1
|
Ren Q, Tian T, Wang B, Pan J, Huang Y, Zhong L, Wang Y, Wang X, Huang X. UVA-responsive Fe₃O₄@ZnO nanocarrier grafted with anti-EGFR antibody for precision delivery of Nrf2-siRNA and brusatol: A novel platform for integrated photodynamic, gene, and chemotherapy. Int J Biol Macromol 2025; 305:141153. [PMID: 39971059 DOI: 10.1016/j.ijbiomac.2025.141153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Photodynamic therapy (PDT) remains underutilized as a primary cancer treatment due to the limited lethality of reactive oxygen species (ROS) and poor targeting efficiency of traditional photosensitizers. This the aim of the study is to develop a Fe₃O₄@ZnO nanoparticle photosensitizer co-loaded with anti-EGFR antibody, brusatol, and Nrf2-siRNA to improve the therapeutic effect of PDT. This system can be guided to tumors by a magnetic field and further targets cancer cells through EGFR-specific binding. Under UVA light, brusatol and Nrf2-siRNA are released, enabling combined chemo-, gene, and photodynamic therapy. With the photosensitizer treatment, ROS levels in cutaneous squamous cell carcinoma cells were elevated by 191.09 ± 10.02 % through suppression of Nrf2 and its associated antioxidant defenses, significantly enhancing cell lethality and reducing cell viability by 80.43 ± 9.37 %. In vivo studies further demonstrated a tumor suppression rate of 76.30 ± 5.12 % in nude mice, highlighting the robust anti-tumor efficacy of the photosensitizer and its potential for clinical application in targeted cancer therapy. The biocompatibility and high therapeutic efficacy of this photosensitizer highlight its promise as a safer and more effective option for treating cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Qian Ren
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, PR China; Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Tingting Tian
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, PR China
| | - Bin Wang
- Obesity and Metabolic Diseases Research Center, Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China.
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, PR China
| | - Li Zhong
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, PR China
| | - Yehong Wang
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, PR China
| | - Xia Wang
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, PR China
| | - Xiao Huang
- Hunan Provincial Key Laboratory of Dong Medicine, Biomedical Research Institute, Hunan University of Medicine, Huaihua 418000, PR China.
| |
Collapse
|
2
|
da Silva Gomes B, Cláudia Paiva-Santos A, Veiga F, Mascarenhas-Melo F. Beyond the adverse effects of the systemic route: Exploiting nanocarriers for the topical treatment of skin cancers. Adv Drug Deliv Rev 2024; 207:115197. [PMID: 38342240 DOI: 10.1016/j.addr.2024.115197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Skin cancer is a heterogeneous disease that can be divided into two main groups, melanoma and nonmelanoma skin cancers. Conventional therapies for skin cancer have numerous systemic side effects and a high recurrence rate. Topical treatment is an alternative approach, but drug permeability remains a challenge. Therefore, nanocarriers appear as important nanotechnology tools that reduces both the side effects and improves clinical outcomes. This is why they are attracting growing interest. In this review, scientific articles on the use of nanocarriers for the topical treatment of skin cancer were collected. Despite the promising results of the presented nanocarriers and considering that some of them are already on the market, there is an urgent need for investment in the development of manufacturing methods, as well as of suitable toxicological and regulatory evaluations, since the conventional methods currently used to develop these nanocarriers-based products are more time-consuming and expensive than conventional products.
Collapse
Affiliation(s)
- Beatriz da Silva Gomes
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Francisco Veiga
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Filipa Mascarenhas-Melo
- University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300 - 307 Guarda, Portugal.
| |
Collapse
|
3
|
Ren Q, Yi C, Pan J, Sun X, Huang X. Smart Fe 3O 4@ZnO Core-Shell Nanophotosensitizers Potential for Combined Chemo and Photodynamic Skin Cancer Therapy Controlled by UVA Radiation. Int J Nanomedicine 2022; 17:3385-3400. [PMID: 35937080 PMCID: PMC9355344 DOI: 10.2147/ijn.s372377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Photodynamic therapy (PDT) is a non-invasive therapeutic modality that is used for several types of cancer and involves three essential elements (light, photosensitizer (PS), and oxygen). However, clinical PS is limited by the low yield of reactive oxygen species (ROS) and a long retention time. Therefore, developing a low-cost PS that can significantly increase ROS yield in a short time is of utmost importance. Methods In this study, brusatol (Bru) was loaded on the surface of ultraviolet A (UVA)-responsive zinc oxide (ZnO)-coated magnetic nanoparticles (Fe3O4@ZnO-Bru). The PS was well characterized by transmission electron microscopy (TEM), Fourier Transform infrared spectroscopy (FTIR), a superconducting quantum interference device, and dynamic light scattering (DLS). 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and Hoechst staining were used to determine the inhibitory effect of Fe3O4@ZnO-Bru on squamous cell carcinoma cells (SCC) with or without UVA radiation. Intracellular ROS levels and expression of the Nrf2 signaling pathway were also determined. Results FTIR showed that Bru was successfully loaded on Fe3O4@ZnO. Fe3O4@ZnO-Bru was superparamagnetic, and the zeta potential was 8.86 ± 0.77 mV. The Bru release behavior was controlled by UVA. Fe3O4@ZnO-Bru with UVA irradiation induced an increase of 48% ROS productivity compared to Fe3O4@ZnO-Bru without UVA irradiation, resulting in a strong inhibitory effect on SCC. Furthermore, Fe3O4@ZnO-Bru nanocomposites (Fe3O4@ZnO-Bru NCs) had nearly no toxic effect on healthy cells without UVA radiation. The released Bru could significantly inhibit the Nrf2 signaling pathway to reduce the activity of scavenging excess ROS in SCC. Conclusion In this study, Fe3O4@ZnO-Bru was successfully synthesized. PDT was combined with photochemotherapy, which exhibited a higher inhibitory effect on SCC. It can be inferred that Fe3O4@ZnO-Bru holds great potential for skin SCC therapy.
Collapse
Affiliation(s)
- Qian Ren
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People’s Republic of China
| | - Caixia Yi
- School of Sports and Health Science, Tongren University, Tongren, People’s Republic of China
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People’s Republic of China
| | - Xin Sun
- School of Sports and Health Science, Tongren University, Tongren, People’s Republic of China
| | - Xiao Huang
- School of Sports and Health Science, Tongren University, Tongren, People’s Republic of China
- School of Physical Education, Guangxi University of Science and Technology, Guangxi, People’s Republic of China
| |
Collapse
|
4
|
Karisma VW, Wu W, Lei M, Liu H, Nisar MF, Lloyd MD, Pourzand C, Zhong JL. UVA-Triggered Drug Release and Photo-Protection of Skin. Front Cell Dev Biol 2021; 9:598717. [PMID: 33644041 PMCID: PMC7905215 DOI: 10.3389/fcell.2021.598717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Light has attracted special attention as a stimulus for triggered drug delivery systems (DDS) due to its intrinsic features of being spatially and temporally tunable. Ultraviolet A (UVA) radiation has recently been used as a source of external light stimuli to control the release of drugs using a "switch on- switch off" procedure. This review discusses the promising potential of UVA radiation as the light source of choice for photo-controlled drug release from a range of photo-responsive and photolabile nanostructures via photo-isomerization, photo-cleavage, photo-crosslinking, and photo-induced rearrangement. In addition to its clinical use, we will also provide here an overview of the recent UVA-responsive drug release approaches that are developed for phototherapy and skin photoprotection.
Collapse
Affiliation(s)
- Vega Widya Karisma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Wei Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| | - Huawen Liu
- Three Gorges Central Hospital, Chongqing, China
| | - Muhammad Farrukh Nisar
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur, Pakistan
| | - Matthew D. Lloyd
- Drug and Target Discovery, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Charareh Pourzand
- Medicines Design, Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
- Medicines Development, Centre for Therapeutic Innovation, University of Bath, Bath, United Kingdom
| | - Julia Li Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, China
| |
Collapse
|
5
|
Chen Y, Chen N, Feng X. The role of internal and external stimuli in the rational design of skin-specific drug delivery systems. Int J Pharm 2021; 592:120081. [PMID: 33189810 DOI: 10.1016/j.ijpharm.2020.120081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/15/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
The concept of skin-specific drug delivery with a spatio-temporal control has just recently received concerns in dermatology. Inspired by the progress in smart materials and their perspective application in medicine science, development of stimuli responsive drug delivery systems with skin-specificity has become possible, which has led to a new era in the localized treatment of skin diseases. This review highlights both the internal and external stimuli that have been employed in this field, with a focus on their implication on the rational design of pharmaceutical formulations, especially those nanoscale drug carriers that are able to provide release of payloads with a precise spatio-temporal control in response to specific stimuli. Also, the strategy of dual stimuli responsive drug delivery systems will be discussed for further improvement of the efficacy of skin drug delivery. The prominent examples of the established approaches are described as comprehensive and current as possible. The review is expected to provide some inspiration for utilizing different stimuli for realizing the site-specific and on-demand drug delivery to the skin.
Collapse
Affiliation(s)
- Yang Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| | - Naiying Chen
- Department of Pharmaceutics, School of Pharmacy, China Medical University, Shenyang, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Xun Feng
- Department of Sanitary Inspection, School of Public Health, Shenyang Medical College, No.146 Yellow River North Street, Shenyang 110034, China
| |
Collapse
|
6
|
Huang X, Nisar MF, Wang M, Wang W, Chen L, Lin M, Xu W, Diao Q, Zhong JL. UV-responsive AKBA@ZnO nanoparticles potential for polymorphous light eruption protection and therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110254. [PMID: 31761216 DOI: 10.1016/j.msec.2019.110254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 08/05/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022]
Abstract
Polymorphous light eruption (PLE) is one of the acquired idiopathic photodermatosis mainly induced by immoderate UV radiation. In order to realize UV protection and medicine administration simultaneously for polymorphous light eruption protection and therapy, Acetyl-11-keto-β-boswellic acid (AKBA) loaded Zinc Oxide (ZnO) nanoparticles of which drug release behavior is UV-controlled has been successfully synthesized. Such nanoparticles can not only reflect UV but also transfer the energy to release AKBA which presents an excellent antioxidant and anti-inflammatory effects. In addition, they are biocompatible to HaCaT cells. As a result, they have a great potential in combining UV protection and medicine administration simultaneously for PLE protection and therapy.
Collapse
Affiliation(s)
- Xiao Huang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China; Institute of Nanomedicine and Biomaterials, School of Sports and Health Science, Tongren University, Tongren, 554300, China; Guizhou Provincical College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563003, China.
| | - Muhammad Farrukh Nisar
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Mei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Wenhong Wang
- Institute of Nanomedicine and Biomaterials, School of Sports and Health Science, Tongren University, Tongren, 554300, China; Guizhou Provincical College-based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi, 563003, China
| | - Long Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Mao Lin
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Wei Xu
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Qingchun Diao
- Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China
| | - Julia Li Zhong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, China; Department of Dermatology, Chongqing First People's Hospital and Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China.
| |
Collapse
|
7
|
Li C, Zhang H, Gong X, Li Q, Zhao X. Synthesis, characterization, and cytotoxicity assessment of N-acetyl-l-cysteine capped ZnO nanoparticles as camptothecin delivery system. Colloids Surf B Biointerfaces 2019; 174:476-482. [DOI: 10.1016/j.colsurfb.2018.11.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 10/30/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
|
8
|
Huang X, Zheng X, Xu Z, Yi C. ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. Int J Pharm 2017; 534:190-194. [DOI: 10.1016/j.ijpharm.2017.10.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 01/19/2023]
|