1
|
Li R, Han S, Gong P, Zou H. Synthesis of Raspberry-like PMMA Particles In a Ternary Solvent Mixture with Binary Initiators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24921-24933. [PMID: 39530842 DOI: 10.1021/acs.langmuir.4c02861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
There is continuing interest in the synthesis of raspberry-like polymer particles, among which most of the reports have tended to focus on polymer composite particles, while there are relatively few examples of polymer particles with a single component. In this study, raspberry-like poly(methyl methacrylate)(PMMA) particles were synthesized by a one-step method in a ternary solvent mixture with binary initiators. The effects of different polymerization parameters, including the solvent composition, the initiator composition, the stabilizer component, the polymerization temperature, the stirring rate, and the nature of the monomer, on the morphology and size of the resulting particles were studied. A plausible mechanism for raspberry-like particle formation was suggested based on the monitoring data of the polymerization kinetics. The raspberry-like PMMA particles have a high dispersion stability in a salty aqueous environment.
Collapse
Affiliation(s)
- Ruisi Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Shuying Han
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Peiyuyao Gong
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Hua Zou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
2
|
Jiang X, Zhang D, Wang Y, Wang R, Kong XZ, Zhu X, Li S, Gu X. Facile Preparation of Raspberry-Like SiO 2@Polyurea Microspheres with Tunable Wettability and Their Application for Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57672-57686. [PMID: 39380485 DOI: 10.1021/acsami.4c12378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Raspberry-like microspheres have been widely used as superhydrophobic materials, photonic crystals, drug carriers, etc. Nevertheless, their preparation methods, usually consisting of multiple steps, are generally time- and energy-consuming. Herein raspberry-like SiO2@polyurea microspheres (SiO2@PUM) are readily prepared via a one-step precipitation polymerization of isophorone diisocyanate in a H2O/acetone mixture with the presence of SiO2 particles. The sphere size, surface roughness, and SiO2 content of SiO2@PUM are easily adjustable by varying the experimental conditions. TEM and SEM observations reveal that the final SiO2@PUM exhibits a core-shell structure, with polyurea (PU) in the core and SiO2 particles as the shell. In the process, the SiO2 particles were initially located on the PUM surface as a monolayer. With the reaction proceeding, the monolayer of SiO2 particles became thicker, forming a thicker layer of SiO2 particles on PUM due to the accumulation of SiO2 particles, leading to a multilayer structure of SiO2 particles on the shell of SiO2@PUM. The formation mechanism of the raspberry-like SiO2@PUM was thoroughly discussed and ascribed to electrostatic attraction between the positively charged PU and negatively charged SiO2 particles. Once dried, SiO2@PUM was superhydrophobic and turned hydrophilic if water-wetted. Using a layer of SiO2@PUM, effective separation with good reusability for a variety of oil-water mixtures was achieved regardless of the oil density and types of oil-water emulsions. This work presents a novel protocol for the preparation of raspberry-like microspheres with tunable wettability via a rapid and green process, and the resulting microspheres are highly effective for the separation of diverse types of oil-water mixtures.
Collapse
Affiliation(s)
- Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Diankai Zhang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yujun Wang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Ruiqing Wang
- Department of Basic Courses, Shandong Shenghan Finance and Trade Vocational College, Jinan 250316, China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoli Zhu
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Shusheng Li
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiangling Gu
- Shandong Provincial Engineering Research Center of Novel Pharmaceutical Excipients and Controlled Release Preparations, College of Health and Medicine, Dezhou University, Dezhou 253023, China
| |
Collapse
|
3
|
Cheng D, Han X, Zou J, Li Z, Wang M, Liu Y, Wang K, Li Y. Enhancing Cytochrome C Recognition and Adsorption through Epitope-Imprinted Mesoporous Silica with a Tailored Pore Size. ACS OMEGA 2024; 9:1134-1142. [PMID: 38222537 PMCID: PMC10785086 DOI: 10.1021/acsomega.3c07387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
We have reported the synthesis of epitope-imprinted mesoporous silica (EIMS) with an average pore size of 6.2 nm, which is similar to the geometrical size of the target protein, cytochrome C (Cyt c, 2.6 × 3.2 × 3.3 nm3), showing great recognition and large-scale adsorption performance. The characteristic fragment of Cyt c was used as a template and docked onto the surface of C16MIMCl micelles via multiple interactions. Nitrogen adsorption-desorption and transmission electron microscopy confirmed the successful preparation of EIMS. Due to the ordered pore structure, larger pore size, and high specific surface area, the prepared EIMS show superior specificity (IF = 3.8), excellent selectivity toward Cyt c, high adsorption capacity (249.6 mg g-1), and fast adsorption equilibrium (10 min). This study demonstrates the potential application of EIMS with a controllable pore size for high-effective and large-scale separation of Cyt c, providing a new approach for effective biomacromolecular recognition.
Collapse
Affiliation(s)
- Dandan Cheng
- School
of Life Science, Wuchang University of Technology, Wuchang, Wuhan 430223, P. R. China
| | - Xin Han
- The
Key Laboratory of Space Applied Physics and Chemistry, School of Chemistry
and Chemical Engineering, Northwestern Polytechnical
University, Xi’an 710129, P. R. China
| | - Jiawen Zou
- School
of Life Science, Wuchang University of Technology, Wuchang, Wuhan 430223, P. R. China
| | - Zhenyu Li
- Xi’an
Jiaotong University Health Science Center, Xi’an 710061, P. R. China
| | - Meiru Wang
- Xi’an
Jiaotong University Health Science Center, Xi’an 710061, P. R. China
| | - Yuqing Liu
- Xi’an
Jiaotong University Health Science Center, Xi’an 710061, P. R. China
| | - Kexuan Wang
- Xi’an
Jiaotong University Health Science Center, Xi’an 710061, P. R. China
| | - Yan Li
- National
Local Joint Engineering Research Center for Precision Surgery &
Regenerative Medicine, First Affiliated
Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| |
Collapse
|
4
|
Yue B, Wang X, Lian L, Wang Y, Gao W, Zhang H, Zhao J, Lou D. A fiber-packed needle-type extraction device with ionic liquid-based molecularly imprinted polymer as coating for extraction of chlorobenzenes in water samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
5
|
On the interface between biomaterials and two-dimensional materials for biomedical applications. Adv Drug Deliv Rev 2022; 186:114314. [PMID: 35568105 DOI: 10.1016/j.addr.2022.114314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional (2D) materials have garnered significant attention due to their ultrathin 2D structures with a high degree of anisotropy and functionality. Reliable manipulation of interfaces between 2D materials and biomaterials is a new frontier for biomedical nanoscience and combining biomaterials with 2D materials offers a promising way to fabricate innovative 2D biomaterials composites with distinct functionality for biomedical applications. Here, we focus exclusively on a summary of the current work in the interface investigation of 2D biomaterials. Specifically, we highlight extraordinary features that make 2D materials so desirable, as well as the molecular level interactions between 2D materials and biomaterials that have been studied thus far. Furthermore, the approaches for investigating the interface characteristics of 2D biomaterials are presented and described in depth. To capture the emerging trend in mass manufacturing of 2D materials, we review the research progress on biomaterial-assisted exfoliation. Finally, we present a critical assessment of newly developed 2D biomaterials in biomedical applications.
Collapse
|
6
|
Hu X, Liu Y, Xia Y, Zhao F, Zeng B. A novel ratiometric electrochemical sensor for the selective detection of citrinin based on molecularly imprinted poly(thionine) on ionic liquid decorated boron and nitrogen co-doped hierarchical porous carbon. Food Chem 2021; 363:130385. [PMID: 34153678 DOI: 10.1016/j.foodchem.2021.130385] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 11/24/2022]
Abstract
Citrinin can cause serious human diseases, thus its detection in foods is necessary. Herein, a molecularly imprinted polymer-based ratiometric electrochemical sensor (MIP-RECS) was presented for citrinin detection. The sensor was fabricated by electropolymerization, using thionine as monomer and citrinin as template. The ionic liquid decorated boron and nitrogen co-doped hierarchical porous carbon (BN-HPC) as supporter, provided large surface for anchoring thionine and citrinin. Poly(thionine) not only acted as MIP, but also acted as reference probe. When [Fe(CN)6] 3-/4- was adopted as indicating probe, the resulting sensor demonstrated a wide linear detection range (i.e. 1 × 10-3-10 ng mL-1) and a low detection limit (i.e. 1 × 10-4 ng mL-1).The sensor was applied to the detection of spiked citrinin in real samples, and satisfactory recovery (i.e. 97% - 110%) was obtained. Hence, it was promising for citrinin detection.
Collapse
Affiliation(s)
- Xiaopeng Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yiwei Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Yide Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei Province, PR China.
| |
Collapse
|
7
|
Determination of patulin using dual-dummy templates imprinted electrochemical sensor with PtPd decorated N-doped porous carbon for amplification. Mikrochim Acta 2021; 188:148. [PMID: 33797604 DOI: 10.1007/s00604-021-04812-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/24/2021] [Indexed: 01/16/2023]
Abstract
A novel dual-dummy templates imprinted electrochemical sensor has been fabricated for the detection of patulin. Herein, 2-oxindole (2-oxin) and 6-hydroxynicotinic acid (6-HNA) as the dummy templates, 4-aminothiophenol as functional monomer, and ionic liquid (IL) as electropolymerization electrolyte are employed to prepare molecularly imprinted polymer (MIP) film. 2-Oxin and 6-HNA have multiple groups and the obtained MIP possesses different types of imprinted sites, thereby achieving a better recognition capacity than that of single-dummy imprinted film. ILs can regulate the density of molecularly imprinted film and facilitate effective molecular recognition. The composite of PtPd decorated N-doped porous carbon has good conductivity and large surface area, and can amplify the signal. With the aid of electrochemical probe [Fe(CN)6]3-/4- (0.16 V vs. SCE) patulin can be detected. Under the optimal conditions, this sensor shows a detection range from 0.01 to 10 μg L-1, with a detection limit of 7.5 × 10-3 μg L-1 (S/N = 3). Two spiked juice samples were analyzed by this method, and the recovery ranges from 94 to 99.8% with RSD values of 2.4-4.6% (n = 3), indicating that this method can be applied for the detection of patulin in real samples. A novel dual-dummy templates imprinted electrochemical sensor is firstly fabricated for the detection of patulin. This sensor exhibits high recognition capacity and sensitivity.
Collapse
|
8
|
Liu H, Jin P, Zhu F, Nie L, Qiu H. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116132] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Abstract
The strategies used for the preparation of raspberry-like polymer composite particles are summarized comprehensively.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Shuxia Zhai
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
10
|
Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: A review. Biosens Bioelectron 2019; 149:111830. [PMID: 31710919 DOI: 10.1016/j.bios.2019.111830] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 01/03/2023]
Abstract
As promising alternatives to natural receptors, artificial molecularly imprinted polymers (MIPs) have received great attention in biotechnology. Nevertheless, some bottlenecks limit their further development, including low adsorption capacity, poor recognition efficiency, slow response, and insipid aqueous compatibility. Ionic liquids (ILs) show the features of tailored structures and properties, high conductivity, good solubility, and excellent stability. Because of these advantages, they have found intensive use in MIPs by remedying the latter's shortcomings. In this review, we summarize the integration of ILs and MIPs for biorecognition and biosensing. The versatile roles of ILs in improving the performance of MIPs are firstly summarized, including serving as solvents, porogens, functional monomers, organic surface modifiers, dummy templates, and cross-linkers. Then, specific applications of IL-based MIPs in peptide recognition, protein sensing, and food safety analysis are discussed. Finally, future trends and challenges for the design and development of IL-based MIPs and their applications in the biorecognition and biosensing are proposed.
Collapse
|
11
|
Du C, Shui Y, Bai Y, Cheng Y, Wang Q, Zheng X, Zhao Y, Wang S, Dong W, Yang T, Wang L. Bottom-Up Formation of Carbon-Based Magnetic Honeycomb Material from Metal-Organic Framework-Guest Polyhedra for the Capture of Rhodamine B. ACS OMEGA 2019; 4:5578-5585. [PMID: 31459714 PMCID: PMC6648639 DOI: 10.1021/acsomega.8b03664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 02/07/2019] [Indexed: 06/10/2023]
Abstract
Three-dimensional carbon-based porous materials have proven to be quite useful for tailoring material properties in the energy conservation and environmental protection applications. In view of the three-dimensional and well-defined structure of metal-organic frameworks (MOFs), a novel carbon-based magnetic porous material (HKUST-Fe3O4) has been designed and constructed by MOF-guest interactions of high-temperature pyrolysis. The obtained HKUST-Fe3O4 exhibited the unique features of superparamagnetism, a macro/mesoporous structure, environmental protection (inexistence of toxic heavy metal ions), and physicochemical stability and has shown high adsorption capacity and rapid adsorption for carcinogenic organic pollutants (for example, rhodamine B) with an environmentally friendly character and excellent reusability. We demonstrate that the unique/superior advantages of HKUST-Fe3O4 could meet the requirements of environment cleaning, especially for removing the targeted organic pollutant from water. Moreover, the specific HKUST-Fe3O4 and organic pollutant interaction mechanism has been analyzed in detail via parameter-free calculations. This study proposes a promising strategy for constructing novel carbon-based magnetic nanomaterials for various applications, not limitated to pollutant removal.
Collapse
Affiliation(s)
- Chunbao Du
- College
of Food Science and Engineering, Northwest
A&F University, Yangling 712100, Shaanxi, China
| | - Yuhang Shui
- College
of Food Science and Engineering, Northwest
A&F University, Yangling 712100, Shaanxi, China
| | - Yaowen Bai
- College
of Food Science and Engineering, Northwest
A&F University, Yangling 712100, Shaanxi, China
| | - Yuan Cheng
- Institute
of High Performance Computing, A*STAR, 138632 Singapore
| | - Qinzhi Wang
- College
of Food Science and Engineering, Northwest
A&F University, Yangling 712100, Shaanxi, China
| | - Xiaohan Zheng
- College
of Food Science and Engineering, Northwest
A&F University, Yangling 712100, Shaanxi, China
| | - Yijian Zhao
- College
of Food Science and Engineering, Northwest
A&F University, Yangling 712100, Shaanxi, China
| | - Shuxuan Wang
- College
of Food Science and Engineering, Northwest
A&F University, Yangling 712100, Shaanxi, China
| | - Weihang Dong
- College
of Food Science and Engineering, Northwest
A&F University, Yangling 712100, Shaanxi, China
| | - Tao Yang
- College
of Food Science and Engineering, Northwest
A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College
of Food Science and Engineering, Northwest
A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
12
|
Jia X, Hu X, Wang W, Du C. Non-covalent loading of ionic liquid-functionalized nanoparticles for bovine serum albumin: experiments and theoretical analysis. RSC Adv 2019; 9:19114-19120. [PMID: 35516866 PMCID: PMC9065314 DOI: 10.1039/c9ra02265a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/03/2019] [Indexed: 11/26/2022] Open
Abstract
Biomacromolecule-based nanomaterials have attracted much attention due to their excellent function in sensing, catalysis, medicine, biology and recognition. In this work, a silane-coupling ionic liquid, 1-(3-trimethoxysilylpropyl)-3-methylimidazolium chloride ([TMIM]Cl), was synthesized and applied to prepare ionic liquid-functionalized nanoparticles (SiO2@IL) using surface grafting technology. By employing multiple non-covalent interactions, including electrostatic interactions, hydrogen bonding and π–π stacking, the obtained functional nanoparticles were able to bind bovine serum albumin (BSA) with strong binding affinity, which has been illustrated through experiments and theoretical calculations. Moreover, the stability of SiO2@IL further demonstrated that it is promising in applications for biomacromolecule immobilization. Non-covalent binding between nanosilica and bovine serum albumin has been illustrated by experiments and theoretical calculations.![]()
Collapse
Affiliation(s)
- Xingang Jia
- School of Natural and Applied Science
- Northwestern Polytechnical University
- Xi'an 710072
- P. R China
- College of Chemistry and Chemical Engineering
| | - Xiaoling Hu
- School of Natural and Applied Science
- Northwestern Polytechnical University
- Xi'an 710072
- P. R China
| | - Wenzhen Wang
- College of Chemistry and Chemical Engineering
- Xi'an Shiyou University
- Xi'an 710065
- P. R. China
| | - Chunbao Du
- College of Chemistry and Chemical Engineering
- Xi'an Shiyou University
- Xi'an 710065
- P. R. China
| |
Collapse
|
13
|
Tang H, Ye H, Zhang H, Zheng Y. Aggregation of nanoparticles regulated by mechanical properties of nanoparticle-membrane system. NANOTECHNOLOGY 2018; 29:405102. [PMID: 30020084 DOI: 10.1088/1361-6528/aad443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The aggregation of nanoparticles (NPs) on the cell membrane is crucial for the cellular uptake process and has important biological implications in protein-membrane interactions. In this paper, we systematically investigate how the aggregation is regulated by the mechanical properties of the NP-membrane system, including the membrane tension, and the size and shape of the NPs. Results show that when NPs aggregate parallel to the cell membrane, increasing the membrane tension will modulate the membrane-mediated interaction between the NPs from attractive to attractive-repulsive and finally to purely repulsive. In contrast, the membrane-mediated interaction is attractive and independent of the membrane tension when the NPs aggregate to a tubular configuration. For the aggregation of NPs of different sizes, the large-size NP is wrapped to a greater extent than the small-size NP. For the aggregation of nonspherical NPs, low aspect ratio and weak NP-membrane adhesion strength lead to the side-to-side configuration, whereas a system with a high aspect ratio and strong NP-membrane adhesion strength prefers the tip-to-tip configuration. Importantly, NPs of different sizes and anisotropic shapes are found to facilitate the aggregation process by reducing the energy barrier that should be overcome during the aggregation. The results reveal the mechanism of the aggregation of NPs on the cell membrane and provide guidelines to the design of NP-based drug delivery systems.
Collapse
Affiliation(s)
- Huayuan Tang
- International Research Center for Computational Mechanics, State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | | | | | | |
Collapse
|
14
|
Ding S, Li Z, Cheng Y, Du C, Gao J, Zhang YW, Zhang N, Li Z, Chang N, Hu X. Enhancing adsorption capacity while maintaining specific recognition performance of mesoporous silica: a novel imprinting strategy with amphiphilic ionic liquid as surfactant. NANOTECHNOLOGY 2018; 29:375604. [PMID: 29926809 DOI: 10.1088/1361-6528/aace10] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In order to facilitate the broad applications of molecular recognition materials in biomedical areas, it is critical to enhance their adsorption capacity while maintaining their excellent recognition performance. In this work, we designed and synthesized well-defined peptide-imprinted mesoporous silica (PIMS) for specific recognition of an immunostimulating hexapeptide from human casein (IHHC) by using amphiphilic ionic liquid as the surfactant to anchor IHHC via a combination of one-step sol-gel method and docking oriented imprinting approach. Thereinto, theoretical calculation was employed to reveal the multiple binding interactions and dual-template configuration between amphiphilic ionic liquid and IHHC. The fabricated PIMS was characterized and an in-depth analysis of specific recognition mechanism was conducted. Results revealed that both adsorption and recognition capabilities of PIMS far exceeded that of the NIMS's. More significantly, the PIMS exhibited a superior binding capacity (60.5 mg g-1), which could increase 18.9% than the previous work. The corresponding imprinting factor and selectivity coefficient could reach up to 4.51 and 3.30, respectively. The PIMS also possessed lickety-split kinetic binding for IHHC, where the equilibrium time was only 10 min. All of these merits were due to the high surface area and the synergistic effect of multiple interactions (including hydrogen bonding, π-π stacking, ion-ion electrostatic interactions and van der Waals interactions, etc) between PIMS and IHHC in imprinted sites. The present work suggests the potential application of PIMS for large-scale and high-effective separation of IHHC, which may lead to their broad applications in drug/gene deliver, biosensors, catalyst and so on.
Collapse
Affiliation(s)
- Shichao Ding
- Department of Applied Chemistry, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Nature and Applied Science, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|