1
|
Chen J, Zhao C, Liu H, Wang Z, Ma L, Zhang J, Xu N, Hu K, Duan L. Integrated micro/nano drug delivery system based on magnetically responsive phase-change droplets for ultrasound theranostics. Front Bioeng Biotechnol 2024; 12:1323056. [PMID: 38665816 PMCID: PMC11043469 DOI: 10.3389/fbioe.2024.1323056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Phase-change droplets (PCDs) are intelligent responsive micro and nanomaterials developed based on micro/nano bubbles. Subject to external energy inputs such as temperature and ultrasound, the core substance, perfluorocarbon (PFC), undergoes a phase transition from liquid to gas. This transformation precipitates alterations in the PCDs' structure, size, ultrasound imaging capabilities, drug delivery efficiency, and other pertinent characteristics. This gives them the ability to exhibit "intelligent responses". This study utilized lipids as the membrane shell material and perfluorohexane (PFH) as the core to prepare lipid phase-change droplets. Superparamagnetic nanoparticles (PEG-functionalized Fe3O4 nanoparticles) and the anti-tumor drug curcumin (Cur) were loaded into the membrane shell, forming magnetic drug-loaded phase-change droplets (Fe-Cur-NDs). These nanoscale phase-change droplets exhibited excellent magnetic resonance/ultrasound imaging capabilities and thermal/ultrasound-mediated drug release. The Fe-Cur-NDs showed excellent anti-tumor efficacy for the MCF-7 cells under low-intensity focused ultrasound (LIFU) guidance in vitro. Therefore, Fe-Cur-NDs represent a promising smart responsive theranostic integrated micro/nano drug delivery system.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Chan Zhao
- Department of Clinical Medical Engineering, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Liu
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Zhangchao Wang
- Stomatological College, Nanjing Medical University, Nanjing, China
| | - Luyao Ma
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jiamin Zhang
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Ning Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Ke Hu
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Lei Duan
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Huang Y, Guo X, Wu Y, Chen X, Feng L, Xie N, Shen G. Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment. Signal Transduct Target Ther 2024; 9:34. [PMID: 38378653 PMCID: PMC10879169 DOI: 10.1038/s41392-024-01745-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 02/22/2024] Open
Abstract
Inflammation-associated diseases encompass a range of infectious diseases and non-infectious inflammatory diseases, which continuously pose one of the most serious threats to human health, attributed to factors such as the emergence of new pathogens, increasing drug resistance, changes in living environments and lifestyles, and the aging population. Despite rapid advancements in mechanistic research and drug development for these diseases, current treatments often have limited efficacy and notable side effects, necessitating the development of more effective and targeted anti-inflammatory therapies. In recent years, the rapid development of nanotechnology has provided crucial technological support for the prevention, treatment, and detection of inflammation-associated diseases. Various types of nanoparticles (NPs) play significant roles, serving as vaccine vehicles to enhance immunogenicity and as drug carriers to improve targeting and bioavailability. NPs can also directly combat pathogens and inflammation. In addition, nanotechnology has facilitated the development of biosensors for pathogen detection and imaging techniques for inflammatory diseases. This review categorizes and characterizes different types of NPs, summarizes their applications in the prevention, treatment, and detection of infectious and inflammatory diseases. It also discusses the challenges associated with clinical translation in this field and explores the latest developments and prospects. In conclusion, nanotechnology opens up new possibilities for the comprehensive management of infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yujing Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xiaohan Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xingyu Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lixiang Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Guobo Shen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
3
|
Zhang N, Zhang X, Zhu Y, Wang D, Li R, Li S, Meng R, Liu Z, Chen D. Bimetal-Organic Framework-Loaded PVA/Chitosan Composite Hydrogel with Interfacial Antibacterial and Adhesive Hemostatic Features for Wound Dressings. Polymers (Basel) 2023; 15:4362. [PMID: 38006086 PMCID: PMC10674882 DOI: 10.3390/polym15224362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
Silver-containing wound dressings have shown attractive advantages in the treatment of wound infection due to their excellent antibacterial activity. However, the introduction of silver ions or AgNPs directly into the wound can cause deposition in the body as particles. Here, with the aim of designing low-silver wound dressings, a bimetallic-MOF antibacterial material called AgCu@MOF was developed using 3, 5-pyridine dicarboxylic acid as the ligand and Ag+ and Cu2+ as metal ion sites. PCbM (PVA/chitosan/AgCu@MOF) hydrogel was successfully constructed in PVA/chitosan wound dressing loaded with AgCu@MOF. The active sites on the surface of AgCu@MOF increased the lipophilicity to bacteria and caused the bacterial membrane to undergo lipid peroxidation, which resulted in the strong bactericidal properties of AgCu@MOF, and the antimicrobial activity of the dressing PCbM was as high as 99.9%. The chelation of silver ions in AgCu@MOF with chitosan occupied the surface functional groups of chitosan and reduced the crosslinking density of chitosan. PCbM changes the hydrogel crosslinking network, thus improving the water retention and water permeability of PCbM hydrogel so that the hydrogel has the function of binding wet tissue. As a wound adhesive, PCbM hydrogel reduces the amount of wound bleeding and has good biocompatibility. PCbM hydrogel-treated mice achieved 96% wound recovery on day 14. The strong antibacterial, tissue adhesion, and hemostatic ability of PCbM make it a potential wound dressing.
Collapse
Affiliation(s)
- Nan Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiuwen Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yueyuan Zhu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ren Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuangying Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ruizhi Meng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhihui Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dan Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Research Centre for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Centre for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
- Qingdao High-Tech Industry Promotion Centre (Qingdao Technology Market Service Centre), Qingdao 266112, China
| |
Collapse
|
4
|
Ivanova N, Ermenlieva N, Simeonova L, Kolev I, Slavov I, Karashanova D, Andonova V. Chlorhexidine-Silver Nanoparticle Conjugation Leading to Antimicrobial Synergism but Enhanced Cytotoxicity. Pharmaceutics 2023; 15:2298. [PMID: 37765267 PMCID: PMC10536778 DOI: 10.3390/pharmaceutics15092298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This study explored the potential synergism within chlorhexidine-silver nanoparticle conjugates against Influenza type A, Staphylococcus aureus, Escherichia coli, and Candida albicans. Silver nanoparticles (SN) were obtained by the reduction of silver ions with green tea total phenolic extract and conjugated with chlorhexidine (Cx). The particles were characterized by UV-Vis and FTIR spectroscopies, dynamic light scattering, X-ray diffraction, and transmission electron microscopy. A stable negatively charged nano-silver colloid (ζ = -50.01) was obtained with an average hydrodynamic diameter of 92.34 nm. In the presence of chlorhexidine, the spectral data and the shift of the zeta potential to positive values (ζ = +44.59) revealed the successful sorption of the drug onto the silver surface. The conjugates (SN-Cx) demonstrated potentiation in their effects against S. aureus and C. albicans and synergism against E. coli with minimal inhibitory concentrations of SN at 5.5 µg/mL + Cx 8.8 µg/mL. The SN showed excellent virucidal properties, increasing with time, and demonstrated low toxicity. However, the coupling of the cationic chlorhexidine with nano-silver did not reduce its intrinsic cytotoxicity on various cell lines (MDCK, BJ, and A549). The newly synthesized antimicrobial agent exhibited an extended and promising therapeutic spectrum and needs to be further evaluated regarding the designated route of administration in three-dimensional cell models (e.g., nasal, bronchial, dermal, ocular, etc.).
Collapse
Affiliation(s)
- Nadezhda Ivanova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Neli Ermenlieva
- Department of Microbiology and Virology, Faculty of Medicine, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Lora Simeonova
- Department of Virology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 26 G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Iliyan Kolev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Iliya Slavov
- Department of Biology, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Daniela Karashanova
- Institute of Optical Materials and Technologies “Acad. Jordan Malinowski”, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., bl. 109, 1113 Sofia, Bulgaria;
| | - Velichka Andonova
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria;
| |
Collapse
|
5
|
Radzikowska-Büchner E, Flieger W, Pasieczna-Patkowska S, Franus W, Panek R, Korona-Głowniak I, Suśniak K, Rajtar B, Świątek Ł, Żuk N, Bogucka-Kocka A, Makuch-Kocka A, Maciejewski R, Flieger J. Antimicrobial and Apoptotic Efficacy of Plant-Mediated Silver Nanoparticles. Molecules 2023; 28:5519. [PMID: 37513392 PMCID: PMC10383343 DOI: 10.3390/molecules28145519] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/01/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Phytogenically synthesised nanoparticle (NP)-based drug delivery systems have promising potential in the field of biopharmaceuticals. From the point of view of biomedical applications, such systems offer the small size, high surface area, and possible synergistic effects of NPs with embedded biomolecules. This article describes the synthesis of silver nanoparticles (Ag-NPs) using extracts from the flowers and leaves of tansy (Tanacetum vulgare L.), which is known as a remedy for many health problems, including cancer. The reducing power of the extracts was confirmed by total phenolic and flavonoid content and antioxidant tests. The Ag-NPs were characterised by various analytical techniques including UV-vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy, and a dynamic light scattering (DLS) system. The obtained Ag-NPs showed higher cytotoxic activity than the initial extracts against both human cervical cancer cell lines HeLa (ATCC CCL-2) and human melanoma cell lines A375 and SK-MEL-3 by MTT assay. However, the high toxicity to Vero cell culture (ATCC CCL-81) and human fibroblast cell line WS-1 rules out the possibility of their use as anticancer agents. The plant-mediated Ag-NPs were mostly bactericidal against tested strains with MBC/MIC index ≤4. Antifungal bioactivity (C. albicans, C. glabrata, and C. parapsilosis) was not observed for aqueous extracts (MIC > 8000 mg L-1), but Ag-NPs synthesised using both the flowers and leaves of tansy were very potent against Candida spp., with MIC 15.6 and 7.8 µg mL-1, respectively.
Collapse
Affiliation(s)
| | - Wojciech Flieger
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Sylwia Pasieczna-Patkowska
- Department of Chemical Technology, Faculty of Chemistry, Maria Curie Skłodowska University, Pl. Maria Curie-Skłodowskiej 3, 20-031 Lublin, Poland
| | - Wojciech Franus
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Rafał Panek
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1 St., 20-093 Lublin, Poland
| | - Katarzyna Suśniak
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki 1 St., 20-093 Lublin, Poland
| | - Barbara Rajtar
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Natalia Żuk
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Anna Bogucka-Kocka
- Chair and Department of Biology and Genetics, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, 4a Chodźki St., 20-093 Lublin, Poland
| | | | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| |
Collapse
|
6
|
Wang X, Tan J, Ni S, Zhou D, Liu B, Fu Q. Antimicrobial efficacy of composite irrigation solution against dominant pathogens in seawater immersion wound and in vivo wound healing assessment. Front Microbiol 2023; 14:1188373. [PMID: 37303778 PMCID: PMC10248133 DOI: 10.3389/fmicb.2023.1188373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Seawater immersion wound is inevitably accompanied by bacterial infection. Effective irrigation is critical for bacterial infection prevention and wound healing. In this study, the antimicrobial efficacy of a designed composite irrigation solution against several dominant pathogens in seawater immersion wounds was evaluated, and in vivo wound healing assessment was conducted in a rat model. According to the time-kill result, the composite irrigation solution exhibits excellent and rapid bactericidal effect against Vibrio alginolyticus and Vibrio parahaemolyticus within 30 s of treatment while eliminating Candida albicans, Pseudomonas aeruginosa, Escherichia coli, and the mixed microbes after 1 h, 2 h, 6 h, and 12 h of treatment, respectively. Significant bacterial count reduction of Staphylococcus aureus was observed after 5 h treatment. In addition to its skin non-irritating attribute, the in vivo wound healing results further demonstrated that the irrigation solution showed high repair efficiency in the skin defect model inoculated with the mixed microbes. The wound healing rate was significantly higher than that of the control and normal saline groups. It could also effectively reduce the number of viable bacteria on the wound surface. The histological staining indicated that the irrigation solution could reduce inflammatory cells and promote collagen fibers and angiogenesis, thereby promoting wound healing. We believed that the designed composite irrigation solution has great potential for application in the treatment of seawater immersion wounds.
Collapse
Affiliation(s)
- Xin Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
- Shanghai Co-Innovation Center for Energy Therapy of Tumors, Shanghai, China
| | - Jie Tan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Shenpeng Ni
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dengyun Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai, China
- Shanghai Co-Innovation Center for Energy Therapy of Tumors, Shanghai, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
7
|
Vigneswari S, Amelia TSM, Hazwan MH, Mouriya GK, Bhubalan K, Amirul AAA, Ramakrishna S. Transformation of Biowaste for Medical Applications: Incorporation of Biologically Derived Silver Nanoparticles as Antimicrobial Coating. Antibiotics (Basel) 2021; 10:229. [PMID: 33668352 PMCID: PMC7996339 DOI: 10.3390/antibiotics10030229] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Nanobiotechnology has undoubtedly influenced major breakthroughs in medical sciences. Application of nanosized materials has made it possible for researchers to investigate a broad spectrum of treatments for diseases with minimally invasive procedures. Silver nanoparticles (AgNPs) have been a subject of investigation for numerous applications in agriculture, water treatment, biosensors, textiles, and the food industry as well as in the medical field, mainly due to their antimicrobial properties and nanoparticle nature. In general, AgNPs are known for their superior physical, chemical, and biological properties. The properties of AgNPs differ based on their methods of synthesis and to date, the biological method has been preferred because it is rapid, nontoxic, and can produce well-defined size and morphology under optimized conditions. Nevertheless, the common issue concerning biological or biobased production is its sustainability. Researchers have employed various strategies in addressing this shortcoming, such as recently testing agricultural biowastes such as fruit peels for the synthesis of AgNPs. The use of biowastes is definitely cost-effective and eco-friendly; moreover, it has been reported that the reduction process is simple and rapid with reasonably high yield. This review aims to address the developments in using fruit- and vegetable-based biowastes for biologically producing AgNPs to be applied as antimicrobial coatings in biomedical applications.
Collapse
Affiliation(s)
- Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
| | - Tan Suet May Amelia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
| | - Mohamad Hazari Hazwan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
| | - Govindan Kothandaraman Mouriya
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia; (S.V.); (T.S.M.A.); (M.H.H.); (G.K.M.); (K.B.)
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Penang 11700, Malaysia
| | - Al-Ashraf Abdullah Amirul
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia, Penang 11700, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang 11900, Malaysia
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore
| |
Collapse
|
8
|
Chen B, Zhang C, Wang W, Chu Z, Zha Z, He X, Zhou W, Liu T, Wang H, Qian H. Ultrastable AgBiS 2 Hollow Nanospheres with Cancer Cell-Specific Cytotoxicity for Multimodal Tumor Therapy. ACS NANO 2020; 14:14919-14928. [PMID: 33137257 DOI: 10.1021/acsnano.0c04370] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Specific cytotoxicity for catalytic nanomedicine triggered by the tumor microenvironment (TME) has attracted increasing interest. In this work, we prepared AgBiS2 hollow nanospheres with narrow bandgaps via rapid precipitation in a weakly polar solvent, which lowered the intrinsic energy gap for the active production of highly reactive hydroxyl radicals (•OH), especially in the TME. The as-prepared AgBiS2 hollow nanospheres exhibited enhanced optical absorption and high photothermal conversion efficiency (44.2%). In addition, the hollow structured AgBiS2 nanospheres were found to have a peroxidase-mimicking feature to induce cancer cell-specific cytotoxicity while exhibiting negligible cytotoxicity toward normal cells, which might be attributed to the efficient production of highly reactive •OH originating from the overexpression H2O2 in the TME caused by surface catalysis. In particular, the cancer cell-specific cytotoxicity of the nanospheres was greatly enhanced both in vitro and in vivo upon irradiation with a near-infrared (NIR) laser (808 nm). The above-mentioned features of the hollow structured AgBiS2 will make it a promising candidate for tumor therapy.
Collapse
Affiliation(s)
- Benjin Chen
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Chenyang Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Wanni Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Zhaoyou Chu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaoyan He
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China
| | - Wei Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Tao Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China
| | - Hua Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, P. R. China
- Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China
| |
Collapse
|
9
|
Sharbaf Moghadas MR, Motamedi E, Nasiri J, Naghavi MR, Sabokdast M. Proficient dye removal from water using biogenic silver nanoparticles prepared through solid-state synthetic route. Heliyon 2020; 6:e04730. [PMID: 32904200 PMCID: PMC7452412 DOI: 10.1016/j.heliyon.2020.e04730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/16/2020] [Accepted: 08/12/2020] [Indexed: 11/02/2022] Open
Abstract
An environmentally benign, one-pot and highly scalable method was presented to produce biogenic silver nanoparticles (Ag NPs) using the solid-state synthetic route. Four plant-derived candidate bio-reductants (i.e., Datura stramonium, Papaver orientale, Mentha piperita, and Cannabis sativa) were investigated to compare the efficiency of solid-state route and typical solution method. M. piperita was selected as the best plant resource to produce totally pure and uniform Ag NPs (average diameter of 15 nm) without any aggregation. The purity and size of biogenic Ag NPs, were tailored by adjusting the M. piperita leaf powder/silver nitrate weight ratio and temperature. The as-synthesized Ag NPs were effectively utilized as an eco-friendly nanoadsorbent in water remediation to remove a model dye (i.e., crystal violet). The key factors affecting on the sorption process (i.e., nanoadsorbent dosage, temperature, pH, dye initial concentration, and shaking time) were investigated. The pseudo-second-order kinetic model was well fitted to the sorption process and at the optimum sorption conditions, based on the Langmuir model, the adsorption capacity was found to be 704.7 mg/g. The current, cost effective and feasible method could be considered as an applicable strategy to produce green, reusable and proficient Ag NPs as nanoadsorbents for removal of dyes from contaminated water.
Collapse
Affiliation(s)
- Mohsen Rahimi Sharbaf Moghadas
- Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Jaber Nasiri
- Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Mohammad Reza Naghavi
- Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| | - Manije Sabokdast
- Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran
| |
Collapse
|
10
|
Chu X, Wu F, Sun B, Zhang M, Song S, Zhang P, Wang Y, Zhang Q, Zhou N, Shen J. Genipin cross-linked carbon dots for antimicrobial, bioimaging and bacterial discrimination. Colloids Surf B Biointerfaces 2020; 190:110930. [PMID: 32146275 DOI: 10.1016/j.colsurfb.2020.110930] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 01/09/2023]
Abstract
Multifunctional carbon dots (CDs) present enormous potential in numerous applications and have attracted widespread attention for various applications in the biomedical field. Bacterial infection is a common health issue; the development of antibacterial materials with low toxicity and good biocompatibility is becoming more important. In this work, we synthesized a new type of nitrogen co-doped carbon dots-genipin covalent conjugate (N-CDs-GP) via hydrothermal methods. The microstructure and chemical composition of the N-CDs-GP were characterized. The biocompatibility, stability, antibacterial activity, and fluorescence performance of the N-CDs-GP were assessed. The results revealed that N-CDs-GP possessed high biocompatibility, high light stability, and broad antibacterial activity. Additionally, selective Gram-positive bacterial imaging by N-CDs-GP provided a more rapid method of bacterial detection. The N-CDs-GP have the potential to be applied as bioimaging and antibacterial agents and for bacterial discrimination.
Collapse
Affiliation(s)
- Xiaohong Chu
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Fan Wu
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Baohong Sun
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Ming Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Saijie Song
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Pan Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Yuli Wang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China; Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China.
| |
Collapse
|
11
|
Lupa D, Adamczyk Z, Oćwieja M, Duraczyńska D. Formation, properties and stability of silver nanoparticle monolayers at PDADMAC modified polystyrene microparticles. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Petrulis D, Petrulyte S. Potential use of microcapsules in manufacture of fibrous products: A review. J Appl Polym Sci 2018. [DOI: 10.1002/app.47066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E681. [PMID: 30200373 PMCID: PMC6163202 DOI: 10.3390/nano8090681] [Citation(s) in RCA: 648] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022]
Abstract
During the past few years, silver nanoparticles (AgNPs) became one of the most investigated and explored nanotechnology-derived nanostructures, given the fact that nanosilver-based materials proved to have interesting, challenging, and promising characteristics suitable for various biomedical applications. Among modern biomedical potential of AgNPs, tremendous interest is oriented toward the therapeutically enhanced personalized healthcare practice. AgNPs proved to have genuine features and impressive potential for the development of novel antimicrobial agents, drug-delivery formulations, detection and diagnosis platforms, biomaterial and medical device coatings, tissue restoration and regeneration materials, complex healthcare condition strategies, and performance-enhanced therapeutic alternatives. Given the impressive biomedical-related potential applications of AgNPs, impressive efforts were undertaken on understanding the intricate mechanisms of their biological interactions and possible toxic effects. Within this review, we focused on the latest data regarding the biomedical use of AgNP-based nanostructures, including aspects related to their potential toxicity, unique physiochemical properties, and biofunctional behaviors, discussing herein the intrinsic anti-inflammatory, antibacterial, antiviral, and antifungal activities of silver-based nanostructures.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 313 Splaiul Independenței, Bucharest 060042, Romania.
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, Magurele 077125, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, Craiova 200349, Romania.
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, Bucharest 011061, Romania.
| |
Collapse
|
14
|
Zhang Z, Shen W, Xue J, Liu Y, Liu Y, Yan P, Liu J, Tang J. Recent advances in synthetic methods and applications of silver nanostructures. NANOSCALE RESEARCH LETTERS 2018; 13:54. [PMID: 29457198 PMCID: PMC5817054 DOI: 10.1186/s11671-018-2450-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/20/2018] [Indexed: 05/22/2023]
Abstract
As the advanced functional materials, silver nanoparticles are potentially useful in various fields such as photoelectric, bio-sensing, catalysis, antibacterial and other fields, which are mainly based on their various properties. However, the properties of silver nanoparticles are usually determined by their size, shape, and surrounding medium, which can be modulated by various synthesis methods. In this review, the fabrication methods for synthesizing silver nanoparticles of different shapes and specific size are illustrated in detail. Besides, the corresponding properties and applications of silver nanoparticles are also discussed in this paper.
Collapse
Affiliation(s)
- Zhi Zhang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science and Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Wenfei Shen
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Jing Xue
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Yuanmeng Liu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Yanwei Liu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Peipei Yan
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Jixian Liu
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 People’s Republic of China
| | - Jianguo Tang
- College of Materials Science and Engineering, Qingdao University, Qingdao, 266071 People’s Republic of China
| |
Collapse
|