1
|
Călina I, Demeter M, Scărișoreanu A, Abbas A, Raza MA. Role of Ionizing Radiation Techniques in Polymeric Hydrogel Synthesis for Tissue Engineering Applications. Gels 2025; 11:47. [PMID: 39852018 PMCID: PMC11764499 DOI: 10.3390/gels11010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/31/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Hydrogels are widely utilized in industrial and scientific applications owing to their ability to immobilize active molecules, cells, and nanoparticles. This capability has led to their growing use in various biomedical fields, including cell culture and transplantation, drug delivery, and tissue engineering. Among the available synthesis techniques, ionizing-radiation-induced fabrication stands out as an environmentally friendly method for hydrogel preparation. In alignment with the current requirements for cleaner technologies, developing hydrogels using gamma and electron beam irradiation technologies represents a promising and innovative approach for their biomedical applications. A key advantage of these methods is their ability to synthesize homogeneous three-dimensional networks in a single step, without the need for chemical initiators or catalysts. Additionally, the fabrication process is controllable by adjusting the radiation dose and dose rate.
Collapse
Affiliation(s)
- Ion Călina
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor, 077125 Măgurele, Romania; (I.C.); (M.D.); (A.S.)
| | - Maria Demeter
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor, 077125 Măgurele, Romania; (I.C.); (M.D.); (A.S.)
| | - Anca Scărișoreanu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor, 077125 Măgurele, Romania; (I.C.); (M.D.); (A.S.)
| | - Awn Abbas
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Asim Raza
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Liu N, Liu D, Li Y, Zhang X, He J, Jiang Y, Wang Y, Ma Y, Jin H, Shen L. Effects and mechanisms of substance P on the proliferation and angiogenic differentiation of bone marrow mesenchymal stem cells: Bioinformatics and in vitro experiments. Genomics 2023; 115:110679. [PMID: 37423397 DOI: 10.1016/j.ygeno.2023.110679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The slight release of substance P (SP) from the end of peripheral nerve fibers causes a neurogenic inflammatory reaction, promotes vascular dilation and increases vascular permeability. However, whether SP can promote the angiogenesis of bone marrow mesenchymal stem cells (BMSCs) under high glucose conditions has not been reported. This study analyzed the targets, biological processes and molecular mechanisms underlying the effects of SP on BMSCs. BMSCs cultured in vitro were divided into a normal control group, high glucose control group, high glucose SP group and high glucose Akt inhibitor group to verify the effects of SP on BMSCs proliferation, migration and angiogenic differentiation. SP was found to act on 28 targets of BMSCs and participate in angiogenesis. Thirty-six core proteins, including AKT1, APP, BRCA1, CREBBP and EGFR, were identified. In a high glucose environment, SP increased the BMSCs proliferation optical density value and cell migration number and reduced the BMSCs apoptosis rate. In addition, SP induced BMSCs to highly express the CD31 protein, maintain the wall structure integrity of the matrix glue mesh and promote increases in the number of matrix glue meshes. These experiments showed that in a high glucose environment, SP acts on 28 targets of BMSCs that encode core proteins, such as AKT1, APP and BRCA1, and improves BMSCs proliferation, migration and angiogenic differentiation through the Akt signaling pathway.
Collapse
Affiliation(s)
- Na Liu
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Danyang Liu
- Department of Histology & Embryology, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yongtao Li
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Xiaodong Zhang
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Jun He
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yang Jiang
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yang Wang
- Department of physiology, Qiqihar Medical University, No. 333, Basic Medical Research Center, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Yong Ma
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China
| | - Haifeng Jin
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China; Basic Medical Research Center, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China.
| | - Lei Shen
- Department of Anatomy, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China; Basic Medical Research Center, Qiqihar Medical University, No. 333, Bukui North Street, Jianhua District, Qiqihar 161006, China.
| |
Collapse
|
3
|
Song J, Zhang J, Yuan X, Liu B, Tao W, Zhang C, Wu K. Functional substitution of zona pellucida with modified sodium hyaluronate gel in human embryos. J Assist Reprod Genet 2022; 39:2669-2676. [PMID: 36094700 PMCID: PMC9723041 DOI: 10.1007/s10815-022-02609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
PURPOSE Zona pellucida-free (ZP-free) embryos often fail to achieve good developmental outcomes and are routinely discarded in assisted reproductive laboratories. Existing attempts to rescue ZP-free embryos are not widely used due to operational complexity and high technical requirements. To handle cases with missing ZP, we applied modified sodium hyaluronate gel (MSHG) to embryo culture to determine if it can function as a substitute for human zona pellucida. METHODS The developmental process and the blastocyst formation rate of embryos were analyzed in both mouse and human. The first clinical application of MSHG was reported, and the pregnancy outcome was continuously followed up. RESULTS Human and mouse ZP-free embryos cultured with MSHG showed a blastocyst formation rate similar to ZP-intact embryos. MSHG improves blastocysts formation rate by maintaining blastomere spatial arrangement at early stages. Compared to ZP-free embryos, the proportion of tetrahedrally arranged blastomeres at the 4-cell stage increased significantly in embryos cultured with MSHG in humans. A ZP-free blastocyst cultured in MSHG with the highest score was successfully implanted after day 5 transplantation and developed normally. CONCLUSION These data demonstrate that MSHG can substitute the function of zona pellucida and rescue human ZP-free embryos during assisted reproductive technology.
Collapse
Affiliation(s)
- Jinzhu Song
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Jingye Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Xinyi Yuan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Boyang Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Wenrong Tao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Chuanxin Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Keliang Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Alfaro S, Acuña V, Ceriani R, Cavieres MF, Weinstein-Oppenheimer CR, Campos-Estrada C. Involvement of Inflammation and Its Resolution in Disease and Therapeutics. Int J Mol Sci 2022; 23:ijms231810719. [PMID: 36142625 PMCID: PMC9505300 DOI: 10.3390/ijms231810719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022] Open
Abstract
Inflammation plays a critical role in the response to and survival from injuries and/or infections. It occurs in two phases: initiation and resolution; however, when these events do not resolve and persist over time, the inflammatory response becomes chronic, prompting diseases that affect several systems and organs, such as the vasculature and the skin. Here, we reviewed inflammation that occurs in selected infectious and sterile pathologies. Thus, the immune processes induced by bacterial sepsis as well as T. cruzi and SARS-CoV-2 infections are shown. In addition, vaccine adjuvants as well as atherosclerosis are revised as examples of sterile-mediated inflammation. An example of the consequences of a lack of inflammation resolution is given through the revision of wound healing and chronic wounds. Then, we revised the resolution of the latter through advanced therapies represented by cell therapy and tissue engineering approaches, showing how they contribute to control chronic inflammation and therefore wound healing. Finally, new pharmacological insights into the management of chronic inflammation addressing the resolution of inflammation based on pro-resolving mediators, such as lipoxin, maresin, and resolvins, examining their biosynthesis, biological properties, and pharmacokinetic and pharmaceuticals limitations, are given. We conclude that resolution pharmacology and advanced therapies are promising tools to restore the inflammation homeostasis.
Collapse
Affiliation(s)
- Sebastián Alfaro
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
| | - Vania Acuña
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
| | - Ricardo Ceriani
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
| | - María Fernanda Cavieres
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
| | - Caroline Ruth Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Santa Marta 183, Valparaíso 1093, Chile
- Correspondence: (C.R.W.-O.); (C.C.-E.); Tel.: +56-32-2508419 (C.R.W.-O.); +56-32-2508140 (C.C.-E.)
| | - Carolina Campos-Estrada
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña, Valparaíso 1093, Chile
- Centro de Investigación Farmacopea Chilena (CIFAR), Universidad de Valparaíso, Santa Marta 183, Valparaíso 1093, Chile
- Correspondence: (C.R.W.-O.); (C.C.-E.); Tel.: +56-32-2508419 (C.R.W.-O.); +56-32-2508140 (C.C.-E.)
| |
Collapse
|
5
|
Heras KL, Igartua M, Santos-Vizcaino E, Hernandez RM. Cell-based dressings: A journey through chronic wound management. BIOMATERIALS ADVANCES 2022; 135:212738. [PMID: 35929212 DOI: 10.1016/j.bioadv.2022.212738] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The field of regenerative medicine has undergone a paradigm shift in recent decades thanks to the emergence of novel therapies based on the use of living organisms. The development of cell-based strategies has become a trend for the treatment of different conditions and pathologies. In this sense, the need for more adequate, biomimetic and well-planned treatments for chronic wounds has found different and innovative strategies, based on the combination of cells with dressings, which seek to revolutionize the wound healing management. Therefore, the objective of this review is to analyze the current state and the latest advances in the research of cell-based dressings for chronic wounds, ranging from traditional and "second generation" bioengineered living skin equivalents to mesenchymal stem cell dressings; the latter include biopolymeric porous scaffolds, electrospun nanofiber meshes, hydrogels and 3D printed bio-printed dressings. Finally, this review updates the completed and ongoing clinical trials in this field and encourages researchers to rethink these new approaches, manufacturing processes and mechanisms of action, as well as their administration strategies and timings.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 01006 Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
6
|
Yahya EB, Amirul AA, H.P.S. AK, Olaiya NG, Iqbal MO, Jummaat F, A.K. AS, Adnan AS. Insights into the Role of Biopolymer Aerogel Scaffolds in Tissue Engineering and Regenerative Medicine. Polymers (Basel) 2021; 13:1612. [PMID: 34067569 PMCID: PMC8156123 DOI: 10.3390/polym13101612] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022] Open
Abstract
The global transplantation market size was valued at USD 8.4 billion in 2020 and is expected to grow at a compound annual growth rate of 11.5% over the forecast period. The increasing demand for tissue transplantation has inspired researchers to find alternative approaches for making artificial tissues and organs function. The unique physicochemical and biological properties of biopolymers and the attractive structural characteristics of aerogels such as extremely high porosity, ultra low-density, and high surface area make combining these materials of great interest in tissue scaffolding and regenerative medicine applications. Numerous biopolymer aerogel scaffolds have been used to regenerate skin, cartilage, bone, and even heart valves and blood vessels by growing desired cells together with the growth factor in tissue engineering scaffolds. This review focuses on the principle of tissue engineering and regenerative medicine and the role of biopolymer aerogel scaffolds in this field, going through the properties and the desirable characteristics of biopolymers and biopolymer tissue scaffolds in tissue engineering applications. The recent advances of using biopolymer aerogel scaffolds in the regeneration of skin, cartilage, bone, and heart valves are also discussed in the present review. Finally, we highlight the main challenges of biopolymer-based scaffolds and the prospects of using these materials in regenerative medicine.
Collapse
Affiliation(s)
- Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - A. A. Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Abdul Khalil H.P.S.
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Niyi Gideon Olaiya
- Department of Industrial and Production Engineering, Federal University of Technology, PMB 704 Akure, Nigeria;
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
| | - Fauziah Jummaat
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (F.J.); (A.S.A.)
| | - Atty Sofea A.K.
- Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Jaya, Permatang Pauh 13700, Malaysia;
| | - A. S. Adnan
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia; (F.J.); (A.S.A.)
| |
Collapse
|
7
|
Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules 2021; 26:molecules26092518. [PMID: 33925886 PMCID: PMC8123515 DOI: 10.3390/molecules26092518] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering is known to encompass multiple aspects of science, medicine and engineering. The development of systems which are able to promote the growth of new cells and tissue components are vital in the treatment of severe tissue injury and damage. This can be done through a variety of different biofabrication strategies including the use of hydrogels, 3D bioprinted scaffolds and nanotechnology. The incorporation of stem cells into these systems and the advantage of this is also discussed. Biopolymers, those which have a natural original, have been particularly advantageous in tissue engineering systems as they are often found within the extracellular matrix of the human body. The utilization of biopolymers has become increasing popular as they are biocompatible, biodegradable and do not illicit an immune response when placed into the body. Tissue engineering systems for use with the eye are also discussed. This is of particular interest as the eye is known as an immune privileged site resulting in an extremely limited ability for natural cell regeneration.
Collapse
|
8
|
Flores-Muñoz C, Maripillán J, Vásquez-Navarrete J, Novoa-Molina J, Ceriani R, Sánchez HA, Abbott AC, Weinstein-Oppenheimer C, Brown DI, Cárdenas AM, García IE, Martínez AD. Restraint of Human Skin Fibroblast Motility, Migration, and Cell Surface Actin Dynamics, by Pannexin 1 and P2X7 Receptor Signaling. Int J Mol Sci 2021; 22:1069. [PMID: 33499026 PMCID: PMC7865282 DOI: 10.3390/ijms22031069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Wound healing is a dynamic process required to maintain skin integrity and which relies on the precise migration of different cell types. A key molecule that regulates this process is ATP. However, the mechanisms involved in extracellular ATP management are poorly understood, particularly in the human dermis. Here, we explore the role, in human fibroblast migration during wound healing, of Pannexin 1 channels and their relationship with purinergic signals and in vivo cell surface filamentous actin dynamics. Using siRNA against Panx isoforms and different Panx1 channel inhibitors, we demonstrate in cultured human dermal fibroblasts that the absence or inhibition of Panx1 channels accelerates cell migration, increases single-cell motility, and promotes actin redistribution. These changes occur through a mechanism that involves the release of ATP to the extracellular space through a Panx1-dependent mechanism and the activation of the purinergic receptor P2X7. Together, these findings point to a pivotal role of Panx1 channels in skin fibroblast migration and suggest that these channels could be a useful pharmacological target to promote damaged skin healing.
Collapse
Affiliation(s)
- Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Jacqueline Vásquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Joel Novoa-Molina
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Helmuth A. Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Ana C. Abbott
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Caroline Weinstein-Oppenheimer
- Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso 2360102, Chile;
- Centro de Investigación Farmacopea Chilena, Valparaíso 2360102, Chile
| | - Donald I. Brown
- Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile;
| | - Ana María Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| | - Isaac E. García
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
- Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (C.F.-M.); (J.M.); (J.V.-N.); (J.N.-M.); (R.C.); (H.A.S.); (A.C.A.); (A.M.C.); (I.E.G.)
| |
Collapse
|
9
|
Mora-Boza A, López-Ruiz E, López-Donaire ML, Jiménez G, Aguilar MR, Marchal JA, Pedraz JL, Vázquez-Lasa B, Román JS, Gálvez-Martín P. Evaluation of Glycerylphytate Crosslinked Semi- and Interpenetrated Polymer Membranes of Hyaluronic Acid and Chitosan for Tissue Engineering. Polymers (Basel) 2020; 12:E2661. [PMID: 33187239 PMCID: PMC7697555 DOI: 10.3390/polym12112661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022] Open
Abstract
In the present study, semi- and interpenetrated polymer network (IPN) systems based on hyaluronic acid (HA) and chitosan using ionic crosslinking of chitosan with a bioactive crosslinker, glycerylphytate (G1Phy), and UV irradiation of methacrylate were developed, characterized and evaluated as potential supports for tissue engineering. Semi- and IPN systems showed significant differences between them regarding composition, morphology, and mechanical properties after physicochemical characterization. Dual crosslinking process of IPN systems enhanced HA retention and mechanical properties, providing also flatter and denser surfaces in comparison to semi-IPN membranes. The biological performance was evaluated on primary human mesenchymal stem cells (hMSCs) and the systems revealed no cytotoxic effect. The excellent biocompatibility of the systems was demonstrated by large spreading areas of hMSCs on hydrogel membrane surfaces. Cell proliferation increased over time for all the systems, being significantly enhanced in the semi-IPN, which suggested that these polymeric membranes could be proposed as an effective promoter system of tissue repair. In this sense, the developed crosslinked biomimetic and biodegradable membranes can provide a stable and amenable environment for hMSCs support and growth with potential applications in the biomedical field.
Collapse
Affiliation(s)
- Ana Mora-Boza
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Elena López-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (E.L.-R.); (G.J.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada University of Granada, E-18071 Granada, Spain
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - María Luisa López-Donaire
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (E.L.-R.); (G.J.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada University of Granada, E-18071 Granada, Spain
- Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - María Rosa Aguilar
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (E.L.-R.); (G.J.); (J.A.M.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University Hospitals of Granada University of Granada, E-18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
| | - José Luis Pedraz
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
- NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country (UPV/EHU), School of Pharmacy, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Blanca Vázquez-Lasa
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | - Julio San Román
- Institute of Polymer Science and Technology, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-B.); (M.R.A.); (J.S.R.)
- CIBER-BBN, Health Institute Carlos III, C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain;
| | | |
Collapse
|
10
|
Pajerski W, Duch J, Ochonska D, Golda-Cepa M, Brzychczy-Wloch M, Kotarba A. Bacterial attachment to oxygen-functionalized graphenic surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110972. [DOI: 10.1016/j.msec.2020.110972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/23/2020] [Accepted: 04/15/2020] [Indexed: 01/06/2023]
|
11
|
Abatangelo G, Vindigni V, Avruscio G, Pandis L, Brun P. Hyaluronic Acid: Redefining Its Role. Cells 2020; 9:E1743. [PMID: 32708202 PMCID: PMC7409253 DOI: 10.3390/cells9071743] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022] Open
Abstract
The discovery of several unexpected complex biological roles of hyaluronic acid (HA) has promoted new research impetus for biologists and, the clinical interest in several fields of medicine, such as ophthalmology, articular pathologies, cutaneous repair, skin remodeling, vascular prosthesis, adipose tissue engineering, nerve reconstruction and cancer therapy. In addition, the great potential of HA in medicine has stimulated the interest of pharmaceutical companies which, by means of new technologies can produce HA and several new derivatives in order to increase both the residence time in a variety of human tissues and the anti-inflammatory properties. Minor chemical modifications of the molecule, such as the esterification with benzyl alcohol (Hyaff-11® biomaterials), have made possible the production of water-insoluble polymers that have been manufactured in various forms: membranes, gauzes, nonwoven meshes, gels, tubes. All these biomaterials are used as wound-covering, anti-adhesive devices and as scaffolds for tissue engineering, such as epidermis, dermis, micro-vascularized skin, cartilage and bone. In this review, the essential biological functions of HA and the applications of its derivatives for pharmaceutical and tissue regeneration purposes are reviewed.
Collapse
Affiliation(s)
- G. Abatangelo
- Faculty of Medicine, University of Padova, 35121 Padova, Italy
| | - V. Vindigni
- Clinic of Plastic and Reconstructive Surgery, University of Padova, 35128 Padova, Italy; (V.V.); (L.P.)
| | - G. Avruscio
- Department of Cardiac, Thoracic and Vascular Sciences, Angiology Unit, University of Padova, 35128 Padova, Italy;
| | - L. Pandis
- Clinic of Plastic and Reconstructive Surgery, University of Padova, 35128 Padova, Italy; (V.V.); (L.P.)
| | - P. Brun
- Department of Molecular Medicine, Histology unit, University of Padova, 35121 Padova, Italy;
| |
Collapse
|
12
|
Deng Q, Huang S, Wen J, Jiao Y, Su X, Shi G, Huang J. PF-127 hydrogel plus sodium ascorbyl phosphate improves Wharton's jelly mesenchymal stem cell-mediated skin wound healing in mice. Stem Cell Res Ther 2020; 11:143. [PMID: 32245517 PMCID: PMC7119174 DOI: 10.1186/s13287-020-01638-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/01/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Factors such as poor engraftment, retention, and survival of the transplanted stem cells are deemed to limit their therapeutic efficacy for wound regeneration. Hence, it is necessary to explore these issues in order to resolve them. In this study, we aim to investigate the role of Pluronic F-127 (PF-127) hydrogel plus antioxidant sodium ascorbyl phosphate (SAP) in enhancing Wharton’s jelly mesenchymal stem cell (WJMSC)-mediated effectiveness on full-thickness skin wound healing in mice. Methods First, the cytotoxicity of PF-127 and the biological effect of SAP on the survival of WJMSCs were tested in vitro using cell viability and proliferation assays. Next, a cell suspension containing WJMSCs, PF-127, and SAP was topically administered onto an 8-mm diameter excisional full-thickness wound bed. Eight days after transplantation, the mice were sacrificed and the skin tissue was excised for histological and immunohistochemical analysis. Finally, in vivo distribution of transplanted WJMSCs was traced to investigate cell engraftment and the potential therapeutic mechanism. Results PF-127 was found to be cytotoxic to WJMSCs while SAP significantly improved the survival of PF-127-embedded WJMSCs. When this combination was topically transplanted onto the wound bed, wound healing was facilitated and dermis regeneration was achieved on the 8th day after surgery, as evidenced by an increase in dermal thickness, newly developed hair follicles, and collagen fiber deposition accompanied by a reduction in scar width. Further, immunohistochemical analysis demonstrated a higher number of anti-inflammatory M2 macrophages, proliferating cells, and newly formed blood vessels in the WJMSCs/PF-127/SAP group relative to all other groups. In addition, in vivo tracking results revealed a highly enhanced engraftment of WJMSCs accumulated in the dermis in the WJMSCs/PF-127/SAP group. Conclusions SAP significantly improves the survival of WJMSCs in PF-127 encapsulation. Further, PF-127 plus SAP is an effective combination that enhances WJMSC engraftment in the dermis, which then promotes full-thickness wound healing through potential M2 macrophage formation and angiogenesis.
Collapse
Affiliation(s)
- Qingzha Deng
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Sunxing Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jinkun Wen
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Guangzhou, 510150, China
| | - Yiren Jiao
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaohu Su
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.,MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guang Shi
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Junjiu Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
13
|
Ji X, Yuan X, Ma L, Bi B, Zhu H, Lei Z, Liu W, Pu H, Jiang J, Jiang X, Zhang Y, Xiao J. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone) /nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation. Theranostics 2020; 10:725-740. [PMID: 31903147 PMCID: PMC6929983 DOI: 10.7150/thno.39167] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/08/2019] [Indexed: 12/01/2022] Open
Abstract
Chitin-derived hydrogels are commonly used in bone regeneration because of their high cell compatibility; however, their poor mechanical properties and little knowledge of the interaction between the materials and host cells have limited their practical application. Methods: To evaluate osteoinductivity and enhance the mechanical properties of a newly synthesized thermosensitive hydroxypropyl chitin hydrogel (HPCH), a mesenchymal stem cell (MSC)-encapsulated HPCH was infused into a three-dimensional-printed poly (ε-caprolactone) (PCL)/ nano-hydroxyapatite (nHA) scaffold to form a hybrid scaffold. The mechanical properties and cell compatibility of the scaffold were tested. The interaction between macrophages and scaffold for angiogenesis and osteogenesis were explored in vitro and in vivo. Results: The hybrid scaffold showed improved mechanical properties and high cell viability. When MSCs were encapsulated in HPCH, osteo-differentiation was promoted properly via endochondral ossification. The co-culture experiments showed that the hybrid scaffold facilitated growth factor secretion from macrophages, thus promoting vascularization and osteoinduction. The Transwell culture proved that MSCs modulated the inflammatory response of HPCH. Additionally, subcutaneous implantation of MSC-encapsulated HPCH confirmed M2 activation. In situ evaluation of calvarial defects confirmed that the repair was optimal in the MSC-loaded HPCH + PCL/nHA group. Conclusions: PCL/nHA + HPCH hybrid scaffolds effectively promoted vascularization and osteoinduction via osteogenesis promotion and immunomodulation, which suggests promising applications for bone regeneration.
Collapse
Affiliation(s)
- Xiongfa Ji
- Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, PR China
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi Yuan
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limin Ma
- Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, PR China
| | - Bo Bi
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Hao Zhu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zehua Lei
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenbin Liu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - HongXu Pu
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiawei Jiang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, PR China
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
14
|
Egorikhina MN, Aleynik DY, Rubtsova YP, Levin GY, Charykova IN, Semenycheva LL, Bugrova ML, Zakharychev EA. Hydrogel scaffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics. Bioact Mater 2019; 4:334-345. [PMID: 31720490 PMCID: PMC6838346 DOI: 10.1016/j.bioactmat.2019.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 01/19/2023] Open
Abstract
At present there is a growing need for tissue engineering products, including the products of scaffold-technologies. Biopolymer hydrogel scaffolds have a number of advantages and are increasingly being used to provide means of cell transfer for therapeutic treatments and for inducing tissue regeneration. This work presents original hydrogel biopolymer scaffolds based on a blood plasma cryoprecipitate and collagen and formed under conditions of enzymatic hydrolysis. Two differently originated collagens were used for the scaffold formation. During this work the structural and mechanical characteristics of the scaffold were studied. It was found that, depending on the origin of collagen, scaffolds possess differences in their structural and mechanical characteristics. Both types of hydrogel scaffolds have good biocompatibility and provide conditions that maintain the three-dimensional growth of adipose tissue stem cells. Hence, scaffolds based on such a blood plasma cryoprecipitate and collagen have good prospects as cell carriers and can be widely used in regenerative medicine.
Collapse
Affiliation(s)
- Marfa N. Egorikhina
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Diana Ya Aleynik
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Yulia P. Rubtsova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Grigory Ya Levin
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Irina N. Charykova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | | | - Marina L. Bugrova
- Federal State Budgetary Educational Institution of Higher Education «Privolzhsky Research Medical University» of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | | |
Collapse
|
15
|
Zhang Y, Jiang M, Zhang Y, Cao Q, Wang X, Han Y, Sun G, Li Y, Zhou J. Novel lignin–chitosan–PVA composite hydrogel for wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:110002. [DOI: 10.1016/j.msec.2019.110002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023]
|
16
|
Pandit AH, Mazumdar N, Ahmad S. Periodate oxidized hyaluronic acid-based hydrogel scaffolds for tissue engineering applications. Int J Biol Macromol 2019; 137:853-869. [DOI: 10.1016/j.ijbiomac.2019.07.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
|
17
|
Design of a biodegradable UV-irradiated gelatin-chitosan/nanocomposed membrane with osteogenic ability for application in bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:875-886. [DOI: 10.1016/j.msec.2019.01.135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
|
18
|
Catalan KN, Corrales TP, Forero JC, Romero CP, Acevedo CA. Glass Transition in Crosslinked Nanocomposite Scaffolds of Gelatin/Chitosan/Hydroxyapatite. Polymers (Basel) 2019; 11:polym11040642. [PMID: 30970604 PMCID: PMC6523647 DOI: 10.3390/polym11040642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
The development of biopolymeric scaffolds crosslinked with nanoparticles is an emerging field. Gelatin/chitosan scaffolds are gaining interest in medical areas, e.g., bone tissue engineering, given their suitability for nano-hydroxyapatite incorporation. The glass transition temperature is a thermodynamic property of polymer scaffolds that changes with crosslinker or nanofiller concentration. Here, we report the experimental change in glass transition temperature of gelatin/chitosan scaffolds modified by hydroxyapatite nanoparticles and crosslinker concentration. Our results show synergic effects between nanoparticles and crosslinking, which leads to a non-linear behavior of the glass transition temperature. Furthermore, a theoretical model to predict glass transition is proposed. This model can be used as a mathematical tool for the design of future scaffolds used in bone tissue engineering.
Collapse
Affiliation(s)
- Karina N Catalan
- Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Tomas P Corrales
- Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Juan C Forero
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Christian P Romero
- Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| | - Cristian A Acevedo
- Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile.
| |
Collapse
|
19
|
Sanchez-Rojas L, Gómez-Pinedo U, Benito-Martin MS, León-Espinosa G, Rascón-Ramirez F, Lendinez C, Martínez-Ramos C, Matías-Guiu J, Pradas MM, Barcia JA. Biohybrids of scaffolding hyaluronic acid biomaterials plus adipose stem cells home local neural stem and endothelial cells: Implications for reconstruction of brain lesions after stroke. J Biomed Mater Res B Appl Biomater 2018; 107:1598-1606. [PMID: 30307108 DOI: 10.1002/jbm.b.34252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/23/2018] [Accepted: 09/08/2018] [Indexed: 12/25/2022]
Abstract
Endogenous neurogenesis in stroke is insufficient to replace the lost brain tissue, largely due to the lack of a proper biological structure to let new cells dwell in the damaged area. We hypothesized that scaffolds made of hyaluronic acid (HA) biomaterials (BM) could provide a suitable environment to home not only new neurons, but also vessels, glia and neurofilaments. Further, the addition of exogenous cells, such as adipose stem cells (ASC) could increase this effect. Athymic mice were randomly assigned to a one of four group: stroke alone, stroke and implantation of BM, stroke and implantation of BM with ASC, and sham operated animals. Stroke model consisted of middle cerebral artery thrombosis with FeCl3 . After 30 days, animals underwent magnetic resonance imaging (MRI) and were sacrificed. Proliferation and neurogenesis increased at the subventricular zone ipsilateral to the ventricle and neuroblasts, glial, and endothelial cells forming capillaries were seen inside the BM. Those effects increased when ASC were added, while there was less inflammatory reaction. Three-dimensional scaffolds made of HA are able to home newly formed neurons, glia, and endothelial cells permitting the growth neurofilaments inside them. The addition of ASC increase these effects and decrease the inflammatory reaction to the implant. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1598-1606, 2019.
Collapse
Affiliation(s)
- Leyre Sanchez-Rojas
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Ulises Gómez-Pinedo
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - María Soledad Benito-Martin
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Gonzalo León-Espinosa
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain.,Instituto Cajal, CSIC; Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid; Facultad de Farmacia, Universidad San Pablo CEU, Madrid, Spain
| | - Fernando Rascón-Ramirez
- Servicio de Neurocirugía, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Lendinez
- Laboratorio de Medicina Regenerativa, Instituto de Neurociencias, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Cristina Martínez-Ramos
- Center for Biomaterials and Tissue Engineering, Universitat Politécnica de Valencia, C. de Vera s/n, Valencia, Spain
| | - Jorge Matías-Guiu
- Servicio de Neurología. Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Monleón Pradas
- Center for Biomaterials and Tissue Engineering, Universitat Politécnica de Valencia, C. de Vera s/n, Valencia, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Valencia, Spain
| | - Juan A Barcia
- Servicio de Neurocirugía, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Silva MDA, Leite YKDC, de Carvalho CES, Feitosa MLT, Alves MMDM, Carvalho FADA, Neto BCV, Miglino MA, Jozala AF, de Carvalho MAM. Behavior and biocompatibility of rabbit bone marrow mesenchymal stem cells with bacterial cellulose membrane. PeerJ 2018; 6:e4656. [PMID: 29736332 PMCID: PMC5933324 DOI: 10.7717/peerj.4656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/01/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Tissue engineering has been shown to exhibit great potential for the creation of biomaterials capable of developing into functional tissues. Cellular expansion and integration depends on the quality and surface-determinant factors of the scaffold, which are required for successful biological implants. The objective of this research was to characterize and evaluate the in vitro characteristics of rabbit bone marrow mesenchymal stem cells (BM-MSCs) associated with a bacterial cellulose membrane (BCM). We assessed the adhesion, expansion, and integration of the biomaterial as well as its ability to induce macrophage activation. Finally, we evaluated the cytotoxicity and toxicity of the BCM. METHODS Samples of rabbit bone marrow were collected. Mesenchymal stem cells were isolated from medullary aspirates to establish fibroblast colony-forming unit assay. Osteogenic, chondrogenic, and adipogenic differentiation was performed. Integration with the BCM was assessed by scanning electron microscopy at 1, 7, and 14 days. Cytotoxicity was assessed via the production of nitric oxide, and BCM toxicity was assessed with the MTT assay; phagocytic activity was also determined. RESULTS The fibroblastoid colony-forming unit (CFU-F) assay showed cells with a fibroblastoid morphology organized into colonies, and distributed across the culture area surface. In the growth curve, two distinct phases, lag and log phase, were observed at 15 days. Multipotentiality of the cells was evident after induction of osteogenic, chondrogenic, and adipogenic lineages. Regarding the BM-MSCs' bioelectrical integration with the BCM, BM-MSCs were anchored in the BCM in the first 24 h. On day 7 of culture, the cytoplasm was scattered, and on day 14, the cells were fully integrated with the biomaterial. We also observed significant macrophage activation; analysis of the MTT assay and the concentration of nitric oxide revealed no cytotoxicity of the biomaterial. CONCLUSION The BCM allowed the expansion and biointegration of bone marrow progenitor cells with a stable cytotoxic profile, thus presenting itself as a biomaterial with potential for tissue engineering.
Collapse
Affiliation(s)
- Marcello de Alencar Silva
- Integrated Nucleus of Morphology and Stem Cell Research, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | - Matheus Levi Tajra Feitosa
- Integrated Nucleus of Morphology and Stem Cell Research, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | | | - Bartolomeu Cruz Viana Neto
- Department of Physics/Advanced Microscopy Multiuser Laboratory/Laboratory of Physics Material, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Maria Angélica Miglino
- Departament of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Angela Faustino Jozala
- Laboratory of Industrial Microbiology and Fermentation Process, University of Sorocaba, Sorocaba, São Paulo, Brazil
| | | |
Collapse
|
21
|
Khan RU, Wang L, Yu H, Zain-ul-Abdin, Akram M, Wu J, Haroon M, Ullah RS, Deng Z, Xia X. Recent progress in the synthesis of poly(organo)phosphazenes and their applications in tissue engineering and drug delivery. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4757] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Wang X, Zhang J, Cui W, Fang Y, Li L, Ji S, Mao D, Ke T, Yao X, Ding D, Feng G, Kong D. Composite Hydrogel Modified by IGF-1C Domain Improves Stem Cell Therapy for Limb Ischemia. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4481-4493. [PMID: 29327586 DOI: 10.1021/acsami.7b17533] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stem cell treatment for critical limb ischemia yields a limited therapeutic effect due to cell loss and dysfunction caused by local ischemic environment. Biomimetic scaffolds emerge as ideal cell delivery vehicles for regulating cell fate via mimicking the components of stem cell niche. Herein, we prepared a bioactive hydrogel by mixing chitosan and hyaluronic acid that is immobilized with C domain peptide of insulin-like growth factor 1 (IGF-1C) and examined whether this hydrogel could augment stem cell survival and therapeutic potential. Our results showed that IGF-1C-modified hydrogel increased in vitro viability and proangiogenic activity of adipose-derived stromal cells (ADSCs). Moreover, cotransplantation of hydrogel and ADSCs into ischemic hind limbs of mice effectively ameliorated blood perfusion and muscle regeneration, leading to superior limb salvage. These therapeutic effects can be ascribed to improved ADSC retention, angiopoientin-1 secretion, and neovascularization, as well as reduced inflammatory cell infiltration. Additionally, hydrogel enhanced antifibrotic activity of ADSCs, as evidenced by decreased collagen accumulation at late stage. Together, our findings indicate that composite hydrogel modified by IGF-1C could promote survival and proangiogenic capacity of ADSCs and thereby represents a feasible option for cell-based treatment for critical limb ischemia.
Collapse
Affiliation(s)
- Xiaomin Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Jimin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Weilong Cui
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Yuan Fang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Li Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
- Department of Endocrinology, The Second Affiliated Hospital, Kunming Medical University , Kunming 650101, Yunnan, China
| | - Shenglu Ji
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Duo Mao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Tingyu Ke
- Department of Endocrinology, The Second Affiliated Hospital, Kunming Medical University , Kunming 650101, Yunnan, China
| | - Xin Yao
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer , Tianjin 300060, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| | - Guowei Feng
- Department of Genitourinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer , Tianjin 300060, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University , Tianjin 300071, China
| |
Collapse
|
23
|
Yi DK, Nanda SS, Kim K, Tamil Selvan S. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J Mater Chem B 2017; 5:9429-9451. [DOI: 10.1039/c7tb02532g] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanotechnology advancements for stem cell differentiation, labeling, tracking and therapeutic applications in cardiac repair, bone, and liver regeneration are delineated.
Collapse
Affiliation(s)
- Dong Kee Yi
- Department of Chemistry
- Myongji University
- Yongin 449-728
- South Korea
| | | | - Kwangmeyung Kim
- Center for Theragnosis
- Biomedical Research Institute
- Korea Institute of Science and Technology (KIST)
- Seoul
- South Korea
| | | |
Collapse
|