.1016/j.msec.2022.112666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/05/2022] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
|
9
|
Zhao Z, Ma S, Wu C, Li X, Ma X, Hu H, Wu J, Wang Y, Liu Z. Chimeric Peptides Quickly Modify the Surface of Personalized 3D Printing Titanium Implants to Promote Osseointegration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33981-33994. [PMID: 34260195 DOI: 10.1021/acsami.1c11207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Titanium (Ti) and titanium alloys have been widely used in the field of biomedicine. However, the unmatched biomechanics and poor bioactivities of conventional Ti implants usually lead to insufficient osseointegration. To tackle these challenges, it is critical to develop a novel Ti implant that meets the bioadaptive requirements for load-bearing critical bone defects. Notably, three-dimensional (3D)-printed Ti implants mimic the microstructure and mechanical properties of natural bones. Additionally, eco-friendly techniques based on inorganic-binding peptides have been applied to modify Ti surfaces. Herein, in our study, Ti surfaces were modified to reinforce osseointegration using chimeric peptides constructed by connecting W9, RP1P, and minTBP-1 directly or via (GP)4, respectively. PR1P is derived from the extracellular VEGF-binding domain of prominin-1, which increases the expression of VEGF and promotes the binding of VEGF to endothelial cells, thereby accelerating angiogenesis. W9 induces osteoblast differentiation in bone marrow mesenchymal stem cells and human mesenchymal stem cells to promote bone formation. Overall, chimeric peptides promote osseointegration by promoting angiogenesis and osteogenesis. Additionally, chimeric peptides with P3&4 were more effective than those with P1&2 in improving osseointegration, which might be ascribed to the capacity of P3&4 to provide a greater range for chimeric peptides to express their activity. This work successfully used chimeric peptides to modify 3D-Ti implant surfaces to improve osseointegration on the implant-bone surface.
Collapse
Affiliation(s)
- Zhezhe Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Shiqing Ma
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Chenxuan Wu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Xuewen Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Xinying Ma
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Han Hu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Jie Wu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Yonglan Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| | - Zihao Liu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, People's Republic of China
| |
Collapse
|
10
|
Patel H. Blood biocompatibility enhancement of biomaterials by heparin immobilization: a review. Blood Coagul Fibrinolysis 2021; 32:237-247. [PMID: 33443929 DOI: 10.1097/mbc.0000000000001011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood contacting materials are concerned with biocompatibility including thrombus formation, decrease blood coagulation time, hematology, activation of complement system, platelet aggression. Interestingly, recent research suggests that biocompatibility is increasing by incorporating various materials including heparin using different methods. Basic of heparin including uses and complications was mentioned, in which burst release of heparin is major issue. To minimize the problem of biocompatibility and unpredictable heparin release, present review article potentially reviews the reported work and investigates the various immobilization methods of heparin onto biomaterials, such as polymers, metals, and alloys. Detailed explanation of different immobilization methods through different intermediates, activation, incubation method, plasma treatment, irradiations and other methods are also discussed, in which immobilization through intermediates is the most exploitable method. In addition to biocompatibility, other required properties of biomaterials like mechanical and corrosion resistance properties that increase by attachment of heparin are reviewed and discussed in this article.
Collapse
Affiliation(s)
- Himanshu Patel
- Department of Applied Science and Humanities, Pacific School of Engineering, Surat, Gujarat
| |
Collapse
|
11
|
Surface Modification with NGF-Loaded Chitosan/Heparin Nanoparticles for Improving Biocompatibility of Cardiovascular Stent. Stem Cells Int 2021; 2021:9941143. [PMID: 33986810 PMCID: PMC8093045 DOI: 10.1155/2021/9941143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Late thrombosis and restenosis remain major challenges to the safety of drug-eluting stents. Biofunctional modification to endow the surface with selective anticoagulation and promote endothelium regeneration has become a hotpot recently. In this study, chitosan and heparin were found to form three-dimensional nanoparticles by spontaneous electrostatic interaction. Based on the specific binding properties between heparin and nerve growth factor (NGF), a new type of NGF-loaded heparin/chitosan nanoparticles was constructed for surface modification. The results of material characterization show that the nanoparticles are successfully immobilized on the surface of the material. In vitro blood compatibility and endothelial cell compatibility assay showed that the modified surface could selectively inhibit platelet adhesion and smooth muscle cell overproliferation, while accelerating endothelialization via promoting endothelial cell proliferation and enhancing endothelial progenitor cell mobilization.
Collapse
|
12
|
Controlled biodegradation of magnesium alloy in physiological environment by metal organic framework nanocomposite coatings. Sci Rep 2021; 11:8645. [PMID: 33883594 PMCID: PMC8060305 DOI: 10.1038/s41598-021-87783-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/05/2021] [Indexed: 11/17/2022] Open
Abstract
Magnesium-based implants (MBIs) have recently attracted great attention in bone regeneration due to elastic modulus similar to bone. Nevertheless, the degradation rate and hydrogen release of MBIs in the body have to be tackled for practical applications. In the present study, we present a metal–organic framework (MOF) nanoplates to reduce the degradation rate of AZ91 magnesium alloy. Zeolitic imidazolate frameworks (ZIF-8) with a specific surface area of 1789 m2 g−1 were prepared by solvothermal methods, and after dispersion in a chitosan solution (10% w/w), the suspension was electrospun on the surface of AZ91 alloy. Studying the degradation rate in simulated body fluid (SBF) by electrochemical analysis including potentiodynamic polarization and electrochemical impedance spectroscopy reveals that the degradation rate of the surface-modified implants decreases by ~ 80% as compared with the unmodified specimens. The reduced alkalization of the physiological environment and hydrogen release due to the implant degradation are shown. In vitro studies by fibroblasts and MG63 osteosarcoma cells exhibit improved cell adhesion and viability. The mechanisms behind the improved degradation resistance and enhanced bioactivity are presented and discussed. Surface modification of MBIs by MOF-chitosan coatings is a promising strategy to control the biodegradation of magnesium implants for bone regeneration.
Collapse
|
13
|
Lin Y, Yang Y, Zhao Y, Gao F, Guo X, Yang M, Hong Q, Yang Z, Dai J, Pan C. Incorporation of heparin/BMP2 complex on GOCS-modified magnesium alloy to synergistically improve corrosion resistance, anticoagulation, and osteogenesis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:24. [PMID: 33675428 PMCID: PMC7936966 DOI: 10.1007/s10856-021-06497-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The in vivo fast degradation and poor biocompatibility are two major challenges of the magnesium alloys in the field of artificial bone materials. In this study, graphene oxide (GO) was first functionalized by chitosan (GOCS) and then immobilized on the magnesium alloy surface, finally the complex of heparin and bone morphogenetic protein 2 was incorporated on the modified surface to synergistically improve the corrosion resistance, anticoagulation, and osteogenesis. Apart from an excellent hydrophilicity after the surface modification, a sustained heparin and BMP2 release over 14 days was achieved. The corrosion resistance of the modified magnesium alloy was significantly better than that of the control according to the results of electrochemical tests. Moreover, the corrosion rate was also significantly reduced in contrast to the control. The modified magnesium alloy not only had excellent anticoagulation, but also can significantly promote osteoblast adhesion and proliferation, upregulate the expression of alkaline phosphatase and osteocalcin, and enhance mineralization. Therefore, the method of the present study can be used to simultaneously improve the corrosion resistance and biocompatibility of the magnesium alloys targeted for the orthopedic applications.
Collapse
Affiliation(s)
- Yuebin Lin
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Ya Yang
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223003, China
| | - Yongjuan Zhao
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223003, China
| | - Fan Gao
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xin Guo
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Minhui Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Qingxiang Hong
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Zhongmei Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Juan Dai
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
14
|
Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111505. [DOI: 10.1016/j.msec.2020.111505] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/21/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
|
15
|
Pan C, Zhao Y, Yang Y, Yang M, Hong Q, Yang Z, Zhang Q. Immobilization of bioactive complex on the surface of magnesium alloy stent material to simultaneously improve anticorrosion, hemocompatibility and antibacterial activities. Colloids Surf B Biointerfaces 2020; 199:111541. [PMID: 33360929 DOI: 10.1016/j.colsurfb.2020.111541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022]
Abstract
Magnesium alloy represents one of the most potential biodegradable vascular stent materials due to its good biodegradability, biocompatibility and suitable mechanical properties, whereas the rapid degradation in physiological environment and the limited biocompatibility remain the challenges. In this study, graphene oxide (GO) was firstly functionalized by chitosan (GOCS), followed by loading zinc ions and propranolol to obtain GOCS@Zn/Pro complex, which was finally covalently immobilized on the self-assembled modified magnesium alloy surface to enhance the corrosion resistance and biocompatibility. The multi-functional coating can significantly improve the corrosion resistance and reduce the degradation rate of the magnesium alloy. Furthermore, the coating can significantly inhibit platelet adhesion and activation, reduce hemolysis rate, prolong activated partial thromboplastin time (APTT), and thus improve the blood compatibility of the magnesium alloy. In addition, the modified magnesium alloy can not only significantly promote the endothelial cell adhesion and proliferation, up-regulate the expression of vascular endothelial growth factor (VEGF) and nitric oxide (NO), but also endow the materials with good antibacterial properties. Therefore, the method of the present study can be used to modify magnesium alloy stent materials to simultaneously enhance corrosion resistance and blood compatibility, promote endothelialilization, and inhibit infections.
Collapse
Affiliation(s)
- Changjiang Pan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Yongjuan Zhao
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Ya Yang
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Minghui Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qingxiang Hong
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhongmei Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| |
Collapse
|
16
|
Yu Y, Zhu S, Hou Y, Li J, Guan S. Sulfur Contents in Sulfonated Hyaluronic Acid Direct the Cardiovascular Cells Fate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46827-46836. [PMID: 33016070 DOI: 10.1021/acsami.0c15729] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hyaluronic acid (HA) is recognized as a functional carbohydrate polymer applied for the surface modification of cardiovascular implanted materials due to its molecular weight (MW) dependent cellular regulation. However, due to the enzyme digestion of hyaluronidase on HA in vivo, the stability of HA MW needs to be further improved. It has been reported that the stability of HA MW can be improved by sulfonation. In this study, sulfonated hyaluronic acids (S-HA) with sulfur content of 2.06, 3.69, 7.10, 8.98, and 9.71 were prepared through different sulfuric acid treatment procedures. Cell tests showed that S-HA with higher sulfur content played a significant role in promoting the proliferation and migration of endothelial cells and regulating smooth muscle cells to the physiological phenotype. In addition, it was also proved to inhibit the inflammatory macrophages adhesion/activation. Our data indicates that S-HA may be a better carbohydrate polymer for potential application of cardiovascular biomaterials.
Collapse
Affiliation(s)
- Yang Yu
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Shijie Zhu
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Yachen Hou
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Jingan Li
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Shaokang Guan
- School of Materials Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
17
|
Chen T, Yang H, Yang M, Liu F, Wu J, Yang S, Wang J. Controlling DOPA adsorption via interacting with polyelectrolytes: layer structure and corrosion resistance. SOFT MATTER 2020; 16:4912-4918. [PMID: 32393946 DOI: 10.1039/d0sm00420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein adsorption on polyelectrolyte (PE) surfaces has aroused intensive attraction, but there are still few investigations on tuning the protein adsorption at a solid surface by controllable layer structures and surface properties of PE adlayers. Furthermore, there is a lack of understanding regarding the correlation between molecular conformation and anticorrosion performance of composite materials. With this in mind, we synthesized a series of PEs and constructed 3,4-dihydroxy-l-phenylalanine (l-DOPA) adlayers on the PE surfaces, monitoring the whole adsorption process in situ. A highly charged cationic PE surface exhibits a low adhesion of DOPA molecules, leading to a loose structure, rough surface morphology, and strong solvation effects and, accordingly, this kind of multilayer provides a poor anticorrosion capacity. In comparison, amphiphilic and highly charged cationic PE surfaces are in favor of DOPA adsorption and the formation of compact and smooth multilayers due to cation-π and hydrophobic interactions between DOPA and PEs. Interestingly, one of the multilayers exhibits a remarkable enhancement of inhibition efficiency of about 460-fold compared with that of the bare substrate, which is much higher than that of other anticorrosion coatings reported previously. Our findings reveal the interaction mechanism between DOPA and PE surfaces to achieve the controllable adsorption of biomolecules, providing a promising way to optimize the layer structures to improve the anticorrosion capacity.
Collapse
Affiliation(s)
- Ting Chen
- CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Gao F, Hu Y, Li G, Liu S, Quan L, Yang Z, Wei Y, Pan C. Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility. Bioact Mater 2020; 5:611-623. [PMID: 32405576 PMCID: PMC7212186 DOI: 10.1016/j.bioactmat.2020.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Magnesium alloy is considered as one of the ideal cardiovascular stent materials owing to its good mechanical properties and biodegradability. However, the in vivo rapid degradation rate and the insufficient biocompatibility restrict its clinical applications. In this study, the magnesium alloy (AZ31B) was modified by combining the surface chemical treatment and in-situ self-assembly of 16-phosphonyl-hexadecanoic acid, followed by the immobilization of chitosan-functionalized graphene oxide (GOCS). Heparin (Hep) and GOCS were alternatively immobilized on the GOCS-modified surface through layer by layer (LBL) to construct the GOCS/Hep bioactive multilayer coating, and the corrosion resistance and biocompatibility were extensively explored. The results showed that the GOCS/Hep bioactive multilayer coating can endow magnesium alloys with an excellent in vitro corrosion resistance. The GOCS/Hep multilayer coating can significantly reduce the hemolysis rate and the platelet adhesion and activation, resulting in an excellent blood compatibility. In addition, the multilayer coating can not only enhance the adhesion and proliferation of the endothelial cells, but also promote the vascular endothelial growth factor (VEGF) and nitric oxide (NO) expression of the attached endothelial cells on the surfaces. Therefore, the method of the present study can be used to simultaneously control the corrosion resistance and improve the biocompatibility of the magnesium alloys, which is expected to promote the application of magnesium alloys in biomaterials or medical devices, especially cardiovascular stent. The multilayer coating of GOCS and heparin was constructed on magnesium surface. The coating can obviously improve the corrosion resistance of magnesium alloys. The coating can enhance the hemocompatibility and endothelial cell growth behaviors.
Collapse
Affiliation(s)
- Fan Gao
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Youdong Hu
- Department of Geriatrics, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an 223003, China
| | - Guicai Li
- Jiangsu Key Laboratory of Nerve Regeneration, Nantong University, Nantong 226001, China
| | - Sen Liu
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Li Quan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Zhongmei Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Yanchun Wei
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
- Corresponding author.
| |
Collapse
|
19
|
Immobilization of Fibronectin-Loaded Polyelectrolyte Nanoparticles on Cardiovascular Material Surface to Improve the Biocompatibility. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5478369. [PMID: 31781622 PMCID: PMC6875231 DOI: 10.1155/2019/5478369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
Vascular stent interventional therapy is the main method for clinical treatment of coronary artery diseases. However, due to the insufficient biocompatibility of cardiovascular materials, the implantation of stents often leads to serious adverse cardiac events. Surface biofunctional modification to improve the biocompatibility of vascular stents has been the focus of current research. In this study, based on the structure and function of extracellular matrix on vascular injury healing, a novel fibronectin-loaded poly-l-lysine/heparin nanoparticles was constructed for stent surface modification. In vitro blood compatibility evaluation results showed that the nanoparticles-modified surface could effectively reduce platelet adhesion and activation. In vitro cellular compatibility evaluation results indicated that the nanocoating may provide adequate efficacy in promoting the adhesion and proliferation of endothelial cells and thereby accelerate endothelialization. This study provides a new approach for the surface biological function modification of vascular stents.
Collapse
|
20
|
Biocompatibility and osteogenic activity of guided bone regeneration membrane based on chitosan-coated magnesium alloy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:226-235. [PMID: 30948056 DOI: 10.1016/j.msec.2019.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/26/2019] [Accepted: 03/02/2019] [Indexed: 01/28/2023]
Abstract
Ideally, a guided bone regeneration membrane (GBRM) should possess high strength, as for titanium membranes, along with excellent biocompatibility and osteoconductivity, as for natural absorbable collagen membranes. Besides titanium, magnesium (Mg) is another metal widely used in the biomedical field, which also exhibits biodegradability. In this study, a composite chitosan‑magnesium (CS-Mg) membrane was fabricated by dip-coating Mg alloy into chitosan solution. In vitro and in vivo tests were performed to investigate whether this membrane could be used as biodegradable GBRM, and the test results were compared with those obtained for a commercial GBRM (Heal-All). The microstructure was analyzed by scanning electron microscopy-electron dispersive spectroscopy. The degradation behavior was investigated by immersing the membranes into Dulbecco's modified Eagle medium (DMEM). The in vitro biocompatibility was evaluated by cell adhesion, cytotoxicity and alkaline phosphatase (ALP) assays using MG63 cells. The cytotoxicity and ALP assays were performed with diluted extracts of Mg, CS-Mg and Heal-All. The results show that CS-Mg has a suitable degradation rate, as well as similar cell adhesion and cytocompatibility to Heal-All. However, the 10% CS-Mg extracts exhibited higher ALP activity at 3 and 5 days (p < 0.05) compared with the medium control and the Heal-All extracts, but no differences with 10% Mg extracts (p > 0.05). Rabbit calvarial defects were used for testing the osteogenic activity in vivo. Three groups of samples were examined: CS-Mg, Heal-All, and a blank control. Higher amounts of new bone were formed for the CS-Mg and Heal-All groups (p < 0.05) compared with the blank control, whereas no significant differences between the CS-Mg and Heal-All groups were observed (p > 0.1). In conclusion, the CS-Mg membrane shows great potential for application as a biodegradable metallic GBRM with excellent osteogenic activity.
Collapse
|
21
|
Li H, Peng F, Wang D, Qiao Y, Xu D, Liu X. Layered double hydroxide/poly-dopamine composite coating with surface heparinization on Mg alloys: improved anticorrosion, endothelialization and hemocompatibility. Biomater Sci 2018; 6:1846-1858. [PMID: 29789824 DOI: 10.1039/c8bm00298c] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Magnesium (Mg) and its alloys are promising cardiovascular stent materials due to their favourable physical properties and complete degradation in vivo. However, rapid degradation and poor cytocompatibility hinder their clinical applications. To enhance the corrosion resistance and endothelialization of the AZ31 alloy, a layered double hydroxide (LDH)/poly-dopamine (PDA) composite coating (LDH/PDA) was successfully fabricated. Polarization curves and the electrochemical impedance spectroscopy Nyquist spectrum test proved that the corrosion resistance of the LDH/PDA sample was significantly improved in vitro. The LDH/PDA sample greatly improved the adherence process and the proliferation rate of human umbilical vein endothelial cells (HUVECs). After culturing for 10 days, the number of living HUVECs on the LDH/PDA sample was comparable to that on the Ti sample whereas the cells barely survived on the AZ31 or LDH coating. Furthermore, heparin was immobilized on LDH/PDA via a covalent bond (LDH/PDA/HEP). The corrosion resistance and long-term proliferation of HUVECs after the introduction of heparin were mildly decreased compared with the L/P sample, but were still greatly improved compared with AZ31, the LDH coating and the PDA coating. Furthermore, the LDH/PDA/HEP sample greatly improved the HUVEC migration rate compared with the LDH/PDA sample, and inhibited platelet adhesion which was intense on the LDH/PDA sample. Both LDH/PDA and LDH/PDA/HEP samples had a low hemolysis rate (2.52% and 0.65%, respectively) in vitro and eliminated the adverse biocompatible effects of the direct PDA coating on the AZ31 substrate in vivo. Our results suggest that the LDH/PDA composite coating with further heparinization is a promising method to modify the surface of Mg alloys by significantly improving corrosion resistance, endothelialization and hemocompatibility.
Collapse
Affiliation(s)
- Hua Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | | | | | | | | | | |
Collapse
|
22
|
Bhatt R, Bisen D, Bajpai R, Bajpai A. Topological and morphological analysis of gamma rays irradiated chitosan-poly (vinyl alcohol) blends using atomic force microscopy. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|