1
|
Al-Shami K, Shatnawi J, Qasagsah K, Almurabi S, Shatnawi G, Darawsheh T, Karaja S. Understanding the role of electrostatic force, van der Waals force, and osmotic pressure in retinal function and barrier integrity. Int J Retina Vitreous 2025; 11:19. [PMID: 39972495 PMCID: PMC11837441 DOI: 10.1186/s40942-025-00643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 02/11/2025] [Indexed: 02/21/2025] Open
Abstract
The retina's intricate interplay of forces and structures, with a focus on the retinal pigment epithelium (RPE) and photoreceptors, is essential for retinal health and function. Among these forces, electrostatic forces play a crucial role, working alongside van der Waals forces and oncotic pressure to maintain the retina's attachment to the RPE and ensure the integrity of the blood-retina barrier (BRB). The composition of the interphotoreceptor matrix (IPM), influenced by molecules like Retbindin secreted by rod photoreceptors, further modulates these forces, affecting processes like visual pigment regeneration and metabolite exchange. In the context of retinal tissue engineering and new technologies for support and cells-based treatments, electrostatic forces are harnessed to optimize nutrient supply to transplanted RPE cells by reducing pore size in electrospun polymer membranes. Scaffold-based strategies for retinal repair also utilize electrostatic, hydrophobic, van der Waals, and hydrogen bonding forces to enhance cell adhesion and growth, mimicking the basement membrane. Understanding the complex dynamics of these forces in retinal-RPE interactions holds promise for innovative treatments for retinal disorders, emphasizing the intricate balance between electrostatic forces, van der Waals forces, oncotic pressure, and more. These insights open exciting avenues for research and therapeutic interventions in ophthalmology. Additionally, van der Waals forces are explored in the context of cell adhesion, and their potential role in retinal health is discussed, particularly in relation to melanin's protective properties against blue light-induced damage. Tissue engineering approaches, both scaffold-free and scaffold-based, are discussed, highlighting the importance of physical surface treatments and adhesive forces in preserving engineered RPE tissue. Overall, this abstract provides a comprehensive overview of the multifaceted role of electrostatic and other forces in retinal biology and their implications for future research and clinical applications in ophthalmology.
Collapse
Affiliation(s)
- Khayry Al-Shami
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Jafar Shatnawi
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Khaled Qasagsah
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Salman Almurabi
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Ghayda' Shatnawi
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Tasnim Darawsheh
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Shahed Karaja
- University of Hama Faculty of Human medicine, Hama, Syria.
| |
Collapse
|
2
|
Baghban R, Namvar E, Attar A, Mortazavi M. Progressing nanotechnology to improve diagnosis and targeted therapy of Diabetic Retinopathy. Biomed Pharmacother 2025; 183:117786. [PMID: 39753094 DOI: 10.1016/j.biopha.2024.117786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/08/2025] Open
Abstract
The inherent limitations of traditional treatments for Diabetic Retinopathy (DR) have spurred the development of various nanotechnologies, offering a safer and more efficient approach to managing the disease. Nanomedicine platforms present promising advancements in the diagnosis and treatment of DR by enhancing imaging capabilities, enabling targeted and controlled drug delivery. These innovations ultimately lead to more effective and personalized treatments with fewer side effects. This review highlights the progress, challenges, and opportunities in developing effective diagnostics and therapeutics for DR. Additionally, it explores innovative engineering techniques that leverage our growing understanding of nano-bio interactions to create more potent nanotherapeutics for patients.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Namvar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Alireza Attar
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Mortazavi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
3
|
Abbasi N, O'Neill H. Cytocompatibility of electrospun poly-L-lactic acid membranes for Bruch's membrane regeneration using human embryonic stem cell-derived retinal pigment epithelial cells. J Biomed Mater Res A 2024; 112:1902-1920. [PMID: 38726752 DOI: 10.1002/jbm.a.37736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 09/03/2024]
Abstract
Cell replacement therapy is under development for dry age-related macular degeneration (AMD). A thin membrane resembling the Bruch's membrane is required to form a cell-on-membrane construct with retinal pigment epithelial (RPE) cells. These cells have been differentiated from human embryonic stem cells (hESCs) in vitro. A carrier membrane is required for cell implantation, which is biocompatible for cell growth and has dimensions and physical properties resembling the Bruch's membrane. Here a nanofiber electrospun poly-L-lactic acid (PLLA) membrane is tested for capacity to support cell growth and maturation. The requirements for laminin coating of the membrane are identified here. A porous electrospun nanofibrous PLLA membrane of ∼50 nm fiber diameter was developed as a prototype support for functional RPE cells grown as a monolayer. The need for laminin coating applied to the membrane following treatment with poly-L-ornithine (PLO), was identified in terms of cell growth and survival. Test membranes were compared in terms of hydrophilicity after laminin coating, mechanical properties of surface roughness and Young's modulus, porosity and ability to promote the attachment and proliferation of hESC-RPE cells in culture for up to 8 weeks. Over this time, RPE cell proliferation, morphology, and marker and gene expression, were monitored. The functional capacity of cell monolayers was identified in terms of transepithelial electrical resistance (TEER), phagocytosis of cells, as well as expression of the cytokines, vascular endothelial growth factor (VEGF) and pigment epithelium-derived factor (PEDF). PLLA polymer fibers are naturally hydrophobic, so their hydrophilicity was improved by pretreatment with PLO for subsequent coating with the bioactive protein laminin. They were then assessed for amount of laminin adsorbed, contact angle and uniformity of coating using scanning electron microscopy (SEM). Pretreatment with 100% PLO gave the best result over 10% PLO treatment or no treatment prior to laminin adsorption with significantly greater surface stiffness and modulus. By 6 weeks after cell plating, the coated membranes could support a mature RPE monolayer showing a dense apical microvillus structure and pigmented 3D polygonal cell morphology. After 8 weeks, PLO (100%)-Lam coated membranes exhibited the highest cell number, cell proliferation, and RPE barrier function measured as TEER. RPE cells showed the higher levels of specific surface marker and gene expression. Microphthalmia-associated transcription factor expression was highly upregulated indicating maturation of cells. Functionality of cells was indicated by expression of VEGF and PEDF genes as well as phagocytic capacity. In conclusion, electrospun PLLA membranes coated with PLO-Lam have the physical and biological properties to support the distribution and migration of hESC-RPE cells throughout the whole structure. They represent a good membrane candidate for preparation of hESC-RPE cells as a monolayer for implantation into the subretinal space of AMD patients.
Collapse
Affiliation(s)
- Naghmeh Abbasi
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Helen O'Neill
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
4
|
Taghe S, Mirzaeei S, Bagheri M. Preparation of polycaprolactone and polymethacrylate nanofibers for controlled ocular delivery of ketorolac tromethamine: Pharmacokinetic study in Rabbit's Eye. Eur J Pharm Sci 2024; 192:106631. [PMID: 37951316 DOI: 10.1016/j.ejps.2023.106631] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/18/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Ophthalmitis is an inflammation of the eye triggered by various conditions including diseases, allergy, trauma, or surgery. Management of this condition usually includes administration of topical anti-inflammatory eye drops such as nonsteroidal anti-inflammatory drugs. To overcome the challenges of conventional eye drops such as frequent administration and low intraocular bioavailability, nanofibrous inserts of Ketorolac tromethamine (KET) were developed in this study. Polycaprolactone and polymethacrylate containing KET were electrospun to prepare biocompatible and biodegradable nanofibers. The inserts were studied for morphology, drug-polymer interaction, physicochemical properties, cell viability, in vitro drug release study and pharmacokinetic study in rabbit's eye. Uniform nanofibers with mean diameters < 350 nm were developed. Suitable mechanical properties with tensile strength up to 2.8 MPa indicated high strength and flexibility of inserts. Nanofibers exhibited controlled drug release for up to 140 h at a concentration more than 50 μg/ml in tears without causing any damage or irritation to the eye. Formulations indicated enhanced pharmacokinetics with 6- to 8-times higher Area Under the Curve (AUC0-144) compared to KET eye drop. Acceptable cell viability confirmed the safety of inserts. Due to the fact that this preservative-free polymer insert can obtain therapeutic concentration in the tear film without fluctuation, it can be a suitable alternative for the treatment of intraocular inflammations with less complications, easier use, and even higher intraocular penetration.
Collapse
Affiliation(s)
- Shiva Taghe
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Rahesh Daru Novine, Kermanshah 6715847141, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Mirzaeei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Rahesh Daru Novine, Kermanshah 6715847141, Iran; Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Masood Bagheri
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Ophthalmology, Imam Khomeini Eye Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Sakpal D, Gharat S, Momin M. Recent advancements in polymeric nanofibers for ophthalmic drug delivery and ophthalmic tissue engineering. BIOMATERIALS ADVANCES 2022; 141:213124. [PMID: 36148709 DOI: 10.1016/j.bioadv.2022.213124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Nanofibers due to their unique properties such as high surface-to-volume ratio, porous structure, mechanical strength, flexibility and their resemblance to the extracellular matrix, have been researched extensively in the field of ocular drug delivery and tissue engineering. Further, different modifications considering the formulation and process parameters have been carried out to alter the drug release profile and its interaction with the surrounding biological environment. Electrospinning is the most commonly used technique for preparing nanofibers with industrial scalability. Advanced techniques such as co-axial electrospinning and combined system such as embedding nanoparticles in nanofiber provide an alternative approach to enhance the performance of the scaffold. Electrospun nanofibers offers a matrix like structure for cell regeneration. Nanofibers have been used for ocular delivery of various drugs like antibiotics, anti-inflammatory and various proteins. In addition, lens-coated medical devices provide new insights into the clinical use of nanofibers. Through fabricating the nanofibers researchers have overcome the issues of low bioavailability and compatibility with ocular tissue. Therefore, nanofibers have great potential in ocular drug delivery and tissue engineering and have the capacity to revolutionize these therapeutic areas in the field of ophthalmology. This review is mainly focused on the recent advances in the preparation of nanofibers and their applications in ocular drug delivery and tissue engineering. The authors have attempted to emphasize the processing challenges and future perspectives along with an overview of the safety and toxicity aspects of nanofibers.
Collapse
Affiliation(s)
- Darshana Sakpal
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India.
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India.
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Maharashtra, India; SVKM's Shri C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, Maharashtra, India.
| |
Collapse
|
6
|
Majidnia E, Ahmadian M, Salehi H, Amirpour N. Development of an electrospun poly(ε-caprolactone)/collagen-based human amniotic membrane powder scaffold for culturing retinal pigment epithelial cells. Sci Rep 2022; 12:6469. [PMID: 35440610 PMCID: PMC9018818 DOI: 10.1038/s41598-022-09957-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
The common retinal diseases are age-related macular degeneration (AMD) and retinitis pigmentosa (RP). They are usually associated with the dysfunction of retinal pigment epithelial (RPE) cells and degeneration of underlying Bruch’s membrane. The RPE cell transplantation is the most promising therapeutic option to restore lost vision. This study aimed to construct an ultrathin porous fibrous film with properties similar to that of native Bruch’s membrane as carriers for the RPE cells. Human amniotic membrane powder (HAMP)/Polycaprolactone (PCL) scaffolds containing different concentrations of HAMP were fabricated by electrospinning technique. The results showed that with increasing the concentration of HAMP, the diameter of fibers increased. Moreover, hydrophilicity and degradation rate were improved from 119° to 92° and 14 to 56% after 28 days immersion in phosphate-buffered saline (PBS) solution, respectively. All scaffolds had a porosity above 85%. Proper cell adhesion was obtained one day after culture and no toxicity was observed. However, after seven days, the rate of growth and proliferation of ARPE-19 cells, a culture model of RPE, on the PCL-30HAMP scaffold (HAMP concentration in PCL 7.2% by weight) was higher compared to other scaffolds. These results indicated that PCL-30HAMP fibrous scaffold has a great potential to be used in retinal tissue engineering applications.
Collapse
Affiliation(s)
- Elahe Majidnia
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Mehdi Ahmadian
- Department of Materials Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - Hossein Salehi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Noushin Amirpour
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| |
Collapse
|
7
|
Wang S, Lin S, Xue B, Wang C, Yan N, Guan Y, Hu Y, Wen X. Bruch's-Mimetic Nanofibrous Membranes Functionalized with the Integrin-Binding Peptides as a Promising Approach for Human Retinal Pigment Epithelium Cell Transplantation. Molecules 2022; 27:1429. [PMID: 35209218 PMCID: PMC8874486 DOI: 10.3390/molecules27041429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/02/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND This study aimed to develop an ultrathin nanofibrous membrane able to, firstly, mimic the natural fibrous architecture of human Bruch's membrane (BM) and, secondly, promote survival of retinal pigment epithelial (RPE) cells after surface functionalization of fibrous membranes. METHODS Integrin-binding peptides (IBPs) that specifically interact with appropriate adhesion receptors on RPEs were immobilized on Bruch's-mimetic membranes to promote coverage of RPEs. Surface morphologies, Fourier-transform infrared spectroscopy spectra, contact angle analysis, Alamar Blue assay, live/dead assay, immunofluorescence staining, and scanning electron microscopy were used to evaluate the outcome. RESULTS Results showed that coated membranes maintained the original morphology of nanofibers. After coating with IBPs, the water contact angle of the membrane surfaces varied from 92.38 ± 0.67 degrees to 20.16 ± 0.81 degrees. RPE cells seeded on IBP-coated membranes showed the highest viability at all time points (Day 1, p < 0.05; Day 3, p < 0.01; Days 7 and 14, p < 0.001). The proliferation rate of RPE cells on uncoated poly(ε-caprolactone) (PCL) membranes was significantly lower than that of IBP-coated membranes (p < 0.001). SEM images showed a well-organized hexa/polygonal monolayer of RPE cells on IBP-coated membranes. RPE cells proliferated rapidly, contacted, and became confluent. RPE cells formed a tight adhesion with nanofibers under high-magnification SEM. Our findings confirmed that the IBP-coated PCL membrane improved the attachment, proliferation, and viability of RPE cells. In addition, in this study, we used serum-free culture for RPE cells and short IBPs without immunogenicity to prevent graft rejection and immunogenicity during transplantation. CONCLUSIONS These results indicated that the biomimic BM-IBP-RPE nanofibrous graft might be a new, practicable approach to increase the success rate of RPE cell transplantation.
Collapse
Affiliation(s)
- Shaocheng Wang
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Siyong Lin
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Bo Xue
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Chenyu Wang
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
| | - Nana Yan
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yueyan Guan
- Endocrine Department, Third Central Hospital of Tianjin, Tianjin 300170, China; (S.W.); (N.Y.); (Y.G.)
- Tianjin Key Laboratory of Artificial Cell, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin 300170, China
| | - Yuntao Hu
- Department of Ophthalmology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.); (B.X.); (C.W.)
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- International Institute for Biomedical Biomaterials (IBM), Zhengzhou 450018, China
| |
Collapse
|
8
|
Rohiwal SS, Ellederová Z, Ardan T, Klima J. Advancement in Nanostructure-Based Tissue-Engineered Biomaterials for Retinal Degenerative Diseases. Biomedicines 2021; 9:biomedicines9081005. [PMID: 34440209 PMCID: PMC8393745 DOI: 10.3390/biomedicines9081005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022] Open
Abstract
The review intends to overview a wide range of nanostructured natural, synthetic and biological membrane implants for tissue engineering to help in retinal degenerative diseases. Herein, we discuss the transplantation strategies and the new development of material in combination with cells such as induced pluripotent stem cells (iPSC), mature retinal cells, adult stem cells, retinal progenitors, fetal retinal cells, or retinal pigment epithelial (RPE) sheets, etc. to be delivered into the subretinal space. Retinitis pigmentosa and age-related macular degeneration (AMD) are the most common retinal diseases resulting in vision impairment or blindness by permanent loss in photoreceptor cells. Currently, there are no therapies that can repair permanent vision loss, and the available treatments can only delay the advancement of retinal degeneration. The delivery of cell-based nanostructure scaffolds has been presented to enrich cell survival and direct cell differentiation in a range of retinal degenerative models. In this review, we sum up the research findings on different types of nanostructure scaffolds/substrate or material-based implants, with or without cells, used to deliver into the subretinal space for retinal diseases. Though, clinical and pre-clinical trials are still needed for these transplants to be used as a clinical treatment method for retinal degeneration.
Collapse
|
9
|
Nano-Biomaterials for Retinal Regeneration. NANOMATERIALS 2021; 11:nano11081880. [PMID: 34443710 PMCID: PMC8399153 DOI: 10.3390/nano11081880] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Nanoscience and nanotechnology have revolutionized key areas of environmental sciences, including biological and physical sciences. Nanoscience is useful in interconnecting these sciences to find new hybrid avenues targeted at improving daily life. Pharmaceuticals, regenerative medicine, and stem cell research are among the prominent segments of biological sciences that will be improved by nanostructure innovations. The present review was written to present a comprehensive insight into various emerging nanomaterials, such as nanoparticles, nanowires, hybrid nanostructures, and nanoscaffolds, that have been useful in mice for ocular tissue engineering and regeneration. Furthermore, the current status, future perspectives, and challenges of nanotechnology in tracking cells or nanostructures in the eye and their use in modified regenerative ophthalmology mechanisms have also been proposed and discussed in detail. In the present review, various research findings on the use of nano-biomaterials in retinal regeneration and retinal remediation are presented, and these findings might be useful for future clinical applications.
Collapse
|
10
|
Xing Y, Gu Y, Guo L, Guo J, Xu Z, Xiao Y, Fang Z, Wang C, Feng ZG, Wang Z. Gelatin coating promotes in situ endothelialization of electrospun polycaprolactone vascular grafts. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1161-1181. [PMID: 33830866 DOI: 10.1080/09205063.2021.1909413] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rapid endothelialization is crucial for in situ tissue engineering vascular grafts to prevent graft failure in the long-term. Gelatin is a promising nature material that can promote endothelial cells (ECs) adhesion, proliferation, and migration. In this study, the internal surface of electrospun polycaprolactone (PCL) vascular grafts was coated with gelatin. Endothelialization and vascular wall remolding were investigated by imaging and histological studies in the rat abdominal aorta replacement model. The endothelialization of heparinized gelatin-coated PCL (GP-H) vascular grafts was more rapid and complete than heparinized PCL (P-H) grafts. Intimal hyperplasia was milder in the GP-H vascular grafts than the P-H vascular grafts in the long-term. Meanwhile, smooth muscle cells (SMCs) and extracellular matrix (ECM) regeneration were better in the GP-H vascular grafts. By comparison, an aneurysm was observed in the P-H group in 6 months. Calcification was observed in both groups. All vascular grafts were patient after implantation in both groups. Our results showed that gelatin coating on the internal surface of PCL grafts is a simple and effective way to promote endothelialization. A more rapid endothelialization and complete endothelium can inhibit intimal hyperplasia in the long-term.
Collapse
Affiliation(s)
- Yuehao Xing
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zeqin Xu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhiping Fang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhonggao Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
The Evolution of Fabrication Methods in Human Retina Regeneration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optic nerve and retinal diseases such as age-related macular degeneration and inherited retinal dystrophies (IRDs) often cause permanent sight loss. Currently, a limited number of retinal diseases can be treated. Hence, new strategies are needed. Regenerative medicine and especially tissue engineering have recently emerged as promising alternatives to repair retinal degeneration and recover vision. Here, we provide an overview of retinal anatomy and diseases and a comprehensive review of retinal regeneration approaches. In the first part of the review, we present scaffold-free approaches such as gene therapy and cell sheet technology while in the second part, we focus on fabrication techniques to produce a retinal scaffold with a particular emphasis on recent trends and advances in fabrication techniques. To this end, the use of electrospinning, 3D bioprinting and lithography in retinal regeneration was explored.
Collapse
|
12
|
A Novel Bone Substitute Based on Recombinant Type I Collagen for Reconstruction of Alveolar Cleft. MATERIALS 2021; 14:ma14092306. [PMID: 33946797 PMCID: PMC8125289 DOI: 10.3390/ma14092306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to examine the optimal cross-link density of recombinant peptide (RCP) particles, based on human collagen type I, for bone reconstruction in human alveolar cleft. Low- (group 1), medium- (group 2), and high- (group 3) cross-linked RCP particles were prepared by altering the duration of the heat-dependent dehydration reaction. Rat palatine fissures (n = 45), analogous to human congenital bone defects, were examined to evaluate the potential of bone formation by the three different RCP particles. Microcomputed tomography images were obtained to measure bone volume and bone mineral density at 4, 8, 12, and 16 weeks post grafting. Specimens were obtained for histological analysis at 16 weeks after grafting. Additionally, alkaline phosphatase and tartrate acid phosphatase staining were performed to visualize the presence of osteoblasts and osteoclasts. At 16 weeks, bone volume, bone mineral density, and new bone area measurements in group 2 were significantly higher than in any other group. In addition, the number of osteoblasts and osteoclasts on the new bone surface in group 2 was significantly higher than in any other group. Our results demonstrated that medium cross-linking was more suitable for bone formation—and could be useful in human alveolar cleft repairs as well.
Collapse
|
13
|
Zeng Z, Lam PT, Robinson ML, Del Rio-Tsonis K, Saul JM. Design and Characterization of Biomimetic Kerateine Aerogel-Electrospun Polycaprolactone Scaffolds for Retinal Cell Culture. Ann Biomed Eng 2021; 49:1633-1644. [PMID: 33825081 DOI: 10.1007/s10439-021-02756-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 01/23/2023]
Abstract
Age-related macular degeneration (AMD) is a retinal disease that affects 196 million people and causes nearly 9% of blindness worldwide. While several pharmacological approaches slow the effects of AMD, in our opinion, cell-based strategies offer the most likely path to a cure. We describe the design and initial characterization of a kerateine (obtained by reductive extraction from keratin proteins) aerogel-electrospun polycaprolactone fiber scaffold system. The scaffolds mimic key features of the choroid and the Bruch's membrane, which is the basement membrane to which the cells of the retinal pigment epithelium (RPE) attach. The scaffolds had elastic moduli of 2-7.2 MPa, a similar range as native choroid and Bruch's membrane. ARPE-19 cells attached to the polycaprolactone fibers, remained viable for one week, and proliferated to form a monolayer reminiscent of that needed for retinal repair. These constructs could serve as a model system for testing cell and/or drug treatment strategies or directing ex vivo retinal tissue formation in the treatment of AMD.
Collapse
Affiliation(s)
- Ziqian Zeng
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 East High Street, Oxford, OH, 45056, USA
| | - Phuong T Lam
- Department of Biology, Miami University, Oxford, OH, USA, 45056
| | - Michael L Robinson
- Department of Biology, Miami University, Oxford, OH, USA, 45056.,Center for Visual Sciences at Miami University (CVSMU), Oxford, OH, USA
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University, Oxford, OH, USA, 45056.,Center for Visual Sciences at Miami University (CVSMU), Oxford, OH, USA
| | - Justin M Saul
- Department of Chemical, Paper and Biomedical Engineering, Miami University, 650 East High Street, Oxford, OH, 45056, USA.
| |
Collapse
|
14
|
Navaneethan B, Vijayakumar GP, Ashang Luwang L, Karuppiah S, Jayarama Reddy V, Ramakrishna S, Chou CF. Novel Self-Directing Single-Polymer Jet Developing Layered-Like 3D Buckled Microfibrous Scaffolds for Tissue Engineering Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9691-9701. [PMID: 33605136 DOI: 10.1021/acsami.0c22028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrospinning is a promising technique for the fabrication of bioscaffolds in tissue engineering applications. Pertaining issues of multiple polymer jets and bending instabilities result in random paths which lend poor controllability over scaffolds morphology for affecting the porosity and mechanical stability. The present study alleviates these challenges by demonstrating a novel self-directing single jet taking a specifically patterned path to deposit fibers into circular and uniform scaffolds without tuning any externally controlled parameters. High-speed camera observation revealed that the charge retention and dissipation on the collected fibers caused rapid autojet switching between the two jetting modes, namely, a microcantilever-like armed jet motion and a whipping motion, which sequentially expand the area and thickness of the scaffolds, respectively, in a layered-like fashion. The physical properties showed that the self-switching dual-jet modes generated multilayered microfibrous scaffolds (MFSs) with dual morphologies and varied fiber packing density, thereby establishing the gradient porosity and mechanical strength (through buckled fibers) in the scaffolds. In vitro studies showed that as-spun scaffolds are cell-permeable hierarchical 3D microporous structures enabling lateral cell seeding into multiple layers. The cell proliferation on days 6 and 9 increased 21% and 38% correspondingly on MFSs than on nanofibrous scaffolds (NFSs) done by conventional multijets electrospinning. Remarkably, this novel and single-step process is highly reproducible and tunable for developing fibrous scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Balchandar Navaneethan
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Gnaneshwar Puvala Vijayakumar
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C
| | - Laiva Ashang Luwang
- Department of Anatomy, Royal College of Surgeons in Ireland, Dublin 2 D02 YN77, Ireland
| | - Stalin Karuppiah
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, R.O.C
| | - Venugopal Jayarama Reddy
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang 26300, Malaysia
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Chia-Fu Chou
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan, R.O.C
- Genomics Research Center and Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan, R.O.C
| |
Collapse
|
15
|
Qasim M, Duong DD, Lee JY, Lee NY. Fabrication of polycaprolactone nanofibrous membrane‐embedded microfluidic device for water filtration. J Appl Polym Sci 2020. [DOI: 10.1002/app.49207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Muhammad Qasim
- Department of BioNano TechnologyGachon University Seongnam‐si Gyeonggi‐do, Republic of Korea
| | - Duong Duy Duong
- Department of BioNano TechnologyGachon University Seongnam‐si Gyeonggi‐do, Republic of Korea
| | - Ji Yi Lee
- Department of Environmental Science and EngineeringEwha Womans University Seoul Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano TechnologyGachon University Seongnam‐si Gyeonggi‐do, Republic of Korea
| |
Collapse
|
16
|
Boia R, Dias PA, Martins JM, Galindo-Romero C, Aires ID, Vidal-Sanz M, Agudo-Barriuso M, de Sousa HC, Ambrósio AF, Braga ME, Santiago AR. Porous poly(ε-caprolactone) implants: A novel strategy for efficient intraocular drug delivery. J Control Release 2019; 316:331-348. [DOI: 10.1016/j.jconrel.2019.09.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 01/22/2023]
|
17
|
Tavakoli Z, Yazdian F, Tabandeh F, Sheikhpour M. Regenerative medicine as a novel strategy for AMD treatment: a review. Biomed Phys Eng Express 2019; 6:012001. [PMID: 33438587 DOI: 10.1088/2057-1976/ab269a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Age-related macular degeneration (AMD) is known as a major cause of irreversible blindness in elderly adults. The segment of the retina responsible for central vision damages in the disease process. Degeneration of retinal pigmented epithelium (RPE) cells, photoreceptors, and choriocapillaris associated with aging participate for visual loss. In 2010, AMD involved 6.6% of all blindness cases around the world. Some of the researches have evaluated the replacing of damaged RPE in AMD patients by using the cells from various sources. Today, the advancement of RPE differentiation or generation from stem cells has been gained, and currently, clinical trials are testing the efficiency and safety of replacing degenerated RPE with healthy RPE. However, the therapeutic success of RPE transplantation may be restricted unless the transplanted cells can be adhered, distributed and survive for long-term in the transplanted site without any infections. In recent years a variety of scaffold types were used as a carrier for RPE transplantation and AMD treatment. In this review, we have discussed types of scaffolds; natural or synthetic, solid or hydrogel and their results in RPE replacement. Eventually, our aim is highlighting the novel and best scaffold carriers that may have potentially promoting the efficacy of RPE transplantation.
Collapse
Affiliation(s)
- Zahra Tavakoli
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | | | | | | |
Collapse
|
18
|
Thompson JR, Worthington KS, Green BJ, Mullin NK, Jiao C, Kaalberg EE, Wiley LA, Han IC, Russell SR, Sohn EH, Guymon CA, Mullins RF, Stone EM, Tucker BA. Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility. Acta Biomater 2019; 94:204-218. [PMID: 31055121 DOI: 10.1016/j.actbio.2019.04.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023]
Abstract
Cell replacement therapies are often enhanced by utilizing polymer scaffolds to improve retention or direct cell orientation and migration. Obstacles to refinement of such polymer scaffolds often include challenges in controlling the microstructure of biocompatible molecules in three dimensions at cellular scales. Two-photon polymerization of acrylated poly(caprolactone) (PCL) could offer a means of achieving precise microstructural control of a material in a biocompatible platform. In this work, we studied the effect of various formulation and two-photon polymerization parameters on minimum laser power needed to achieve polymerization, resolution, and fidelity to a target 3D model designed to be used for retinal cell replacement. Overall, we found that increasing the concentration of crosslink-able groups decreased polymerization threshold and the size of resolvable features while increasing fidelity of the scaffold to the 3D model. In general, this improvement was achieved by increasing the number of acrylate groups per prepolymer molecule, increasing the acrylated PCL concentration, or decreasing its molecular weight. Resulting two-photon polymerized PCL scaffolds successfully supported human iPSC derived retinal progenitor cells in vitro. Sub-retinal implantation of cell free scaffolds in a porcine model of retinitis pigmentosa did not cause inflammation, infection or local or systemic toxicity after one month. In addition, comprehensive ISO 10993 testing of photopolymerized scaffolds revealed a favorable biocompatibility profile. These results represent an important step towards understanding how two-photon polymerization can be applied to a wide range of biologically compatible chemistries for various biomedical applications. STATEMENT OF SIGNIFICANCE: Inherited retinal degenerative blindness results from the death of light sensing photoreceptor cells. To restore high-acuity vision a photoreceptor cell replacement strategy will likely be necessary. Unfortunately, single cell injection typically results in poor cell survival and integration post-transplantation. Polymeric biomaterial cell delivery scaffolds can be used to promote donor cell viability, control cellular polarity and increase packing density. A challenge faced in this endeavor has been developing methods suitable for generating scaffolds that can be used to deliver stem cell derived photoreceptors in an ordered columnar orientation (i.e., similar to that of the native retina). In this study we combined the biomaterial poly(caprolactone) with two-photon lithography to generate a biocompatible, clinically relevant scaffold suitable for retina cell delivery.
Collapse
Affiliation(s)
- Jessica R Thompson
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, The University of Iowa, 5601 Seamans Center, Iowa City, IA 52242, USA
| | - Kristan S Worthington
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, The University of Iowa, 5601 Seamans Center, Iowa City, IA 52242, USA
| | - Brian J Green
- Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center, Iowa City, IA 52242, USA
| | - Nathaniel K Mullin
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Emily E Kaalberg
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Ian C Han
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Stephen R Russell
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Elliott H Sohn
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center, Iowa City, IA 52242, USA
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA.
| |
Collapse
|
19
|
Sahle FF, Kim S, Niloy KK, Tahia F, Fili CV, Cooper E, Hamilton DJ, Lowe TL. Nanotechnology in regenerative ophthalmology. Adv Drug Deliv Rev 2019; 148:290-307. [PMID: 31707052 PMCID: PMC7474549 DOI: 10.1016/j.addr.2019.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022]
Abstract
In recent years, regenerative medicine is gaining momentum and is giving hopes for restoring function of diseased, damaged, and aged tissues and organs and nanotechnology is serving as a catalyst. In the ophthalmology field, various types of allogenic and autologous stem cells have been investigated to treat some ocular diseases due to age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and corneal and lens traumas. Nanomaterials have been utilized directly as nanoscaffolds for these stem cells to promote their adhesion, proliferation and differentiation or indirectly as vectors for various genes, tissue growth factors, cytokines and immunosuppressants to facilitate cell reprogramming or ocular tissue regeneration. In this review, we reviewed various nanomaterials used for retina, cornea, and lens regenerations, and discussed the current status and future perspectives of nanotechnology in tracking cells in the eye and personalized regenerative ophthalmology. The purpose of this review is to provide comprehensive and timely insights on the emerging field of nanotechnology for ocular tissue engineering and regeneration.
Collapse
Affiliation(s)
- Fitsum Feleke Sahle
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sangyoon Kim
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Cameron V Fili
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Emily Cooper
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - David J Hamilton
- Department of Comparative Medicine, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| |
Collapse
|
20
|
Zhang G, Wang P, Zhang X, Xiang C, Li L. Preparation of hierarchically structured PCL superhydrophobic membrane via alternate electrospinning/electrospraying techniques. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24795] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Guohui Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering; Jilin University; Changchun, 130022 China
| | - Panpan Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering; Jilin University; Changchun, 130022 China
| | - Xiaoxiao Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering; Jilin University; Changchun, 130022 China
| | - Chunhui Xiang
- Department of Apparel, Events and Hospitality Management; Iowa State University; 31 MacKay Hall Ames Iowa, 50011
| | - Lili Li
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering; Jilin University; Changchun, 130022 China
| |
Collapse
|
21
|
Yew CHT, Azari P, Choi JR, Muhamad F, Pingguan-Murphy B. Electrospun Polycaprolactone Nanofibers as a Reaction Membrane for Lateral Flow Assay. Polymers (Basel) 2018; 10:1387. [PMID: 30961312 PMCID: PMC6401928 DOI: 10.3390/polym10121387] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022] Open
Abstract
Electrospun polycaprolactone (PCL) nanofibers have emerged as a promising material in diverse biomedical applications due to their various favorable features. However, their application in the field of biosensors such as point-of-care lateral flow assays (LFA) has not been investigated. The present study demonstrates the use of electrospun PCL nanofibers as a reaction membrane for LFA. Electrospun PCL nanofibers were treated with NaOH solution for different concentrations and durations to achieve a desirable flow rate and optimum detection sensitivity in nucleic acid-based LFA. It was observed that the concentration of NaOH does not affect the physical properties of nanofibers, including average fiber diameter, average pore size and porosity. However, interestingly, a significant reduction of the water contact angle was observed due to the generation of hydroxyl and carboxyl groups on the nanofibers, which increased their hydrophilicity. The optimally treated nanofibers were able to detect synthetic Zika viral DNA (as a model analyte) sensitively with a detection limit of 0.5 nM. Collectively, the benefits such as low-cost of fabrication, ease of modification, porous nanofibrous structures and tunability of flow rate make PCL nanofibers a versatile alternative to nitrocellulose membrane in LFA applications. This material offers tremendous potential for a broad range of point-of-care applications.
Collapse
Affiliation(s)
- Chee Hong Takahiro Yew
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Pedram Azari
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
- Centre for Applied Biomechanics, Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada.
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
22
|
Shahmoradi S, Golzar H, Hashemi M, Mansouri V, Omidi M, Yazdian F, Yadegari A, Tayebi L. Optimizing the nanostructure of graphene oxide/silver/arginine for effective wound healing. NANOTECHNOLOGY 2018; 29:475101. [PMID: 30179859 DOI: 10.1088/1361-6528/aadedc] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, we introduce a novel graphene oxide/silver/arginine (GO/Ag/Arg) nanohybrid structure, which can act as an angiogenesis promoter and provide antibacterial nanostructure for improving the wound healing process. GO/Ag nanostructure has been optimized in terms of the GO/Ag mass ratio and pH values using central composite design and the response surface method to increase the Ag loading efficiency. Then, Arg was chemically introduced to the surface of GO/Ag nanostructure. Electrospun polycaprolactone (PCL)-GO/Ag/Arg nanocomposite was successfully fabricated and characterized. The synthesized nanocomposite demonstrated not only a great antibacterial effect on both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacterial species, but appropriate biocompatibility against L929 fibroblastic cell lines. The results demonstrated that the preparation of the PCL-GO/Ag/Arg nanocomposite at a concentration of 1.0 wt% GO/Ag/Arg possessed the best biological and mechanical features. In vivo experiments also revealed that the use of optimized PCL-GO/Ag/Arg nanocomposite, after 12 d of treatment, led to significant increase in the healing process and also regeneration of the wound via reconstruction of a thickened epidermis layer on the wound surface, which was confirmed by histological analysis. In conclusion, the proposed approach can introduce a novel notion for preparing antibacterial material that significantly promotes angiogenesis.
Collapse
Affiliation(s)
- Saleheh Shahmoradi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zamani Y, Mohammadi J, Amoabediny G, Visscher DO, Helder MN, Zandieh-Doulabi B, Klein-Nulend J. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(
ε
-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds. Biomed Mater 2018; 14:015008. [DOI: 10.1088/1748-605x/aaeb82] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Challenges for the development of surface modified biodegradable polyester biomaterials: A chemistry perspective. Biointerphases 2018; 13:06D501. [PMID: 30261734 DOI: 10.1116/1.5045857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The design of current implants produced from biodegradable polyesters is based on strength and rate of degradation and tailored by the choice of polyester used. However, detailed knowledge about the degradation mechanism of surface modified materials with applications in biomaterials science and tissue engineering is currently lacking. This perspective aims to outline the need for a greater focus on analyzing the degradation of modified polyesters to ensure they can fulfil their intended function and that degradation products can effectively be cleared from the body. The status of the literature regarding surface modified polyesters is summarized to illustrate the main aspects investigated in recent studies and specifically the number of studies investigating the fate of the materials upon degradation.
Collapse
|
25
|
White CE, Olabisi RM. Scaffolds for retinal pigment epithelial cell transplantation in age-related macular degeneration. J Tissue Eng 2017; 8:2041731417720841. [PMID: 28794849 PMCID: PMC5524239 DOI: 10.1177/2041731417720841] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/22/2017] [Indexed: 01/18/2023] Open
Abstract
In several retinal degenerative diseases, including age-related macular degeneration, the retinal pigment epithelium, a highly functionalized cell monolayer, becomes dysfunctional. These retinal diseases are marked by early retinal pigment epithelium dysfunction reducing its ability to maintain a healthy retina, hence making the retinal pigment epithelium an attractive target for treatment. Cell therapies, including bolus cell injections, have been investigated with mixed results. Since bolus cell injection does not promote the proper monolayer architecture, scaffolds seeded with retinal pigment epithelium cells and then implanted have been increasingly investigated. Such cell-seeded scaffolds address both the dysfunction of the retinal pigment epithelium cells and age-related retinal changes that inhibit the efficacy of cell-only therapies. Currently, several groups are investigating retinal therapies using seeded cells from a number of cell sources on a variety of scaffolds, such as degradable, non-degradable, natural, and artificial substrates. This review describes the variety of scaffolds that have been developed for the implantation of retinal pigment epithelium cells.
Collapse
Affiliation(s)
- Corina E White
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ronke M Olabisi
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|