1
|
Ferro VM, Silva BC, Macedo DF, Fernandes NF, Silva AP. TCP Doped with Metal Ions Reinforced with Tetragonal and Cubic Zirconia. Biomimetics (Basel) 2023; 8:599. [PMID: 38132538 PMCID: PMC10742230 DOI: 10.3390/biomimetics8080599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Ceramic biocomposites based on bioactive tricalcium phosphate doped with metal ions are a strategy for obtaining good biomimetics for human bone composition. Manufacturing with PMMA porogen also induces bone-like porosity morphology. The poor strength of tricalcium phosphate can be overcomed by designing ceramic composites reinforced with tetragonal and cubic zirconia. In this work, five different bioceramic composites were manufactured without and with induced porosity and their physical, mechanical, microstructural, and biological properties were studied. With the addition of tetragonal and cubic zirconia, an improvement in strength of 22% and 55%, respectively, was obtained, corresponding to up to 20.7 MPa. PMMA was suitable for adding porosity, up to 30%, with interconnectivity while an excellent hOB cellular viability was achieved for all biocomposites.
Collapse
Affiliation(s)
- Vanessa M. Ferro
- C-MAST—Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal; (V.M.F.)
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Beatriz C. Silva
- C-MAST—Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal; (V.M.F.)
| | - Duarte F. Macedo
- C-MAST—Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal; (V.M.F.)
| | - Natanael F. Fernandes
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Abílio P. Silva
- C-MAST—Centre for Mechanical and Aerospace Science and Technologies, Universidade da Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal; (V.M.F.)
| |
Collapse
|
2
|
Enhanced anti-biofilm and biocompatibility of Zn and Mg substituted β-tricalcium phosphate/functionalized multiwalled carbon nanotube composites towards A. baumannii and Methicillin-Resistant Staphylococcus aureus, and MG-63 cells. Int J Pharm 2022; 627:122248. [PMID: 36181921 DOI: 10.1016/j.ijpharm.2022.122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
Abstract
In this work, Zn and Mg substituted β-tricalcium phosphate/functionalized multiwalled carbon nanotube (f-MWCNT) nanocomposites were prepared by the co-precipitation method. The structural, vibrational, morphological and biological properties of the prepared nanocomposites were studied. The structural study revealed that the increase of Zn concentration shifts the β-tricalcium phosphate planes towards higher angle. Morphological analysis confirmed the formation of hexagonal-shaped particles after substitution of Zn. The particle size of the nanoparticles decreased with the increase of Zn concentration. XPS analysis clearly showed the presence of Zn, Mg, P, Ca, O and C. The Zn (5%) rich nanocomposites have better antibiofilm activity compared to 2% of zinc substituted composite. Also, it has been proven that the prepared nanocomposites have the ability to enhance the bioactivity of commercial antibiotics by means of a decrease in drug resistance. Finally, this study acted as a pioneer to improve drug efficiency and reduced the biofilm formation of certain medically important bacteria. The in-vitro cell viability and anti-biofilm results of zinc (5%) rich nanocomposite confirmed that prepared nanocomposite has biocompatible and enhanced anti-biofilm property, which will be beneficial candidate for biomedical applications.
Collapse
|
3
|
Simultaneous Substitution of Fe and Sr in Beta-Tricalcium Phosphate: Synthesis, Structural, Magnetic, Degradation, and Cell Adhesion Properties. MATERIALS 2022; 15:ma15134702. [PMID: 35806825 PMCID: PMC9268321 DOI: 10.3390/ma15134702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022]
Abstract
β-tricalcium phosphate is a promising bone graft substitute material with biocompatibility and high osteoinductivity. However, research on the ideal degradation and absorption for better clinical application remains a challenge. Now, we focus on modifying physicochemical properties and improving biological properties through essential ion co-substitution (Fe and Sr) in β-TCPs. Fe- and Sr-substituted and Fe/Sr co-substituted β-TCP were synthesized by aqueous co-precipitation with substitution levels ranging from 0.2 to 1.0 mol%. The β-TCP phase was detected by X-ray diffraction and Fourier transform infrared spectroscopy. Changes in Ca–O and P–O bond lengths of the co-substituted samples were observed through X-ray photoelectron spectroscopy. The results of VSM represent the M-H graph having a combination of diamagnetic and ferromagnetic properties. A TRIS–HCl solution immersion test showed that the degradation and resorption functions act synergistically on the surface of the co-substituted sample. Cell adhesion tests demonstrated that Fe enhances the initial adhesion and proliferation behavior of hDPSCs. The present work suggests that Fe and Sr co-substitution in β-TCP can be a candidate for promising bone graft materials in tissue engineering fields. In addition, the possibility of application of hyperthermia for cancer treatment can be expected.
Collapse
|
4
|
Moslehi N, Bijlsma J, de Bruijn WJ, Velikov KP, Vincken JP, Kegel WK. Design and characterization of Ca-Fe(III) pyrophosphate salts with tunable pH-dependent solubility for dual-fortification of foods. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Electrodeposition of Calcium Phosphate Coatings on Metallic Substrates for Bone Implant Applications: A Review. COATINGS 2022. [DOI: 10.3390/coatings12040539] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This review summaries more than three decades of scientific knowledge on electrodeposition of calcium phosphate coatings. This low-temperature process aims to make the surface of metallic bone implants bioactive within a physiological environment. The first part of the review describes the reaction mechanisms that lead to the synthesis of a bioactive coating. Electrodeposition occurs in three consecutive steps that involve electrochemical reactions, pH modification, and precipitation of the calcium phosphate coating. However, the process also produces undesired dihydrogen bubbles during the deposition because of the reduction of water, the solvent of the electrolyte solution. To prevent the production of large amounts of dihydrogen bubbles, the current density value is limited during deposition. To circumvent this issue, the use of pulsed current has been proposed in recent years to replace the traditional direct current. Thanks to breaking times, dihydrogen bubbles can regularly escape from the surface of the implant, and the deposition of the calcium phosphate coating is less disturbed by the accumulation of bubbles. In addition, the pulsed current has a positive impact on the chemical composition, morphology, roughness, and mechanical properties of the electrodeposited calcium phosphate coating. Finally, the review describes one of the most interesting properties of electrodeposition, i.e., the possibility of adding ionic substituents to the calcium phosphate crystal lattice to improve the biological performance of the bone implant. Several cations and anions are reviewed from the scientific literature with a description of their biological impact on the physiological environment.
Collapse
|
6
|
Influence of Synthesis Conditions on Gadolinium-Substituted Tricalcium Phosphate Ceramics and Its Physicochemical, Biological, and Antibacterial Properties. NANOMATERIALS 2022; 12:nano12050852. [PMID: 35269340 PMCID: PMC8912835 DOI: 10.3390/nano12050852] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/27/2023]
Abstract
Gadolinium-containing calcium phosphates are promising contrast agents for various bioimaging modalities. Gadolinium-substituted tricalcium phosphate (TCP) powders with 0.51 wt% of gadolinium (0.01Gd-TCP) and 5.06 wt% of (0.1Gd-TCP) were synthesized by two methods: precipitation from aqueous solutions of salts (1) (Gd-TCP-pc) and mechano-chemical activation (2) (Gd-TCP-ma). The phase composition of the product depends on the synthesis method. The product of synthesis (1) was composed of β-TCP (main phase, 96%), apatite/chlorapatite (2%), and calcium pyrophosphate (2%), after heat treatment at 900 °C. The product of synthesis (2) was represented by β-TCP (main phase, 73%), apatite/chlorapatite (20%), and calcium pyrophosphate (7%), after heat treatment at 900 °C. The substitution of Ca2+ ions by Gd3+ in both β-TCP (main phase) and apatite (admixture) phases was proved by the electron paramagnetic resonance technique. The thermal stability and specific surface area of the Gd-TCP powders synthesized by two methods were significantly different. The method of synthesis also influenced the size and morphology of the prepared Gd-TCP powders. In the case of synthesis route (1), powders with particle sizes of tens of nanometers were obtained, while in the case of synthesis (2), the particle size was hundreds of nanometers, as revealed by transmission electron microscopy. The Gd-TCP ceramics microstructure investigated by scanning electron microscopy was different depending on the synthesis route. In the case of (1), ceramics with grains of 1–50 μm, pore sizes of 1–10 µm, and a bending strength of about 30 MPa were obtained; in the case of (2), the ceramics grain size was 0.4–1.4 μm, the pore size was 2 µm, and a bending strength of about 39 MPa was prepared. The antimicrobial activity of powders was tested for four bacteria (S. aureus, E. coli, S. typhimurium, and E. faecalis) and one fungus (C. albicans), and there was roughly 30% of inhibition of the micro-organism’s growth. The metabolic activity of the NCTC L929 cell and viability of the human dental pulp stem cell study demonstrated the absence of toxic effects for all the prepared ceramic materials doped with Gd ions, with no difference for the synthesis route.
Collapse
|
7
|
Noda D, Yamada I, Shinozaki K, Tagaya M. Coordination Effect of Citric Acid to Ca-deficient Hydroxyapatite on the Phase Transition. Dalton Trans 2022; 51:12442-12446. [DOI: 10.1039/d2dt01488b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The phase transition of Ca-deficient hydroxyapatite (CDHA) with citric acid (Cit) coordination was investigated. The Cit promoted the substitution of the K+ ion in CDHA to generate the HA phase....
Collapse
|
8
|
Srinivasan B, Kolanthai E, Asthagiri Kumaraswamy NE, Pugazhendhi AS, Catalani LH, Subbaraya NK. Vacancy-Induced Visible Light-Driven Fluorescence in Toxic Ion-Free Resorbable Magnetic Calcium Phosphates for Cell Imaging Applications. ACS APPLIED BIO MATERIALS 2021; 4:3256-3263. [PMID: 35014412 DOI: 10.1021/acsabm.0c01617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multifunctional nanosized particles are very beneficial in the field of biomedicine. Bioactive and highly biocompatible calcium phosphate (CaP) nanoparticles (∼50 nm) exhibiting both superparamagnetic and fluorescence properties were synthesized by incorporating dual ions (Fe3+ and Sr2+) in HAp (hydroxyapatite) [Ca10(PO4)6(OH)2]. Insertion of Fe3+ creates oxygen vacancies at the PO43- site, thereby destabilizing the structure. Thus, in order to maintain the structural stability, Sr2+ has been incorporated. This incorporation of Sr2+ leads to an intense emission at 550 nm. HAp nanoparticles when subjected to thermal treatment (800 °C) transform to β-TCP, exhibiting emission at 710 nm due to the emergence of an intermediate band. Moreover, these nanoparticles exhibit fluorescence in visible light when compared to the other UV and IR fluorescence excitation sources which could damage the tissues. The synthesis involving the combination of ultrasound and microwave techniques resulted in the distribution of Fe3+ in the interstitial sites of CaP, which is responsible for the excellent fluorescent properties. Moreover, thermally treated CaP becomes superparamagnetic, without affecting the desired optical properties. The bioactive, biocompatible, magnetic, and fluorescent properties of this resorbable CaP which is free from toxic heavy metals (Eu, Gd, etc.) could help in overcoming the long-term cytotoxicity. This could also be useful in tracking the location of the nanoparticles during drug delivery and magnetic hyperthermia. The bioactive fluorescent CaP nanoparticle helps in monitoring the bone growth and in addition, it could be employed in cell imaging applications. The in vitro MCF-7 imaging using the nanoparticles after 24 h of uptake at 465 nm evidences the bioimaging capability of the prepared nanoparticles. The reproducibility of the defect level is essential for the defect-induced emission properties. The synthesis of nontoxic fluorescent CaP is highly reproducible with the present synthesis method. Hence, it could be safely employed in various biomedical applications.
Collapse
Affiliation(s)
- Baskar Srinivasan
- Crystal Growth Centre, Anna University, Chennai 600 025, Tamil Nadu, India
| | - Elayaraja Kolanthai
- Departamento de Química Fundamental, Instituto de Química, University of São Paulo, Av. Prof. LineuPrestes, 784, São Paulo 05508-000, Brazil.,Department of Materials Science & Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando 32816, Florida, USA
| | | | - Abinaya Sindu Pugazhendhi
- Departamento de Química Fundamental, Instituto de Química, University of São Paulo, Av. Prof. LineuPrestes, 784, São Paulo 05508-000, Brazil
| | - Luiz Henrique Catalani
- Departamento de Química Fundamental, Instituto de Química, University of São Paulo, Av. Prof. LineuPrestes, 784, São Paulo 05508-000, Brazil
| | | |
Collapse
|
9
|
Abstract
It is known that iron is found as a trace element in bone tissue, the main inorganic constituent of which is hydroxyapatite. Therefore, iron-doped hydroxyapatite (HApFe) materials could be new alternatives for many biomedical applications. A facile dip coating process was used to elaborate the iron-doped hydroxyapatite (HApFe) nanocomposite coatings. The HApFe suspension used to prepare the coatings was achieved using a co-precipitation method, which was adapted in the laboratory. The quality of the HApFe suspension was assessed through dynamic light scattering (DLS), ultrasonic measurements, and zeta potential values. The hydroxyapatite XRD patterns were observed in the HApFe nanocomposite with no significant shifting of peak positions, thus suggesting that the incorporation of iron did not significantly modify the hydroxyapatite structure. The morphology of the HApFe nanoparticles was evaluated using transmission electron microscopy (TEM). Scanning electron microscopy (SEM) was used in order to investigate the morphologies of HApFe particles and coatings, while their chemical compositions were assessed using energy-dispersive X-ray spectroscopy (EDS). The SEM results suggested that the HApFe consists mainly of spherical nanometric particles and that the surfaces of the coatings are continuous and homogeneous. Additionally, the EDS spectra highlighted the purity of the samples and confirmed the presence of calcium, phosphorous, and iron in the analyzed sample. The in vitro cytotoxicity of the HApFe suspensions and coatings was evidenced using osteoblast cells. The MTT assay showed that both the HApFe suspensions and coatings exhibited biocompatible properties.
Collapse
|
10
|
Griesiute D, Sinusaite L, Kizalaite A, Antuzevics A, Mazeika K, Baltrunas D, Goto T, Sekino T, Kareiva A, Zarkov A. The influence of Fe3+ doping on thermally induced crystallization and phase evolution of amorphous calcium phosphate. CrystEngComm 2021. [DOI: 10.1039/d1ce00371b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The present study investigates thermally induced crystallization and phase evolution of amorphous calcium phosphate (ACP) partially substituted with Fe3+ ions (M/P = 1.5 : 1).
Collapse
Affiliation(s)
- Diana Griesiute
- Institute of Chemistry
- Vilnius University
- LT-03225 Vilnius
- Lithuania
| | | | - Agne Kizalaite
- Institute of Chemistry
- Vilnius University
- LT-03225 Vilnius
- Lithuania
| | - Andris Antuzevics
- Institute of Solid State Physics
- University of Latvia
- LV-1063 Riga
- Latvia
| | - Kestutis Mazeika
- State Research Institute Center for Physical Sciences and Technology
- Vilnius LT-02300
- Lithuania
| | - Dalis Baltrunas
- State Research Institute Center for Physical Sciences and Technology
- Vilnius LT-02300
- Lithuania
| | - Tomoyo Goto
- The Institute of Scientific and Industrial Research
- Osaka University
- Osaka 567-0047
- Japan
| | - Tohru Sekino
- The Institute of Scientific and Industrial Research
- Osaka University
- Osaka 567-0047
- Japan
| | - Aivaras Kareiva
- Institute of Chemistry
- Vilnius University
- LT-03225 Vilnius
- Lithuania
| | - Aleksej Zarkov
- Institute of Chemistry
- Vilnius University
- LT-03225 Vilnius
- Lithuania
| |
Collapse
|
11
|
Rodrigues AFM, Torres PMC, Barros MJS, Presa R, Ribeiro N, Abrantes JCC, Belo JH, Amaral JS, Amaral VS, Bañobre-López M, Bettencourt A, Sousa A, Olhero SM. Effective production of multifunctional magnetic-sensitive biomaterial by an extrusion-based additive manufacturing technique. ACTA ACUST UNITED AC 2020; 16:015011. [PMID: 32750692 DOI: 10.1088/1748-605x/abac4c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A calcium phosphate (CaP)-based scaffold used as synthetic bone grafts, which smartly combines precise dimensions, controlled porosity and therapeutic functions, presents benefits beyond those offered by conventional practices, although its fabrication is still a challenge. The sintering step normally required to improve the strength of the ceramic scaffolds precludes the addition of any biomolecules or functional particles before this stage. This study presents a proof of concept of multifunctional CaP-based scaffolds, fabricated by additive manufacturing from an innovative ink composition, with potential for bone regeneration, cancer treatment by local magnetic hyperthermia and drug delivery platforms. Highly loaded inks comprising iron-doped hydroxyapatite and β-tricalcium phosphate powders suspended in a chitosan-based solution, in the presence of levofloxacin (LEV) as model drug and magnetic nanoparticles (MNP), were developed. The sintering step was removed from the production process, and the integrity of the printed scaffolds was assured by the polymerization capacity of the ink composite, using genipin as a crosslinking agent. The effects of MNP and LEV on the inks' rheological properties, as well as on the mechanical and structural behaviour of non-doped and iron-doped scaffolds, were evaluated. Magnetic and magneto-thermal response, drug delivery and biological performance, such as cell proliferation in the absence and presence of an applied magnetic field, were also assessed. The addition of a constant amount of MNP in the iron-doped and non-doped CaP-based inks enhances their magnetic response and induction heating, with these effects more pronounced for the iron-doped CaP-based ink. These results suggest a synergistic effect between the iron-doped CaP-based powders and the MNP due to ferro/ferrimagnetic interactions. Furthermore, the iron presence enhances human mesenchymal stem cell metabolic activity and proliferation.
Collapse
Affiliation(s)
- A F M Rodrigues
- Department of Materials Engineering and Ceramics (DEMaC), CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Bohner M, Santoni BLG, Döbelin N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomater 2020; 113:23-41. [PMID: 32565369 DOI: 10.1016/j.actbio.2020.06.022] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 06/12/2020] [Indexed: 12/17/2022]
Abstract
β-tricalcium phosphate (β-TCP) is one the most used and potent synthetic bone graft substitute. It is not only osteoconductive, but also osteoinductive. These properties, combined with its cell-mediated resorption, allow full bone defects regeneration. Its clinical outcome is sometimes considered to be "unpredictable", possibly due to a poor understanding of β-TCP physico-chemical properties: β-TCP crystallographic structure is not fully uncovered; recent results suggest that sintered β-TCP is coated with a Ca-rich alkaline phase; β-TCP apatite-forming ability and osteoinductivity may be enhanced by a hydrothermal treatment; β-TCP grain size and porosity are strongly modified by the presence of minute amounts of β-calcium pyrophosphate or hydroxyapatite impurities. The aim of the present article is to provide a critical, but still rather comprehensive review of the current state of knowledge on β-TCP, with a strong focus on its synthesis and physico-chemical properties, and their link to the in vivo response. STATEMENT OF SIGNIFICANCE: The present review documents the richness, breadth, and interest of the research devoted to β-tricalcium phosphate (β-TCP). β-TCP is synthetic, osteoconductive, osteoinductive, and its resorption is cell-mediated, thus making it one of the most potent bone graft substitutes. This comprehensive review reveals that there are a number of aspects, such as surface chemistry, crystallography, or stoichiometry deviations, that are still poorly understood. As such, β-TCP is still an exciting scientific playground despite a 50 year long history and > 200 yearly publications.
Collapse
|
13
|
|
14
|
Sinusaite L, Popov A, Antuzevics A, Mazeika K, Baltrunas D, Yang JC, Horng JL, Shi S, Sekino T, Ishikawa K, Kareiva A, Zarkov A. Fe and Zn co-substituted beta-tricalcium phosphate (β-TCP): Synthesis, structural, magnetic, mechanical and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110918. [PMID: 32409069 DOI: 10.1016/j.msec.2020.110918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/14/2020] [Accepted: 03/31/2020] [Indexed: 01/14/2023]
Abstract
In the present work, Fe3+ and Zn2+ co-substituted β-tricalcium phosphate (β-TCP) has been synthesized by wet co-precipitation method. Co-substitution level in the range from 1 to 5 mol% has been studied. Thermal decomposition of as-prepared precipitates was shown to be affected by introducing of foreign ions, decreasing the decomposition temperature of precursor. It was determined that partial substitution of Ca2+ by Fe3+ and Zn2+ ions leads to the change in lattice parameters, which gradually decrease as doping level increases. Lattice distortion was also confirmed by means of Raman spectroscopy, which showed gradual change of the peaks shape in the Raman spectra. Rietveld refinement and electron paramagnetic resonance study confirmed that Fe3+ ions occupy only one Ca crystallographic site until Fe3+ and Zn2+ substitution level reaches 5 mol%. All co-substituted samples revealed paramagnetic behavior, magnetization of powders was determined to be linearly dependent on concentration of Fe3+ ions. Cytotoxicity of the synthesized species was estimated by in vivo assay using zebrafish (Danio rerio) and revealed non-toxic nature of the samples. Preparation of ceramic bodies from the powders was performed, however the results obtained on Vickers hardness of the ceramics did not show improvement in mechanical properties induced by co-substitution.
Collapse
Affiliation(s)
- Lauryna Sinusaite
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Anton Popov
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Andris Antuzevics
- Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
| | - Kestutis Mazeika
- State Research Institute Center for Physical Sciences and Technology, Vilnius LT-02300, Lithuania
| | - Dalis Baltrunas
- State Research Institute Center for Physical Sciences and Technology, Vilnius LT-02300, Lithuania
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Hsing St, Taipei 11052, Taiwan
| | - Jiun Lin Horng
- Department of Anatomy and Cell Biology, Taipei Medical University, 250 Wu-Hsing St, Taipei 11052, Taiwan
| | - Shengfang Shi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tohru Sekino
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, Maidashi, Higashi-Ku, Fukuoka, Japan
| | - Aivaras Kareiva
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Aleksej Zarkov
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| |
Collapse
|
15
|
Belik AA, Deyneko DV, Baryshnikova OV, Stefanovich SY, Lazoryak BI. Sr 9In(VO 4) 7 as a model ferroelectric in the structural family of β-Ca 3(PO 4) 2-type phosphates and vanadates. RSC Adv 2020; 10:10867-10872. [PMID: 35492893 PMCID: PMC9050416 DOI: 10.1039/c9ra10336h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/28/2020] [Indexed: 11/21/2022] Open
Abstract
Sr9In(VO4)7 was prepared by a solid-state method at 1270 K in air. This vanadate has the β-Ca3(PO4)2-type structure and crystallizes in polar space group R3c. The structural parameters of Sr9In(VO4)7 were refined by the Rietveld method from laboratory powder X-ray diffraction data (XRD): the lattice parameters are a = 11.18016(9) Å and c = 39.6170(3) Å with Z = 6. In3+ cations occupy the octahedral M5 site, Sr2+ cations occupy the M1, M2, and M3 sites of the β-Ca3(PO4)2-type structure, and the M4 site remains vacant. Sr9In(VO4)7 was characterized by differential thermal analysis (DTA), optical second-harmonic generation (SHG), high-temperature XRD, and dielectric measurements. All these methods prove the existence of a ferroelectric-paraelectric phase transition at T c = 974 K. This transition is compared with a similar transition in Ca9In(PO4)7 with lower T c = 902 K. The polar-to-centrosymmetric phase transition in such compounds has a quite unique mechanism of the order-disorder type. The structural transition involves slight shifts of the M1, M2, M3 cations and the E2O4, E3O4 tetrahedra, while half of the E1O4 tetrahedra (E = P or V) statistically reverse their orientation along the three-fold axis, so that the centre of symmetry appears in the structure as a whole. To invert the E1O4 tetrahedron, one oxygen anion should pass a large neighbouring cation (Sr2+ or Ca2+) that is only possible when intense rotational vibrations of the tetrahedra are excited at high temperatures. The lower Curie temperature in Ca9In(PO4)7 corresponds to the smaller rotational vibration amplitude of the P1O4 tetrahedron required to reverse this tetrahedra at T c in comparison with V1O4 in Sr9In(VO4)7.
Collapse
Affiliation(s)
- Alexei A Belik
- Research Center for Functional Materials, National Institute for Materials Science Namiki 1-1 Tsukuba Ibaraki 305-0044 Japan
| | - Dina V Deyneko
- Department of Chemistry, Moscow State University Moscow 119992 Russia
| | | | | | - Bogdan I Lazoryak
- Department of Chemistry, Moscow State University Moscow 119992 Russia
| |
Collapse
|
16
|
Raveendran S, Alam MM, Khan MIK, Dhayalan A, Kannan S. In situ formation, structural, mechanical and in vitro analysis of ZrO 2/ZnFe 2O 4 composite with assorted composition ratios. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110504. [PMID: 31924019 DOI: 10.1016/j.msec.2019.110504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/05/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023]
Abstract
The investigation underline the in situ formation of ZrO2/ZnFe2O4 composites and the resultant structural, morphological, mechanical and magnetic properties. The characterization results ensured the crystallization of tetragonal ZrO2 (t-ZrO2) and ZnFe2O4 phases at 900 °C. Depending on Zn2+/Fe3+ content, the composite system revealed a gradual increment in the phase yield of ZnFe2O4. The significance of monoclinic ZrO2 (m-ZrO2) is also evident in all the systems at 900 °C; however, the incremental heat treatment to 1300 °C indicated its corresponding loss, thus indicating the reverse m- → t-ZrO2 transition. The crystallization of ZnFe2O4 as a secondary phase in the t-ZrO2 matrix is also affirmed from the morphological analysis. Mechanical studies accomplished good uniformity in all the investigated compositions despite the variation in the phase content of ZnFe2O4 in composite system. All the t-ZrO2/ZnFe2O4 composites ensured strong ferrimagnetic features and moreover better biocompatibility and non-toxicity characteristics were displayed from in vitro tests.
Collapse
Affiliation(s)
- Subina Raveendran
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India
| | - M Mushtaq Alam
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - S Kannan
- Centre for Nanoscience and Technology, Pondicherry University, Puducherry 605 014, India.
| |
Collapse
|
17
|
Srinivasan B, Kolanthai E, Eluppai Asthagiri Kumaraswamy N, Jayapalan RR, Vavilapalli DS, Catalani LH, Ningombam GS, Khundrakpam NS, Singh NR, Kalkura SN. Thermally Modified Iron-Inserted Calcium Phosphate for Magnetic Hyperthermia in an Acceptable Alternating Magnetic Field. J Phys Chem B 2019; 123:5506-5513. [PMID: 31244102 DOI: 10.1021/acs.jpcb.9b03015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Magnetic hyperthermia treatment using calcium phosphate nanoparticles is an evolutionary choice because of its excellent biocompatibility. In the present work, Fe3+ is incorporated into HAp nanoparticles by thermal treatment at various temperatures. Induction heating was examined within the threshold H f value of 4.58 × 106 kA m-1 s-1 (H is the strength of alternating magnetic field and f is the operating frequency) and sample concentration of 10 mg/mL. The temperature-dependent structural modifications are well correlated with the morphological, surface charge, and magnetic properties. Surface charge changes from +10 mV to -11 mV upon sintering because of the diffusion of iron in the HAp lattice. The saturation magnetization has been achieved by sintering the nanoparticles at 400 and 600 °C, which has led to the specific absorption rate of 12.2 and 37.2 W/g, respectively. Achievement of the hyperthermia temperature (42 °C) within 4 min is significant when compared with the existing magnetic calcium phosphate nanoparticles. The systematic investigation reveals that the HAp nanoparticles partially stabilized with FeOOH and biocompatible α-Fe2O3 exhibit excellent induction heating. In vitro tests confirmed the samples are highly hemocompatible. The importance of the present work lies in HAp nanoparticles exhibiting induction heating without compromising the factors such as H f value, low sample concentration, and reduced duration of applied field.
Collapse
Affiliation(s)
- Baskar Srinivasan
- Crystal Growth Centre , Anna University , Chennai , Tamil Nadu 600 025 , India
| | - Elayaraja Kolanthai
- Departamento de Química Fundamental, Instituto de Química , University of São Paulo , Av. Prof. Lineu Prestes, 784 , São Paulo 05508-000 , Brazil
| | | | - Ramana Ramya Jayapalan
- National Centre for Nanosciences and Nanotechnology , University of Madras , Chennai , Tamil Nadu 600 025 , India
| | | | - Luiz Henrique Catalani
- Departamento de Química Fundamental, Instituto de Química , University of São Paulo , Av. Prof. Lineu Prestes, 784 , São Paulo 05508-000 , Brazil
| | | | | | | | | |
Collapse
|
18
|
Composites based on zirconia and transition metal oxides for osteosarcoma treatment. Design, structural, magnetic and mechanical evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1097-1113. [DOI: 10.1016/j.msec.2019.01.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/15/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022]
|
19
|
Gallo M, Le Gars Santoni B, Douillard T, Zhang F, Gremillard L, Dolder S, Hofstetter W, Meille S, Bohner M, Chevalier J, Tadier S. Effect of grain orientation and magnesium doping on β-tricalcium phosphate resorption behavior. Acta Biomater 2019; 89:391-402. [PMID: 30831328 DOI: 10.1016/j.actbio.2019.02.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 02/05/2019] [Accepted: 02/27/2019] [Indexed: 12/11/2022]
Abstract
The efficiency of calcium phosphate (CaP) bone substitutes can be improved by tuning their resorption rate. The influence of both crystal orientation and ion doping on resorption is here investigated for beta-tricalcium phosphate (β-TCP). Non-doped and Mg-doped (1 and 6 mol%) sintered β-TCP samples were immersed in acidic solution (pH 4.4) to mimic the environmental conditions found underneath active osteoclasts. The surfaces of β-TCP samples were observed after acid-etching and compared to surfaces after osteoclastic resorption assays. β-TCP grains exhibited similar patterns with characteristic intra-crystalline pillars after acid-etching and after cell-mediated resorption. Electron BackScatter Diffraction analyses, coupled with Scanning Electron Microscopy, Inductively Coupled Plasma-Mass Spectrometry and X-Ray Diffraction, demonstrated the influence of both grain orientation and doping on the process and kinetics of resorption. Grains with c-axis nearly perpendicular to the surface were preferentially etched in non-doped β-TCP samples, whereas all grains with simple axis (a, b or c) nearly normal to the surface were etched in 6 mol% Mg-doped samples. In addition, both the dissolution rate and the percentage of etched surface were lower in Mg-doped specimens. Finally, the alignment direction of the intra-crystalline pillars was correlated with the preferential direction for dissolution. STATEMENT OF SIGNIFICANCE: The present work focuses on the resorption behavior of calcium phosphate bioceramics. A simple and cost-effective alternative to osteoclast culture was implemented to identify which material features drive resorption. For the first time, it was demonstrated that crystal orientation, measured by Electron Backscatter Diffraction, is the discriminating factor between grains, which resorbed first, and grains, which resorbed slower. It also elucidated how resorption kinetics can be tuned by doping β-tricalcium phosphate with ions of interest. Doping with magnesium impacted lattice parameters. Therefore, the crystal orientations, which preferentially resorbed, changed, explaining the solubility decrease. These important findings pave the way for the design of optimized bone graft substitutes with tailored resorption kinetics.
Collapse
Affiliation(s)
- Marta Gallo
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France
| | | | - Thierry Douillard
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France
| | - Fei Zhang
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France
| | - Laurent Gremillard
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France
| | - Silvia Dolder
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Willy Hofstetter
- Department for BioMedical Research (DBMR), University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Sylvain Meille
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France
| | - Marc Bohner
- RMS Foundation, Bischmattstrasse 12, 2544 Bettlach, Switzerland
| | - Jérôme Chevalier
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France
| | - Solène Tadier
- Univ Lyon, INSA Lyon, UCB Lyon 1, CNRS, MATEIS UMR 5510, Bât. Blaise Pascal, 7 Avenue Jean Capelle, 69621Villeurbanne, France.
| |
Collapse
|
20
|
Numerical Investigation of Bone Tumor Hyperthermia Treatment Using Magnetic Scaffolds. ACTA ACUST UNITED AC 2018. [DOI: 10.1109/jerm.2018.2866345] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Laskus A, Kolmas J. Ionic Substitutions in Non-Apatitic Calcium Phosphates. Int J Mol Sci 2017; 18:E2542. [PMID: 29186932 PMCID: PMC5751145 DOI: 10.3390/ijms18122542] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/25/2022] Open
Abstract
Calcium phosphate materials (CaPs) are similar to inorganic part of human mineralized tissues (i.e., bone, enamel, and dentin). Owing to their high biocompatibility, CaPs, mainly hydroxyapatite (HA), have been investigated for their use in various medical applications. One of the most widely used ways to improve the biological and physicochemical properties of HA is ionic substitution with trace ions. Recent developments in bioceramics have already demonstrated that introducing foreign ions is also possible in other CaPs, such as tricalcium phosphates (amorphous as well as α and β crystalline forms) and brushite. The purpose of this paper is to review recent achievements in the field of non-apatitic CaPs substituted with various ions. Particular attention will be focused on tricalcium phosphates (TCP) and "additives" such as magnesium, zinc, strontium, and silicate ions, all of which have been widely investigated thanks to their important biological role. This review also highlights some of the potential biomedical applications of non-apatitic substituted CaPs.
Collapse
Affiliation(s)
- Aleksandra Laskus
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| | - Joanna Kolmas
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
22
|
Singh RK, Srivastava M, Prasad NK, Shetty PH, Kannan S. Hyperthermia effect and antibacterial efficacy of Fe
3+
/Co
2+
co‐substitutions in β‐Ca
3
(PO
4
)
2
for bone cancer and defect therapy. J Biomed Mater Res B Appl Biomater 2017; 106:1317-1328. [DOI: 10.1002/jbm.b.33921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/11/2017] [Accepted: 04/22/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Ram Kishore Singh
- Centre for Nanoscience and Technology, Pondicherry UniversityPuducherry605 014 India
| | - M. Srivastava
- Department of Metallurgical EngineeringIndian Institute of Technology (Banaras Hindu University)Varanasi221005 Uttar Pradesh India
| | - N. K. Prasad
- Department of Metallurgical EngineeringIndian Institute of Technology (Banaras Hindu University)Varanasi221005 Uttar Pradesh India
| | - P. H. Shetty
- Department of Food Science and TechnologyPondicherry UniversityPuducherry605 014 India
| | - S. Kannan
- Centre for Nanoscience and Technology, Pondicherry UniversityPuducherry605 014 India
| |
Collapse
|
23
|
Singh R, Srivastava M, Prasad NK, Awasthi S, Kumar Dhayalan A, Kannan S. Structural analysis and magnetic induced hyperthermia of Fe3+and Mn2+substituted β-Ca3(PO4)2. NEW J CHEM 2017. [DOI: 10.1039/c7nj01228d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fe3+/Mn2+co-substitutions in β-Ca3(PO4)2elicit a good hyperthermia effect and biocompatible features.
Collapse
Affiliation(s)
- Ramkishore Singh
- Centre for Nanoscience and Technology
- Pondicherry University
- Puducherry-605 014
- India
| | - M. Srivastava
- Department of Metallurgical Engineering
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - N. K. Prasad
- Department of Metallurgical Engineering
- Indian Institute of Technology (Banaras Hindu University)
- Varanasi-221005
- India
| | - Sharad Awasthi
- Department of Biotechnology
- Pondicherry University
- Puducherry-605 014
- India
| | | | - S. Kannan
- Centre for Nanoscience and Technology
- Pondicherry University
- Puducherry-605 014
- India
| |
Collapse
|