1
|
Júnior HLO, Duchemin B, Azzaye S, Soares MRF, Schneider B, Romoaldo CH. Radiopaque Polyurethanes Containing Barium Sulfate: A Survey on Thermal, Rheological, Physical, and Structural Properties. Polymers (Basel) 2024; 16:3086. [PMID: 39518294 PMCID: PMC11548690 DOI: 10.3390/polym16213086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Radiopaque polyurethanes are extensively used in biomedical fields owing to their favorable balance of properties. This research aims to investigate the influence of particle concentration on various properties, including rheological, radiopacity, structural, thermal, and mechanical attributes, with a thorough analysis. The findings are benchmarked against a commercial product (PL 8500 A) that contains 10% weight barium sulfate. Two more thermoplastic polyurethanes (TPU) were formulated with two different concentrations of barium sulfate (10 wt.% and 20 wt.%) and compared to the commercially available product. FTIR demonstrated similar absorption bands among all samples, indicating that the fabrication method did not impact the TPU matrix. DSC indicated a predominantly amorphous structure for PL 8500 A compared to the other samples, while the kinetic degradation was more influenced by the higher barium sulfate content. The rheological analysis showed a decrease in the complex viscosity and storage modulus with the radiopacifier and an increase in the radiopacity, as demonstrated by the X-radiography. X-ray microtomography showed a more spherical particle format with a heterogeneous particle structure for PL 8500 A compared to the other polyurethanes. These findings enhance the comprehension of the structure-property relationships inherent in these materials and facilitate the development of customized materials for targeted applications.
Collapse
Affiliation(s)
- Heitor Luiz Ornaghi Júnior
- Mantova Industria de Tubos Flexíveis, R. Isidoro Fadanelli, 194, Centenário, Caxias do Sul CEP 95045137, Brazil; (M.R.F.S.); (B.S.); (C.H.R.)
| | - Benoit Duchemin
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294, CNRS-Université le Havre Normandie, 76600 Le Havre, France; (B.D.); (S.A.)
| | - Sanae Azzaye
- Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294, CNRS-Université le Havre Normandie, 76600 Le Havre, France; (B.D.); (S.A.)
| | - Márcio Ronaldo Farias Soares
- Mantova Industria de Tubos Flexíveis, R. Isidoro Fadanelli, 194, Centenário, Caxias do Sul CEP 95045137, Brazil; (M.R.F.S.); (B.S.); (C.H.R.)
| | - Bárbara Schneider
- Mantova Industria de Tubos Flexíveis, R. Isidoro Fadanelli, 194, Centenário, Caxias do Sul CEP 95045137, Brazil; (M.R.F.S.); (B.S.); (C.H.R.)
| | - Carlos Henrique Romoaldo
- Mantova Industria de Tubos Flexíveis, R. Isidoro Fadanelli, 194, Centenário, Caxias do Sul CEP 95045137, Brazil; (M.R.F.S.); (B.S.); (C.H.R.)
| |
Collapse
|
2
|
Sneha KR, Sailaja GS. Intrinsically radiopaque biomaterial assortments: a short review on the physical principles, X-ray imageability, and state-of-the-art developments. J Mater Chem B 2021; 9:8569-8593. [PMID: 34585717 DOI: 10.1039/d1tb01513c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
X-ray attenuation ability, otherwise known as radiopacity of a material, could be indisputably tagged as the central and decisive parameter that produces contrast in an X-ray image. Radiopaque biomaterials are vital in the healthcare sector that helps clinicians to track them unambiguously during pre and post interventional radiological procedures. Medical imaging is one of the most powerful resources in the diagnostic sector that aids improved treatment outcomes for patients. Intrinsically radiopaque biomaterials enable themselves for visual targeting/positioning as well as to monitor their fate and further provide the radiologists with critical insights about the surgical site. Moreover, the emergence of advanced real-time imaging modalities is a boon to the contemporary healthcare systems that allow to perform minimally invasive surgical procedures and thereby reduce the healthcare costs and minimize patient trauma. X-ray based imaging is one such technologically upgraded diagnostic tool with many variants like digital X-ray, computed tomography, digital subtraction angiography, and fluoroscopy. In light of these facts, this review is aimed to briefly consolidate the physical principles of X-ray attenuation by a radiopaque material, measurement of radiopacity, classification of radiopaque biomaterials, and their recent advanced applications.
Collapse
Affiliation(s)
- K R Sneha
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India.
| | - G S Sailaja
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi - 682022, India. .,Interuniversity Centre for Nanomaterials and Devices, CUSAT, Kochi - 682022, India.,Centre for Advanced Materials, CUSAT, Kochi - 682022, India
| |
Collapse
|
3
|
Jeon SI, Kim MS, Kim HJ, Kim YI, Jae HJ, Ahn CH. Biodegradable poly(lactide-co-glycolide) microspheres encapsulating hydrophobic contrast agents for transarterial chemoembolization. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:409-425. [PMID: 34613885 DOI: 10.1080/09205063.2021.1990472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Transarterial chemoembolization (TACE) is a therapeutic approach to address hepatocellular carcinoma by obstructing the blood supply to the tumor using embolic agents and improving the local delivery of anticancer agents. Size-calibrated polymeric microspheres (MSs) termed drug-eluting beads (DEBs) are the most prevalent solid embolic materials; however, their limitations include insufficient X-ray visibility or biodegradability. In this study, size-controlled polymeric MSs with inherent radiopacity and biodegradability were created, and their embolic effect was assessed. Poly(lactide-co-glycolide) MSs (PLGA MSs) incorporating a hydrophobic X-ray contrast agent and an anticancer drug were produced by the w/o/w emulsion process. Their sizes were exactly calibrated to 71.40 ± 32.18 and 142.66 ± 59.92 μm in diameter, respectively, which were confirmed to have sizes similar to the clinically available DEBs. The iodine content of PLGA MSs was calculated as 144 mgI/g, and the loading quantity of the drug was 1.33%. Manufactured PLGA MSs were gradually degraded for 10 weeks and consistently released the anticancer drug. Following the PLGA MSs injection into the renal artery of New Zealand white rabbit test subjects, their deliverability to the targeted vessel through the microcatheter was confirmed. Injected PLGA MSs were clearly imaged through the real-time X-ray device without blending any contrast agents. The embolic effect of the PLGA MSs was ultimately established by the atrophy of an embolized kidney after 8 weeks. Consequently, the designed PLGA MS is anticipated to be an encouraging prospect to address hepatocellular carcinoma.
Collapse
Affiliation(s)
- Seong Ik Jeon
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Moo Song Kim
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hyung Jun Kim
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | | | - Hwan Jun Jae
- Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul National University Medical Research Center, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheol-Hee Ahn
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Basinska T, Gadzinowski M, Mickiewicz D, Slomkowski S. Functionalized Particles Designed for Targeted Delivery. Polymers (Basel) 2021; 13:2022. [PMID: 34205672 PMCID: PMC8234925 DOI: 10.3390/polym13122022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
Pure bioactive compounds alone can only be exceptionally administered in medical treatment. Usually, drugs are produced as various forms of active compounds and auxiliary substances, combinations assuring the desired healing functions. One of the important drug forms is represented by a combination of active substances and particle-shaped polymer in the nano- or micrometer size range. The review describes recent progress in this field balanced with basic information. After a brief introduction, the paper presents a concise overview of polymers used as components of nano- and microparticle drug carriers. Thereafter, progress in direct synthesis of polymer particles with functional groups is discussed. A section is devoted to formation of particles by self-assembly of homo- and copolymer-bearing functional groups. Special attention is focused on modification of the primary functional groups introduced during particle preparation, including introduction of ligands promoting anchorage of particles onto the chosen living cell types by interactions with specific receptors present in cell membranes. Particular attention is focused on progress in methods suitable for preparation of particles loaded with bioactive substances. The review ends with a brief discussion of the still not answered questions and unsolved problems.
Collapse
Affiliation(s)
- Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| | | | | | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (D.M.)
| |
Collapse
|
5
|
X-ray visible microspheres derived from highly branched biodegradable poly(lactic acid) terminated by triiodobenzoic acid: Preparation and degradation behavior. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Hu J, Albadawi H, Oklu R, Chong BW, Deipolyi AR, Sheth RA, Khademhosseini A. Advances in Biomaterials and Technologies for Vascular Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901071. [PMID: 31168915 PMCID: PMC7014563 DOI: 10.1002/adma.201901071] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/24/2019] [Indexed: 05/03/2023]
Abstract
Minimally invasive transcatheter embolization is a common nonsurgical procedure in interventional radiology used for the deliberate occlusion of blood vessels for the treatment of diseased or injured vasculature. A wide variety of embolic agents including metallic coils, calibrated microspheres, and liquids are available for clinical practice. Additionally, advances in biomaterials, such as shape-memory foams, biodegradable polymers, and in situ gelling solutions have led to the development of novel preclinical embolic agents. The aim here is to provide a comprehensive overview of current and emerging technologies in endovascular embolization with respect to devices, materials, mechanisms, and design guidelines. Limitations and challenges in embolic materials are also discussed to promote advancement in the field.
Collapse
Affiliation(s)
- Jingjie Hu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Hassan Albadawi
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahmi Oklu
- Division of Vascular & Interventional Radiology, Minimally Invasive Therapeutics Laboratory, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Brian W Chong
- Departments of Radiology and Neurological Surgery, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Amy R. Deipolyi
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical Center, 1275 York Avenue, New York, New York 10065, USA
| | - Rahul A. Sheth
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Radiological Sciences, Department of Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics, California Nanosystems Institute, University of California, 410 Westwood Plaza, Los Angeles, California 90095, USA
| |
Collapse
|