1
|
Zhu W, Li B, Liu J, Sun S, Zhang Y, Zhang D, Li C, Sun T, Qin H, Shi J, Shi Z. A Versatile Approach for the Synthesis of Antimicrobial Polymer Brushes on Natural Rubber/Graphene Oxide Composite Films via Surface-Initiated Atom-Transfer Radical Polymerization. Molecules 2024; 29:913. [PMID: 38398663 PMCID: PMC10891501 DOI: 10.3390/molecules29040913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
A simple strategy was adopted for the preparation of an antimicrobial natural rubber/graphene oxide (NR/GO) composite film modified through the use of zwitterionic polymer brushes. An NR/GO composite film with antibacterial properties was prepared using a water-based solution-casting method. The composited GO was dispersed uniformly in the NR matrix and compensated for mechanical loss in the process of modification. Based on the high bromination activity of α-H in the structure of cis-polyisoprene, the composite films were brominated on the surface through the use of N-bromosuccinimide (NBS) under the irradiation of a 40 W tungsten lamp. Polymerization was carried out on the brominated films using sulfobetaine methacrylate (SBMA) as a monomer via surface-initiated atom transfer radical polymerization (SI-ATRP). The NR/GO composite films modified using polymer brushes (PSBMAs) exhibited 99.99% antimicrobial activity for resistance to Escherichia coli and Staphylococcus aureus. A novel polymer modification strategy for NR composite materials was established effectively, and the enhanced antimicrobial properties expand the application prospects in the medical field.
Collapse
Affiliation(s)
- Wenya Zhu
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Bangsen Li
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Jinrui Liu
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Shishu Sun
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Yan Zhang
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Dashuai Zhang
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Chen Li
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Tianyi Sun
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Huaide Qin
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Jianjun Shi
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| | - Zaifeng Shi
- Collage of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (W.Z.); (B.L.); (J.L.); (Y.Z.); (C.L.); (T.S.)
- Key Laboratory of Water Pollution Treatment and Resource Reuse of Hainan Province, Haikou 571158, China
- Haikou Key Laboratory of Water Environmental Pollution Control, Haikou 571158, China
| |
Collapse
|
2
|
Munguia-Lopez JG, Jiang T, Ferlatte A, Fajardo-Diaz JL, Munoz-Sandoval E, Tran SD, Kinsella JM. Highly Concentrated Nitrogen‐Doped Carbon Nanotubes in Alginate–Gelatin 3D Hydrogels Enable in Vitro Breast Cancer Spheroid Formation. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Jose G. Munguia-Lopez
- Faculty of Dentistry McGill University Montreal Quebec H3A 0C7 Canada
- Department of Bioengineering McGill University Montreal Quebec H3A 0E9 Canada
| | - Tao Jiang
- Department of Intelligent Machinery and Instrument College of Intelligence Science and Technology National University of Defense Technology Changsha Human 410073 China
| | - Audrey Ferlatte
- Department of Bioengineering McGill University Montreal Quebec H3A 0E9 Canada
| | - Juan L. Fajardo-Diaz
- Advanced Materials Department Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICyT) San Luis Potosi San Luis Potosi 78216 Mexico
- Global Aqua Innovation Center and Research Initiative for Supra-Materials Shinshu University 4-17-1 Wakasato Nagano 380-8553 Japan
| | - Emilio Munoz-Sandoval
- Advanced Materials Department Instituto Potosino de Investigación Científica y Tecnológica, A.C. (IPICyT) San Luis Potosi San Luis Potosi 78216 Mexico
| | - Simon D. Tran
- Faculty of Dentistry McGill University Montreal Quebec H3A 0C7 Canada
| | - Joseph M. Kinsella
- Department of Bioengineering McGill University Montreal Quebec H3A 0E9 Canada
| |
Collapse
|
3
|
Combination of Mussel Inspired Method and "Thiol-Michael" Click Reaction for Biocompatible Alginate-Modified Carbon Nanotubes. NANOMATERIALS 2021; 11:nano11092191. [PMID: 34578507 PMCID: PMC8471357 DOI: 10.3390/nano11092191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022]
Abstract
Carbon nanotubes (CNTs) have attracted great interest in biomedical fields. However, the potential toxicity and poor dispersion of CNTs have greatly limited its application. In this work, a mussel-inspired method combined with the "thiol-Michael" click reaction was used to modify the surface of CNT and improve its properties. Firstly, a CNT was treated with dopamine, and then alginate grafted with L-cysteine was anchored onto the surface of CNT via click reaction, which realized the long-time dispersion of CNT in water. Furthermore, the in vitro test also demonstrated that the alginate may improve the biocompatibility of CNT, and thus may broaden the application of CNT in the biomedical field.
Collapse
|
4
|
Koler A, Krajnc P. Surface Modification of Hypercrosslinked Vinylbenzyl Chloride PolyHIPEs by Grafting via RAFT. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amadeja Koler
- PolyOrgLab Faculty of Chemistry and Chemical Engineering University of Maribor Smetanova 17 Maribor SI‐2000 Slovenia
| | - Peter Krajnc
- PolyOrgLab Faculty of Chemistry and Chemical Engineering University of Maribor Smetanova 17 Maribor SI‐2000 Slovenia
| |
Collapse
|
5
|
Pourjavadi A, Kohestanian M, Streb C. pH and thermal dual-responsive poly(NIPAM-co-GMA)-coated magnetic nanoparticles via surface-initiated RAFT polymerization for controlled drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110418. [PMID: 31924030 DOI: 10.1016/j.msec.2019.110418] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/17/2019] [Accepted: 11/10/2019] [Indexed: 02/08/2023]
Abstract
Herein, a novel type of multifunctional magnetic nanoparticles with dual thermal and pH-responsive behavior was fabricated as the carrier for delivery of doxorubicin (DOX). Fe3O4@SiO2 magnetic nanoparticles, were grafted with polymer brushes consisting of poly (NIPAM-co-GMA) (PNG) chains via surface initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization. The polymer brushes were then modified with hydrazine groups as DOX binding sites. The prepared multifunctional magnetic nanoparticles were characterized by FT-IR, 1H NMR, XPS, TGA, DLS, VSM, GPC, TEM, and XRD analysis. The in vitro drug release of the multifunctional magnetic nanoparticles was examined at 37 °C (above LCST) and 25 °C (below LCST) in different pH media and exhibited excellent pH- and thermo-sensitive behavior. The results show that the Fe3O4@SiO2@PNG-Hy fabricated via SI-RAFT polymerization is a viable candidate material for tumor treatment studies.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Mohammad Kohestanian
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee, 89081 Ulm, Germany
| |
Collapse
|
6
|
Chemical Synthesis and Characterization of Poly(poly(ethylene glycol) methacrylate)-Grafted CdTe Nanocrystals via RAFT Polymerization for Covalent Immobilization of Adenosine. Polymers (Basel) 2019; 11:polym11010077. [PMID: 30960061 PMCID: PMC6401988 DOI: 10.3390/polym11010077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/25/2018] [Accepted: 12/31/2018] [Indexed: 12/16/2022] Open
Abstract
This paper describes the functionalization of poly(poly(ethylene glycol) methacrylate) (PPEGMA)-grafted CdTe (PPEGMA-g-CdTe) quantum dots (QDs) via surface-initiated reversible addition–fragmentation chain transfer (SI-RAFT) polymerization for immobilization of adenosine. Initially, the hydroxyl-coated CdTe QDs, synthesized using 2-mercaptoethanol (ME) as a capping agent, were coupled with a RAFT agent, S-benzyl S′-trimethoxysilylpropyltrithiocarbonate (BTPT), through a condensation reaction. Then, 2,2′-azobisisobutyronitrile (AIBN) was used to successfully initiate in situ RAFT polymerization to generate PPEGMA-g-CdTe nanocomposites. Adenosine-above-PPEGMA-grafted CdTe (Ado-i-PPEGMA-g-CdTe) hybrids were formed by the polymer shell, which had successfully undergone bioconjugation and postfunctionalization by adenosine (as a nucleoside). Fourier transform infrared (FT-IR) spectrophotometry, energy-dispersive X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy results indicated that a robust covalent bond was created between the organic PPEGMA part, cadmium telluride (CdTe) QDs, and the adenosine conjugate. The optical properties of the PPEGMA-g-CdTe and Ado-i-PPEGMA-g-CdTe hybrids were investigated by photoluminescence (PL) spectroscopy, and the results suggest that they have a great potential for application as optimal materials in biomedicine.
Collapse
|