1
|
Yao M, Zhang G, Shao D, Ding S, Li L, Li H, Zhou C, Luo B, Lu L. Preparation of chitin/MXene/poly(L-arginine) composite aerogel spheres for specific adsorption of bilirubin. Int J Biol Macromol 2023:125140. [PMID: 37270125 DOI: 10.1016/j.ijbiomac.2023.125140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
Currently, hemoperfusion is clinically the most rapid and effective treatment for removing toxins from the blood. The core of hemoperfusion is the sorbent inside the hemoperfusion device. Due to the complex composition of the blood, adsorbents tend to adsorb substances such as proteins in the blood (non-specific adsorption) while adsorbing toxins. Hyperbilirubinemia is caused by excessive levels of bilirubin in the human blood, causing irreversible damage to the patient's brain and nervous system, and even leading to death. High adsorption and high biocompatibility adsorbents with specific bilirubin adsorption are urgently needed to treat hyperbilirubinemia. Herein, poly(L-arginine) (PLA) which can specifically adsorb bilirubin, was introduced into chitin/MXene (Ch/MX) composite aerogel spheres. Ch/MX/PLA prepared by supercritical CO2 technology had higher mechanical properties than Ch/MX and can withstand 50,000 times its own weight. The in vitro simulated hemoperfusion test showed that the adsorption capacity of Ch/MX/PLA was as high as 596.31 mg/g, which was 15.38 % higher than that of Ch/MX. Binary and ternary competitive adsorption tests showed that Ch/MX/PLA also had good adsorption capacity in the presence of a variety of interfering molecules. In addition, hemolysis rate testing and CCK-8 testing confirmed that Ch/MX/PLA had better biocompatibility and hemocompatibility. Ch/MX/PLA can meet the required properties of clinical hemoperfusion sorbents and has the ability to produce mass production. It has good application potential in the clinical treatment of hyperbilirubinemia.
Collapse
Affiliation(s)
- Mengru Yao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Guiyin Zhang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Danchun Shao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shan Ding
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Lihua Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Hong Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Changren Zhou
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Binghong Luo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China
| | - Lu Lu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
2
|
Suresh D, Goh PS, Ismail AF, Hilal N. Surface Design of Liquid Separation Membrane through Graft Polymerization: A State of the Art Review. MEMBRANES 2021; 11:832. [PMID: 34832061 PMCID: PMC8621935 DOI: 10.3390/membranes11110832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Surface modification of membranes is an effective approach for imparting unique characteristics and additional functionalities to the membranes. Chemical grafting is a commonly used membrane modification technique due to its versatility in tailoring and optimizing the membrane surface with desired functionalities. Various types of polymers can be precisely grafted onto the membrane surface and the operating conditions of grafting can be tailored to further fine-tune the membrane surface properties. This review focuses on the recent strategies in improving the surface design of liquid separation membranes through grafting-from technique, also known as graft polymerization, to improve membrane performance in wastewater treatment and desalination applications. An overview on membrane technology processes such as pressure-driven and osmotically driven membrane processes are first briefly presented. Grafting-from surface chemical modification approaches including chemical initiated, plasma initiated and UV initiated approaches are discussed in terms of their features, advantages and limitations. The innovations in membrane surface modification techniques based on grafting-from techniques are comprehensively reviewed followed by some highlights on the current challenges in this field. It is concluded that grafting-from is a versatile and effective technique to introduce various functional groups to enhance the surface properties and separation performances of liquid separation membranes.
Collapse
Affiliation(s)
- Deepa Suresh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia; (D.S.); (A.F.I.)
| | - Nidal Hilal
- NYUAD Water Research Center, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
3
|
Song C, Li Y, Wang B, Hong Y, Xue C, Li Q, Shen E, Cui D. A novel anticoagulant affinity membrane for enhanced hemocompatibility and bilirubin removal. Colloids Surf B Biointerfaces 2020; 197:111430. [PMID: 33125976 DOI: 10.1016/j.colsurfb.2020.111430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 01/20/2023]
Abstract
Affinity membrane is widely employed to promote specific adsorption of toxins and reduce the blood purification therapeutic time. However, it suffers from insufficient toxin binding and low hemocompatibility. Herein, a novel anticoagulant affinity membrane (AAM) was developed to clear bilirubin from human blood in a pore-flow-through way. Firstly, a nylon net membrane with a regularly arranged pore as the matrix was coated with poly(pyrrole-3-carboxylic acid) via chemical vapor deposition (CVD) method. Then, poly(L-arginine) (PLA) as a highly specific ligand of bilirubin, was immobilized onto the surface of the composited membrane after the modification of heparin. Owing to the 3-dimensional molecular architecture of PLA, up to 86.1 % of bilirubin was efficiently cleared. Besides, the AAM exhibited effective anticoagulant activity in the measurement of clotting time, with suppressed thrombus formation, low hemolysis ratio, minimized platelet and leukocyte adhesion, and excellent biosafety. Therefore, the AAM has enormous potential in blood purification therapy for enhancing hemocompatibility and bilirubin removal.
Collapse
Affiliation(s)
- Cunfeng Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yugang Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Baocan Wang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Yuping Hong
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qichao Li
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - E Shen
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, 600 Xishan Road, Shanghai 200233, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; National Engineering Center for Nanotechnology, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
4
|
Huang X, Mutlu H, Théato P. The toolbox of porous anodic aluminum oxide–based nanocomposites: from preparation to application. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04734-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractAnodic aluminum oxide (AAO) templates have been intensively investigated during the past decades and have meanwhile been widely applied through both sacrificial and non-sacrificial pathways. In numerous non-sacrificial applications, the AAO membrane is maintained as part of the obtained composite materials; hence, the template structure and topography determine to a great extent the potential applications. Through-hole isotropic AAO features nanochannels that promote transfer of matter, while anisotropic AAO with barrier layer exhibits nanocavities suitable as independent and homogenous containers. By combining the two kinds of AAO membranes with diverse organic and inorganic materials through physical interactions or chemical bonds, AAO composites are designed and applied in versatile fields such as catalysis, drug release platform, separation membrane, optical appliances, sensors, cell culture, energy, and electronic devices. Therefore, within this review, a perspective on exhilarating prospect for complementary advancement on AAO composites both in preparation and application is provided.
Collapse
|
5
|
Pourjavadi A, Kohestanian M, Streb C. pH and thermal dual-responsive poly(NIPAM-co-GMA)-coated magnetic nanoparticles via surface-initiated RAFT polymerization for controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110418. [PMID: 31924030 DOI: 10.1016/j.msec.2019.110418] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/17/2019] [Accepted: 11/10/2019] [Indexed: 02/08/2023]
Abstract
Herein, a novel type of multifunctional magnetic nanoparticles with dual thermal and pH-responsive behavior was fabricated as the carrier for delivery of doxorubicin (DOX). Fe3O4@SiO2 magnetic nanoparticles, were grafted with polymer brushes consisting of poly (NIPAM-co-GMA) (PNG) chains via surface initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization. The polymer brushes were then modified with hydrazine groups as DOX binding sites. The prepared multifunctional magnetic nanoparticles were characterized by FT-IR, 1H NMR, XPS, TGA, DLS, VSM, GPC, TEM, and XRD analysis. The in vitro drug release of the multifunctional magnetic nanoparticles was examined at 37 °C (above LCST) and 25 °C (below LCST) in different pH media and exhibited excellent pH- and thermo-sensitive behavior. The results show that the Fe3O4@SiO2@PNG-Hy fabricated via SI-RAFT polymerization is a viable candidate material for tumor treatment studies.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Mohammad Kohestanian
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee, 89081 Ulm, Germany
| |
Collapse
|
6
|
Upadhyaya L, Qian X, Ranil Wickramasinghe S. Chemical modification of membrane surface — overview. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|