1
|
Yu H, Liu K, Hou Y, Guo L, Sun L, Zhou W, Wang L, Pan P, Sun S, Chen J. Facile one-step antibacterial biomineralized scaffolds through regulation of chitosan by imitating bone ingredient bonding to inspire endogenous repair. Int J Biol Macromol 2025; 309:142827. [PMID: 40203943 DOI: 10.1016/j.ijbiomac.2025.142827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
In situ mineralization based on chitosan (CS) as an organic template achieves uniform distribution of nano-hydroxyapatite (nHAp), and is expected to enhance interface bonding between materials and tissues, therefore promoting endogenous bone repair. However, chitosan-based materials are difficult to provide certain mechanical and antibacterial properties. In this study, Ca2+ and PO43- were used as the precursor of nHAP, Zn2+ as the precursor of nano-ZnO, and synthesized nHAp/ZnO particles in situ on the surface of chitosan to form CS/HAp/ZnO bone repair scaffold. The results indicated that the incorporated Zn2+ was chemically bonded to the system, with formed particles evenly distributed, which achieved more efficient antibacterial activity and osteogenic induction performance in vivo. The material had interconnected pore structure with a porosity of >70 %, which simulates the microenvironment of natural bone. The formed inorganic particles improved the mechanical properties of the chitosan scaffold to match the rate of new bone formation. ZnO endowed scaffolds with antibacterial activity, with antibacterial rate of >95 %. In addition, the material also showed good cell compatibility and biological activity, and promoted the adhesion, migration, proliferation and differentiation of osteoblast-related cells.
Collapse
Affiliation(s)
- Hui Yu
- Marine College, Shandong University, Weihai 264209, China
| | - Kaihua Liu
- Marine College, Shandong University, Weihai 264209, China
| | - Yage Hou
- Marine College, Shandong University, Weihai 264209, China
| | - Liangyu Guo
- Marine College, Shandong University, Weihai 264209, China.
| | - Lixin Sun
- Marine College, Shandong University, Weihai 264209, China
| | - Wutong Zhou
- Marine College, Shandong University, Weihai 264209, China
| | - Lin Wang
- Marine College, Shandong University, Weihai 264209, China
| | - Panpan Pan
- Marine College, Shandong University, Weihai 264209, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai 200444, China.
| | - Shengjun Sun
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250000, China.
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai 265599, China.
| |
Collapse
|
2
|
Silva Lima Mendes DT, Leite Matos GR, Stwart de Araújo Souza SA, Souza Silva Macedo MC, Tavares DDS, Resende CX. Does the incorporation of zinc into TiO 2 on titanium surfaces increase bactericidal activity? A systematic review and meta-analysis. J Prosthet Dent 2024; 132:510-519. [PMID: 36270807 DOI: 10.1016/j.prosdent.2022.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022]
Abstract
STATEMENT OF PROBLEM Infections associated with bacterial biofilm formation are an important cause of early implant failure. With the growing number of antibiotic-resistant bacteria, the incorporation of zinc into TiO2 coatings of titanium implants has emerged to promote osseointegration and inhibit bacterial proliferation. However, a systematic assessment of its efficacy is lacking. PURPOSE The purpose of this systematic review and meta-analysis was to assess the bactericidal effect of zinc-modified TiO2 coatings on titanium or Ti-6Al-4V alloy. MATERIAL AND METHODS The review was structured based on the preferred reporting items for systematic reviews and meta-analyses (PRISMA) checklist and the peer review of electronic search strategies (PRESS) guidelines. The search was performed in Science Direct, SCOPUS, Web of Science, and PubMed databases, including experimental in vitro studies that used titanium or Ti-6Al-4V as a control group and performed bacterial assays. Meta-analysis was performed by using the standardized mean differences of antibacterial effects. RESULTS A total of 2519 articles were collected after duplicate removal. Then, eligibility criteria and a manual search were applied to select 20 studies for qualitative analysis and 16 studies for statistical analysis. The risk of bias revealed low-quality evidence. The meta-analysis showed that zinc positively affected the bactericidal activity of TiO2 coatings (-8.79, CI95%=-11.01 to -6.57, P<.001), with a high degree of heterogeneity (I2=78%). Subgroup analysis with TiO2 nanotubes produced by anodization and ZnO nanoparticles by hydrothermal synthesis reduced heterogeneity to 43%, with the removal of outliers (I2=46%), with a favorable antibacterial effect for zinc incorporation into TiO2. CONCLUSIONS Bactericidal activity was identified for zinc incorporated into TiO2 coatings, making it an interesting option for titanium dental implants.
Collapse
Affiliation(s)
- Douglas Thainan Silva Lima Mendes
- Postgraduate student, Post-graduate Program in Materials Science and Engineering, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Gusttavo Reis Leite Matos
- Postgraduate student, Post-graduate Program in Materials Science and Engineering, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | | | | | - Débora Dos Santos Tavares
- Adjunct Professor, Department of Health Education, Federal University of Sergipe (UFS), Lagarto, Sergipe, Brazil
| | - Cristiane Xavier Resende
- Adjunct Professor, Department of Materials Science and Engineering, Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
3
|
Lv Y, Sun S, Zhang X, Lu X, Dong Z. Construction of multi-layered Zn-modified TiO 2 coating by ultrasound-auxiliary micro-arc oxidation: Microstructure and biological property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112487. [PMID: 34857273 DOI: 10.1016/j.msec.2021.112487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 12/13/2022]
Abstract
Surfaces with desirable cytocompatibility and bactericidal ability are favoured for orthopaedic implants to stimulate osteogenic activity and to prevent implant-associated infection. In this work, we creatively introduce ultrasonic vibration (UV) to micro-arc oxidation (MAO) process and explore its influence on the microstructure, corrosion property and biological responses of Zn-modified TiO2 coating. With the introduction of UV, a uniform surface layer with homogeneously-distributed clusters could be produced as the outer layer, which possesses a fusion band with the underlying TiO2. The microstructural modification associated with UV results in the enhanced corrosion resistance, increased adhesive strength and improved biological performances of the resultant coating relative to that with the absence of UV. Hence, the ultrasonic auxiliary micro-arc oxidation (UMAO) is regarded as a promising surface modification method to produce Ti-based orthopaedic implants of high quality.
Collapse
Affiliation(s)
- You Lv
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siqin Sun
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, 216 Guanshan Road, Hongshan District, 430060, PR China
| | - Xinxin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Engineering Research Centre for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xueqin Lu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zehua Dong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Chen B, You Y, Ma A, Song Y, Jiao J, Song L, Shi E, Zhong X, Li Y, Li C. Zn-Incorporated TiO 2 Nanotube Surface Improves Osteogenesis Ability Through Influencing Immunomodulatory Function of Macrophages. Int J Nanomedicine 2020; 15:2095-2118. [PMID: 32273705 PMCID: PMC7109325 DOI: 10.2147/ijn.s244349] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Zinc (Zn), an essential trace element in the body, has stable chemical properties, excellent osteogenic ability and moderate immunomodulatory property. In the present study, a Zn-incorporated TiO2 nanotube (TNT) was fabricated on titanium (Ti) implant material. We aimed to evaluate the influence of nano-scale topography and Zn on behaviors of murine RAW 264.7 macrophages. Moreover, the effects of Zn-incorporated TNT surface-regulated macrophages on the behaviors and osteogenic differentiation of murine MC3T3-E1 osteoblasts were also investigated. METHODS TNT coatings were firstly fabricated on a pure Ti surface using anodic oxidation, and then nano-scale Zn particles were incorporated onto TNTs by the hydrothermal method. Surface topography, chemical composition, roughness, hydrophilicity, Zn release pattern and protein adsorption ability of the Zn-incorporated TiO2 nanotube surface were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), surface profiler, contact angle test, Zn release test and protein adsorption test. The cell behaviors and both pro-inflammatory (M1) and pro-regenerative (M2) marker gene and protein levels in macrophages cultured on Zn-incorporated TNTs surfaces with different TNT diameters were detected. The supernatants of macrophages were extracted and preserved as conditioned medium (CM). Furthermore, the behaviors and osteogenic properties of osteoblasts cultured in CM on various surfaces were evaluated. RESULTS The release profile of Zn on Zn-incorporated TNT surfaces revealed a controlled release pattern. Macrophages cultured on Zn-incorporated TNT surfaces displayed enhanced gene and protein expression of M2 markers, and M1 markers were moderately inhibited, compared with the LPS group (the inflammation model). When cultured in CM, osteoblasts cultured on Zn-incorporated TNTs showed strengthened cell proliferation, adhesion, osteogenesis-related gene expression, alkaline phosphatase activity and extracellular mineralization, compared with their TNT counterparts and the Ti group. CONCLUSION This study suggests that the application of Zn-incorporated TNT surfaces may establish an osteogenic microenvironment and accelerate bone formation. It provided a promising strategy of Ti surface modification for a better applicable prospect.
Collapse
Affiliation(s)
- Bo Chen
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yapeng You
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Aobo Ma
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yunjia Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Jian Jiao
- Department of Stomatology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Liting Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Enyu Shi
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xue Zhong
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
5
|
Bactericidal and Biocompatible Properties of Plasma Chemical Oxidized Titanium (TiOB ®) with Antimicrobial Surface Functionalization. MATERIALS 2019; 12:ma12060866. [PMID: 30875882 PMCID: PMC6470708 DOI: 10.3390/ma12060866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022]
Abstract
Coating of plasma chemical oxidized titanium (TiOB®) with gentamicin-tannic acid (TiOB® gta) has proven to be efficient in preventing bacterial colonization of implants. However, in times of increasing antibiotic resistance, the development of alternative antimicrobial functionalization strategies is of major interest. Therefore, the aim of the present study is to evaluate the antibacterial and biocompatible properties of TiOB® functionalized with silver nanoparticles (TiOB® SiOx Ag) and ionic zinc (TiOB® Zn). Antibacterial efficiency was determined by agar diffusion and proliferation test on Staphylocuccus aureus. Cytocompatibility was analyzed by direct cultivation of MC3T3-E1 cells on top of the functionalized surfaces for 2 and 4 d. All functionalized surfaces showed significant bactericidal effects expressed by extended lag phases (TiOB® gta for 5 h, TiOB® SiOx Ag for 8 h, TiOB® Zn for 10 h). While TiOB® gta (positive control) and TiOB® Zn remained bactericidal for 48 h, TiOB® SiOx Ag was active for only 4 h. After direct cultivation for 4 d, viable MC3T3-E1 cells were found on all surfaces tested with the highest biocompatibility recorded for TiOB® SiOx Ag. The present study revealed that functionalization of TiOB® with ionic zinc shows bactericidal properties that are comparable to those of a gentamicin-containing coating.
Collapse
|