1
|
Zhang L, Zhang H, Zhou H, Tan Y, Zhang Z, Yang W, Zhao L, Zhao Z. A Ti 3C 2 MXene-integrated near-infrared-responsive multifunctional porous scaffold for infected bone defect repair. J Mater Chem B 2023; 12:79-96. [PMID: 37814804 DOI: 10.1039/d3tb01578e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Infected bone defect repair has long been a major challenge in orthopedic surgery. Apart from bacterial contamination, excessive generation of reactive oxygen species (ROS), and lack of osteogenesis ability also threaten the defect repair process. However, few strategies have been proposed to address these issues simultaneously. Herein, we designed and fabricated a near-infrared (NIR)-responsive, hierarchically porous scaffold to address these limitations in a synergetic manner. In this design, polymethyl methacrylate (PMMA) and polyethyleneimine (PEI) were used to fabricate the porous PMMA/PEI scaffolds via the anti-solvent vapor-induced phase separation (VIPS) process. Then, Ti3C2 MXenes were anchored on the scaffolds through the dopamine-assisted co-deposition process to obtain the PMMA/PEI/polydopamine (PDA)/MXene scaffolds. Under NIR laser irradiation, the scaffolds were able to kill bacteria through the direct contact-killing and synergetic photothermal effect of Ti3C2 MXenes and PDA. Moreover, MXenes and PDA also endowed the scaffolds with excellent ROS-scavenging capacity and satisfying osteogenesis ability. Our experimental results also confirmed that the PMMA/PEI/PDA/MXene scaffolds significantly promoted new bone formation in an infected mandibular defect model. We believe that our study provides new insights into the treatment of infected bone defects.
Collapse
Affiliation(s)
- Linli Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Hui Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Hongling Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yi Tan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Wei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Other Research Platforms, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Huang X, An Y, Yuan S, Chen C, Shan H, Zhang M. Silk fibroin carriers with sustained release capacity for treating neurological diseases. Front Pharmacol 2023; 14:1117542. [PMID: 37214477 PMCID: PMC10196044 DOI: 10.3389/fphar.2023.1117542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Neurological diseases such as traumatic brain injury, cerebral ischemia, Parkinson's, and Alzheimer's disease usually occur in the central and peripheral nervous system and result in nervous dysfunction, such as cognitive impairment and motor dysfunction. Long-term clinical intervention is necessary for neurological diseases where neural stem cell transplantation has made substantial progress. However, many risks remain for cell therapy, such as puncture bleeding, postoperative infection, low transplantation success rate, and tumor formation. Sustained drug delivery, which aims to maintain the desired steady-state drug concentrations in plasma or local injection sites, is considered as a feasible option to help overcome side effects and improve the therapeutic efficiency of drugs on neurological diseases. Natural polymers such as silk fibroin have excellent biocompatibility, which can be prepared for various end-use material formats, such as microsphere, gel, coating/film, scaffold/conduit, microneedle, and enables the dynamic release of loaded drugs to achieve a desired therapeutic response. Sustained-release drug delivery systems are based on the mechanism of diffusion and degradation by altering the structures of silk fibroin and drugs, factors, and cells, which can induce nerve recovery and restore the function of the nervous system in a slow and persistent manner. Based on these desirable properties of silk fibroin as a carrier with sustained-release capacity, this paper discusses the role of various forms of silk fibroin-based drug delivery materials in treating neurological diseases in recent years.
Collapse
Affiliation(s)
- Xinqi Huang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yumei An
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Shengye Yuan
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chen Chen
- Department of Orthopedics, Dongtai People’s Hospital, Dongtai, China
| | - Haiyan Shan
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Mingyang Zhang
- Institute of Forensic Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
4
|
Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
A novel pH-and temperature sensitive polymer based on MoS2 modified poly (N-Isopropyl Acrylamide)/ allyl acetoacetate for doxorubicin delivery: synthesis, characterization, in-vitro release and cytotoxicity studies. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
6
|
Chen L, Sun L, Yao J, Zhao B, Shao Z, Chen X. Robust Silk Protein Hydrogels Made by a Facile One-Step Method and Their Multiple Applications. ACS APPLIED BIO MATERIALS 2022; 5:3086-3094. [PMID: 35608071 DOI: 10.1021/acsabm.2c00354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Silk fibroin is a natural polymer that has various material forms and wide applications. Hydrogel is one of the most attractive silk materials because of its hydrophilicity, biocompatibility, and flexibility. However, its applications are still quite limited because they have a complicated preparation process and/or low mechanical strength. Herein, a simple way to prepare tough silk fibroin hydrogels via a solvent-exchange method is introduced. The degummed silk fiber was directly dissolved in a calcium chloride/formic acid solution and then water was used to replace the solvent. The silk fibroin hydrogel that was obtained using this facile method exhibited even better mechanical properties than most silk fibroin hydrogels that have been reported in the literature. Also, the silk fibroin hydrogel maintained biocompatibility that was as good as that prepared via other methods. Finally, the possibility of using this regenerated silk fibroin hydrogel as a multi-functional platform (such as a catalyst carrier, photothermal agent, and underwater adhesive) has been discussed. Therefore, such a natural, sustainable, robust, and good biocompatible silk fibroin hydrogel that is prepared by an improved method may have great potential for further applications.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Liangyan Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Bingjiao Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
7
|
Huang X, Tang L, Xu L, Zhang Y, Li G, Peng W, Guo X, Zhou L, Liu C, Shen XC. NIR-II Light-Modulated Injectable Self-Healing Hydrogel for Synergistic Photothermal/Chemodynamic/Chemo-therapy of Melanoma and Wound Healing Promotion. J Mater Chem B 2022; 10:7717-7731. [DOI: 10.1039/d2tb00923d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of an injectable multifunctional hydrogel with tumor therapy, antibacterial treatment and wound healing properties is essential for simultaneous eradicating melanoma and promoting wound healing of tumor-initiated skin defects....
Collapse
|
8
|
Shi J, Li J, Wang Y, Cheng J, Zhang CY. Recent advances in MoS 2-based photothermal therapy for cancer and infectious disease treatment. J Mater Chem B 2021; 8:5793-5807. [PMID: 32597915 DOI: 10.1039/d0tb01018a] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photothermal therapy (PTT) is a treatment combining laser irradiation and a photothermal transduction agent (PTA) to generate hyperthermia, which is used to efficiently and effectively treat cancer and prevent bacteria-induced infectious diseases. MoS2, an increasingly used two-dimensional transition metal dichalcogenide, which shows high absorbance in the near infrared (NIR) laser region, has been extensively utilized as a novel PTA in biomedical applications. The use of MoS2 as an advanced photoabsorbing agent has introduced a more efficient cancer therapy and improved antibacterial efficacy. In this review, we firstly summarize the recent advances in the MoS2-based platform for PTT in cancer and bacteria-induced infectious diseases treatments. We then discuss that the combination of MoS2-based PTT and other biomedical methods along with multimodality imaging, such as chemotherapy, photodynamic therapy (PDT) and immunotherapy, might be a promising strategy for cancer treatment. Furthermore, a new concept is proposed wherein MoS2-based PTT and combined therapies based on this could be more effective for the treatment of various bacteria-induced infectious diseases. Finally, research progress, challenges, and perspectives for the future development of this MoS2-based platform in cancer and bacteria-induced infectious disease treatments are discussed and concluded. Collectively, we think that MoS2-based PTT with high therapeutic efficacy and minimal side-effects could be potentially applied in clinical settings to improve cancer and infectious disease treatments.
Collapse
Affiliation(s)
- Jinping Shi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| | | | | | | | | |
Collapse
|
9
|
Wu M, Li Z, Yao J, Shao Z, Chen X. Pea Protein/Gold Nanocluster/Indocyanine Green Ternary Hybrid for Near-Infrared Fluorescence/Computed Tomography Dual-Modal Imaging and Synergistic Photodynamic/Photothermal Therapy. ACS Biomater Sci Eng 2019; 5:4799-4807. [DOI: 10.1021/acsbiomaterials.9b00794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Mi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zhao Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
10
|
Khafaji M, Zamani M, Golizadeh M, Bavi O. Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment. Biophys Rev 2019; 11:335-352. [PMID: 31102198 PMCID: PMC6557961 DOI: 10.1007/s12551-019-00532-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard, inorganic nanostructures have been of special interest for CT-PTT, owing to their high thermal conversion efficiency, application in bio-imaging, versatility, and ease of synthesis and surface modification. In addition to being used as the first type of CT-PTT agents, they also include the most novel CT-PTT systems as the potentials of new inorganic nanomaterials are being more and more discovered. Considering the variety of inorganic nanostructures introduced for CT-PTT applications, enormous effort is needed to perform translational research on the most promising nanomaterials and to comprehensively evaluate the potentials of newly introduced ones in preclinical studies. This review provides an overview of most novel strategies used to employ inorganic nanostructures for cancer CT-PTT as well as cancer imaging and discusses current challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Mona Khafaji
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Masoud Zamani
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Mortaza Golizadeh
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| |
Collapse
|
11
|
Single–sided superhydrophobic fluorinated silica/poly(ether sulfone) membrane for SO2 absorption. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Mehrotra S, Chouhan D, Konwarh R, Kumar M, Jadi PK, Mandal BB. Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications. ACS Biomater Sci Eng 2019; 5:2054-2078. [PMID: 33405710 DOI: 10.1021/acsbiomaterials.8b01560] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Materials at the nanoscale offer numerous avenues to be explored and exploited in diverse realms. Among others, proteinaceous biomaterials such as silk hold immense prospects in the domain of nanoengineering. Silk offers a unique combination of desirable facets like biocompatibility; extraordinary mechanical properties, such as elongation, elasticity, toughness, and modulus; and tunable biodegradability which are far better than most naturally occurring and engineered materials. Much of these properties are due to the molecular structure of the silk protein and it is self-assembly into hierarchical structures. Taking advantage of the hierarchical assembly, a large number of fabrication strategies have now emerged that allow the tailoring of silk structure of at the nanoscale. Harnessing the favorable properties of silk, such methods offer a promising direction toward producing structurally and functionally optimized silk nanomaterials. This review discusses the critical structure-property relationship in silk that occurs at the nanoscale and also aims to bring out the recent status in the approaches for fabrication, characterization, and the gamut of applications of various silk-based nanomaterials (nanoparticles, nanofibers, and nanocomposites) in the niche of translational research. Harnessing the favorable nanostructure of silk, the review also takes into account the impetus of silk in avant-garde applications such as chemo-biosensing, energy harvesting, microfluidics, and environmental applications.
Collapse
Affiliation(s)
- Shreya Mehrotra
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Rocktotpal Konwarh
- Biotechnology Department, Addis Ababa Science and Technology University, Addis Ababa-16417, Ethiopia
| | - Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Praveen Kumar Jadi
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
13
|
Li M, Wang Y, Lin H, Qu F. Hollow CuS nanocube as nanocarrier for synergetic chemo/photothermal/photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:591-598. [DOI: 10.1016/j.msec.2018.11.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/09/2018] [Accepted: 11/17/2018] [Indexed: 12/14/2022]
|
14
|
Xu Z, Shi L, Yang M, Zhu L. Preparation and biomedical applications of silk fibroin-nanoparticles composites with enhanced properties - A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:302-311. [DOI: 10.1016/j.msec.2018.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/25/2018] [Accepted: 11/05/2018] [Indexed: 12/26/2022]
|
15
|
Yadav V, Roy S, Singh P, Khan Z, Jaiswal A. 2D MoS 2 -Based Nanomaterials for Therapeutic, Bioimaging, and Biosensing Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803706. [PMID: 30565842 DOI: 10.1002/smll.201803706] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/18/2018] [Indexed: 05/26/2023]
Abstract
Molybdenum disulfide (MoS2 ), a typical layered 2D transition metal dichalcogenide, has received colossal interest in the past few years due to its unique structural, physicochemical, optical, and biological properties. While MoS2 is mostly applied in traditional industries such as dry lubricants, intercalation agents, and negative electrode material in lithium-ion batteries, its 2D and 0D forms have led to diverse applications in sensing, catalysis, therapy, and imaging. Herein, a systematic overview of the progress that is made in the field of MoS2 research with an emphasis on its different biomedical applications is presented. This article provides a general discussion on the basic structure and property of MoS2 and gives a detailed description of its different morphologies that are synthesized so far, namely, nanosheets, nanotubes, and quantum dots along with synthesis strategies. The biomedical applications of MoS2 -based nanocomposites are also described in detail and categorically, such as in varied therapeutic and diagnostic modalities like drug delivery, gene delivery, phototherapy, combined therapy, bioimaging, theranostics, and biosensing. Finally, a brief commentary on the current challenges and limitations being faced is provided, along with a discussion of some future perspectives for the overall improvement of MoS2 -based nanocomposites as a potential nanomedicine.
Collapse
Affiliation(s)
- Varnika Yadav
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Shounak Roy
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Prem Singh
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| | - Ziyauddin Khan
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Amit Jaiswal
- School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, 175005, Himachal Pradesh, India
| |
Collapse
|
16
|
Wang Y, Guo J, Zhou L, Ye C, Omenetto FG, Kaplan DL, Ling S. Design, Fabrication, and Function of Silk-Based Nanomaterials. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1805305. [PMID: 32440262 PMCID: PMC7241600 DOI: 10.1002/adfm.201805305] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 05/03/2023]
Abstract
Animal silks are built from pure protein components and their mechanical performance, such as strength and toughness, often exceed most engineered materials. The secret to this success is their unique nanoarchitectures that are formed through the hierarchical self-assembly of silk proteins. This natural material fabrication process in sharp contrast to the production of artificial silk materials, which usually are directly constructed as bulk structures from silk fibroin (SF) molecular. In recent years, with the aim of understanding and building better silk materials, a variety of fabrication strategies have been designed to control nanostructures of silks or to create functional materials from silk nanoscale building blocks. These emerging fabrication strategies offer an opportunity to tailor the structure of SF at the nanoscale and provide a promising route to produce structurally and functionally optimized silk nanomaterials. Here, we review the critical roles of silk nanoarchitectures on property and function of natural silk fibers, outline the strategies of utilization of these silk nanobuilding blocks, and we provide a critical summary of state of the art in the field to create silk nanoarchitectures and to generate silk-based nanocomponents. Further, such insights suggest templates to consider for other materials systems.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Jin Guo
- Department of Biomedical Engineering, Tufts University, MA 02155, USA; Department of Chemical and Biological Engineering, Tufts University, MA 02155, USA
| | - Liang Zhou
- Department of Material Science and Engineering, AnHui Agricultural University, Hefei 230036, China
| | - Chao Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
17
|
Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 2018; 85:1-56. [PMID: 31915410 PMCID: PMC6948189 DOI: 10.1016/j.progpolymsci.2018.06.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biopolymer nanofibrils exhibit exceptional mechanical properties with a unique combination of strength and toughness, while also presenting biological functions that interact with the surrounding environment. These features of biopolymer nanofibrils profit from their hierarchical structures that spun angstrom to hundreds of nanometer scales. To maintain these unique structural features and to directly utilize these natural supramolecular assemblies, a variety of new methods have been developed to produce biopolymer nanofibrils. In particular, cellulose nanofibrils (CNFs), chitin nanofibrils (ChNFs), silk nanofibrils (SNFs) and collagen nanofibrils (CoNFs), as the four most abundant biopolymer nanofibrils on earth, have been the focus of research in recent years due to their renewable features, wide availability, low-cost, biocompatibility, and biodegradability. A series of top-down and bottom-up strategies have been accessed to exfoliate and regenerate these nanofibrils for versatile advanced applications. In this review, we first summarize the structures of biopolymer nanofibrils in nature and outline their related computational models with the aim of disclosing fundamental structure-property relationships in biological materials. Then, we discuss the underlying methods used for the preparation of CNFs, ChNFs, SNF and CoNFs, and discuss emerging applications for these biopolymer nanofibrils.
Collapse
Affiliation(s)
- Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
18
|
Agarwal V, Chatterjee K. Recent advances in the field of transition metal dichalcogenides for biomedical applications. NANOSCALE 2018; 10:16365-16397. [PMID: 30151537 DOI: 10.1039/c8nr04284e] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanosheets of transition metal dichalcogenide (TMDs), the graphene-like two-dimensional (2D) materials, exhibit a unique combination of properties and have attracted enormous research interest for a wide range of applications including catalysis, functional electronics, solid lubrication, photovoltaics, energy materials and most recently in biomedical applications. Their potential for use in biosensors, drug delivery, multimodal imaging, antimicrobial agents and tissue engineering is being actively studied. However, the commercial translation of exfoliated TMDs has been limited due to the low aqueous solubility, non-uniformity, lack of control over the layer thickness, and the long-term colloidal stability of the exfoliated material. There is wide interest in the synthesis and exfoliation of TMDs resulting in the reporting of increasing numbers of new methods and their biomedical applications. The unique physicochemical characteristics of the TMD nanosheets have been exploited to tether them with biological payload to achieve selective localized delivery in vivo. The large surface-to-volume ratio, good cytocompatibility, ease of surface modification, tunable bandgap, strong spin-orbit coupling, and high optical and thermal conversion efficiency of TMD nanosheets make them favorable over traditional nanomaterials for biomedical research. Moreover, the presence of abundant active edge sites on the 2D TMDs makes them suitable for catalytic activities, while the large surface area and the interspace between layers are particularly conducive to ion or small molecule intercalation, making them useful for energy storage applications with rapid redox reaction capabilities. One of the major limitations of the exfoliated TMDs has been their limited colloidal stability in aqueous media. In this review, we summarize the recent advances in the exfoliation and synthesis of single-layered TMDs, their biomedical efficacy in terms of cytotoxicity, combinatorial therapy and diagnostic imaging, as well as antimicrobial activity. We highlight the current challenges in the field and propose strategies for the future.
Collapse
Affiliation(s)
- Vipul Agarwal
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India.
| | | |
Collapse
|
19
|
Yang Q, Zhang L, Ben A, Wu N, Yi Y, Jiang L, Huang H, Yu Y. Effects of dispersible MoS 2 nanosheets and Nano-silver coexistence on the metabolome of yeast. CHEMOSPHERE 2018; 198:216-225. [PMID: 29421733 DOI: 10.1016/j.chemosphere.2018.01.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/16/2018] [Accepted: 01/26/2018] [Indexed: 05/24/2023]
Abstract
As a new rising star in the post-graphene two-dimensional materials (2DMs), molybdenum disulfide (MoS2) attracts increasing attentions and is widely applied. However, the chemical and toxicological interaction between MoS2 and other co-contaminants is still poorly understood. Nano-silver (N-Ag) is the most commonly used nanomaterial in commercial products and distributed widely in the environment. Herein, we investigated the effects of chitosan functionalized MoS2 (CS-MoS2) nanosheets, a water-dispersible form of MoS2, on the microbial toxicity of N-Ag. We found that the incorporation of CS-MoS2 nanosheets attenuated the oxidative stress induced by N-Ag on yeast cells, while caused more membrane stress. In addition, the inhibition of N-Ag on the metabolic activities of yeast cells could be attenuated by CS-MoS2 nanosheets as well. The coexistence of N-Ag and CS-MoS2 nanosheets mainly perturbed the amino acid-related metabolic pathways in yeast cells, and phosphoric acid was a potential nanotoxicity biomarker. We further found that CS-MoS2 nanosheets dramatically absorbed the Ag ion released from N-Ag, which might be responsible for its attenuation effect on the microbial toxicity of N-Ag. Our findings provide more new insights for the ecotoxicity evaluation of MoS2 and other 2DMs.
Collapse
Affiliation(s)
- Qi Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Lei Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Ailing Ben
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211800, China
| | - Na Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yanliang Yi
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Yadong Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech, 211800, China.
| |
Collapse
|
20
|
Guo M, Dong Y, Xiao J, Gu R, Ding M, Huang T, Li J, Zhao N, Liao H. In vivoimmuno-reactivity analysis of the porous three-dimensional chitosan/SiO2and chitosan/SiO2/hydroxyapatite hybrids. J Biomed Mater Res A 2018; 106:1223-1235. [DOI: 10.1002/jbm.a.36320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/11/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Mengxia Guo
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| | - Yifan Dong
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Jiangwei Xiao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| | - Ruicai Gu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| | - Maochao Ding
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| | - Tao Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| | - Junhua Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| | - Naru Zhao
- School of Materials Science and Engineering; South China University of Technology; Guangzhou 510641 China
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Department of Anatomy; Southern Medical University, No. 1838, Guangzhou Avenue North; Guangzhou 510515 China
| |
Collapse
|
21
|
Li YN, Li H, Ye H, Zhang YZ, Chen Y. Preparation and characterization of poly(ether sulfone)/fluorinated silica organic–inorganic composite membrane for sulfur dioxide desulfurization. HIGH PERFORM POLYM 2018. [DOI: 10.1177/0954008317752072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The highly hydrophobic poly(ether sulfone)/fluorinated silica (PES/fSiO2) organic–inorganic composite membrane for sulfur dioxide (SO2) desulfurization was prepared by incorporating the fSiO2 particles on the PES membrane via sol–gel process and fluorination. The formation of PES/fSiO2 organic–inorganic composite membrane was examined by attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, thermal gravimetric analysis, field-emission scanning electron microscopy, and water contact angle. The experimental results showed that the fSiO2 inorganic layer was tightly bonded to the PES membrane surface through silane chemical reactions. The incorporation of the fSiO2 inorganic layer on the PES membrane surface increases the surface roughness and reduces the surface free energy because of the hydrophobic dodecafluoroheptyl-propyl-trimethoxysilane. The hydrophobicity of the PES/fSiO2 composite membrane was dramatically enhanced from 78.0° of PES membrane to 128.2° of PES/fSiO2 membrane. Compared with PES membrane, the desulfurization performance of PES/fSiO2 membrane was investigated. PES/fSiO2 organic–inorganic composite membrane indicated a reasonably stable SO2 absorption flux of 7.69E-4 mol/m2 s during the 240-min-long time operation.
Collapse
Affiliation(s)
- Ying-Na Li
- School of Textile, Tianjin Polytechnic University, Tianjin, People’s Republic of China
- Department of Environmental and Chemical Engineering, Tangshan College, Tangshan, People’s Republic of China
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, People’s Republic of China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, People’s Republic of China
| | - Han Li
- School of Textile, Tianjin Polytechnic University, Tianjin, People’s Republic of China
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, People’s Republic of China
| | - Hui Ye
- School of Textile, Tianjin Polytechnic University, Tianjin, People’s Republic of China
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, People’s Republic of China
| | - Yu-Zhong Zhang
- School of Textile, Tianjin Polytechnic University, Tianjin, People’s Republic of China
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, People’s Republic of China
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin, People’s Republic of China
| | - Ying Chen
- The Institute of Seawater Desalination and Multipurpose Utilization, The State Oceanic Administration(Tianjin), Tianjin, People’s Republic of China)
| |
Collapse
|
22
|
Yu Y, Wu N, Yi Y, Li Y, Zhang L, Yang Q, Miao W, Ding X, Jiang L, Huang H. Dispersible MoS2 Nanosheets Activated TGF-β/Smad Pathway and Perturbed the Metabolome of Human Dermal Fibroblasts. ACS Biomater Sci Eng 2017; 3:3261-3272. [DOI: 10.1021/acsbiomaterials.7b00575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yadong Yu
- Jiangsu
National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Na Wu
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Yanliang Yi
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Yangying Li
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Lei Zhang
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Qi Yang
- College
of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Wenjun Miao
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Xuefang Ding
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - Ling Jiang
- College
of Food Science and Light Industry, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| | - He Huang
- School
of Pharmaceutical Sciences, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
- State
Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211800, China
| |
Collapse
|