1
|
Kashapov R, Razuvayeva Y, Fedorova E, Zakharova L. The role of macrocycles in supramolecular assembly with polymers. SOFT MATTER 2024; 20:8549-8560. [PMID: 39470183 DOI: 10.1039/d4sm01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Recently, supramolecular self-assembly has attracted the attention of researchers worldwide because it enables the creation of nanostructures with unique properties without additional costs. Spontaneous organization of molecules allows the design and development of new nanostructures that can interact with drugs and living cells and generate a response. Therefore, supramolecular structures have enormous potential and can be in demand in various fields of healthcare and ecology. One of the widely used building blocks of such supramolecular assemblies is polymers. This review examines the joint aggregation behavior of various macrocycles (cyclodextrins, calixarenes, cucurbiturils, porphyrins, and pillararenes) with polymers, the functional properties of these supramolecular systems and their potential applications.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Elena Fedorova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| |
Collapse
|
2
|
Prigyai N, Bunchuay T, Ruengsuk A, Yoshinari N, Manissorn J, Pumirat P, Sapudom J, Kosiyachinda P, Thongnuek P. Photo-Controlled Reversible Uptake and Release of a Modified Sulfamethoxazole Antibiotic Drug from a Pillar[5]arene Cross-Linked Gelatin Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8250-8265. [PMID: 38326106 DOI: 10.1021/acsami.3c14760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pillararene cross-linked gelatin hydrogels were designed and synthesized to control the uptake and release of antibiotics using light. A suite of characterization techniques ranging from spectroscopy (FT-IR, 1H and 13C NMR, and MAS NMR), X-ray crystallographic analysis, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) was employed to investigate the physicochemical properties of hydrogels. The azobenzene-modified sulfamethoxazole (Azo-SMX) antibiotic was noncovalently incorporated into the hydrogel via supramolecular host-guest interactions to afford the A-hydrogel. While in its ground state, the Azo-SMX guest has a trans configuration structure and forms a thermodynamically stable inclusion complex with the pillar[5]arene motif in the hydrogel matrix. When the A-hydrogel was exposed to 365 nm UV light, Azo-SMX underwent a photoisomerization reaction. This changed the structure of Azo-SMX from trans to cis, and the material was released into the environment. The Azo-SMX released from the hydrogel was effective against both Gram-positive and Gram-negative bacteria. Importantly, the A-hydrogel exhibited a striking difference in antibacterial activity when applied to bacterial colonies in the presence and absence of UV light, highlighting the switchable antibacterial activity of A-hydrogel aided by light. In addition, all hydrogels containing pillar[5]arenes have demonstrated biocompatibility and effectiveness as scaffolds for biological and medical purposes.
Collapse
Affiliation(s)
- Nicha Prigyai
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanthapatra Bunchuay
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Araya Ruengsuk
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nobuto Yoshinari
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Juthathip Manissorn
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattarapon Pumirat
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Pahol Kosiyachinda
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Peerapat Thongnuek
- Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE), Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Yan M, Zhou J. Pillararene-Based Supramolecular Polymers for Cancer Therapy. Molecules 2023; 28:molecules28031470. [PMID: 36771136 PMCID: PMC9919256 DOI: 10.3390/molecules28031470] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Supramolecular polymers have attracted considerable interest due to their intriguing features and functions. The dynamic reversibility of noncovalent interactions endows supramolecular polymers with tunable physicochemical properties, self-healing, and externally stimulated responses. Among them, pillararene-based supramolecular polymers show great potential for biomedical applications due to their fascinating host-guest interactions and easy modification. Herein, we summarize the state of the art of pillararene-based supramolecular polymers for cancer therapy and illustrate its developmental trend and future perspective.
Collapse
|
4
|
Shao Y, Xiang L, Zhang W, Chen Y. Responsive shape-shifting nanoarchitectonics and its application in tumor diagnosis and therapy. J Control Release 2022; 352:600-618. [PMID: 36341936 DOI: 10.1016/j.jconrel.2022.10.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Nanodrug delivery system has a great application in the treatment of solid tumors by virtue of EPR effect, though its success in clinics is still limited by its poor extravasation, small intratumoral accumulation, and weak tumor penetration. The shape of nanoparticles (NPs) greatly affects their circulation time, flow behavior, intratumoral amassing, cell internalization as well as tumor tissue penetration. Generally, short nanorods and 100-200 nm spherical nanocarriers possess nice circulation behaviors, nanorods and nanofibers with a large aspect ratio (AR) cumulate well at tumor sites, and tiny nanospheres/disks (< 50 nm) and short nanorods with a low AR achieve a favorable tumor tissue penetration. The AR and surface evenness of NPs also tune their cell contact, cell ingestion, and drug accumulation at tumor sites. Therefore, adopting stimulus-responsive shape-switching (namely, shape-shifting nanoarchitectonics) can not only ensure a good circulation and extravasation for NPs, but also and more importantly, promote their amassing, retention, and penetration in tumor tissues to maximize therapeutic efficacy. Here we review the recently developed shape-switching nanoarchitectonics of antitumoral NPs based on stimulus-responsiveness, demonstrate how successful they are in tumor shrinking and elimination, and provide new ideas for the optimization of anticancer nanotherapeutics.
Collapse
Affiliation(s)
- Yaru Shao
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Li Xiang
- Hengyang Medical School, University of South China, Hengyang 410001, China
| | - Wenhui Zhang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
Radu ER, Semenescu A, Voicu SI. Recent Advances in Stimuli-Responsive Doxorubicin Delivery Systems for Liver Cancer Therapy. Polymers (Basel) 2022; 14:5249. [PMID: 36501642 PMCID: PMC9738136 DOI: 10.3390/polym14235249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Doxorubicin (DOX) is one of the most commonly used drugs in liver cancer. Unfortunately, the traditional chemotherapy with DOX presents many limitations, such as a systematic release of DOX, affecting both tumor tissue and healthy tissue, leading to the apparition of many side effects, multidrug resistance (MDR), and poor water solubility. Furthermore, drug delivery systems' responsiveness has been intensively studied according to the influence of different internal and external stimuli on the efficiency of therapeutic drugs. In this review, we discuss both internal stimuli-responsive drug-delivery systems, such as redox, pH and temperature variation, and external stimuli-responsive drug-delivery systems, such as the application of magnetic, photo-thermal, and electrical stimuli, for the controlled release of Doxorubicin in liver cancer therapy, along with the future perspectives of these smart delivery systems in liver cancer therapy.
Collapse
Affiliation(s)
- Elena Ruxandra Radu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Augustin Semenescu
- Faculty of Materials Science, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Splaiul Independentei 54, 030167 Bucharest, Romania
| | - Stefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
6
|
Morozova JE, Shumatbaeva AM, Antipin IS. Colloidal Solutions of Supramolecular para/meta-Cyclophane–Polyelectrolyte Complexes: Examples, Properties, and Application. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x2270003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Tumor microenvironment dual-responsive nanovesicles from one functional group based on a water-soluble xanthate capped pillar[5]arene for enhancing the effect of chemotherapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Su Z, Li X, Xi Y, Xie T, Liu Y, Liu B, Liu H, Xu W, Zhang C. Microbe-mediated transformation of metal sulfides: Mechanisms and environmental significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153767. [PMID: 35157862 DOI: 10.1016/j.scitotenv.2022.153767] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Microorganisms play a key role in the natural circulation of various constituent elements of metal sulfides. Some microorganisms (such as Thiobacillus ferrooxidans) can promote the oxidation of metal sulfides to increase the release of heavy metals. However, other microorganisms (such as Desulfovibrio vulgaris) can transform heavy metals into metal sulfides crystals. Therefore, insight into the metal sulfides transformation mediated by microorganisms is of great significance to environmental protection. In this review, first, we discuss the mechanism and influencing factors of microorganisms transforming heavy metals into metal sulfides crystals in different environments. Then, we explore three microbe-mediated transformation forms of heavy metals to metal sulfides and their environmental applications: (1) transformation to metal sulfides precipitation for metal resource recovery; (2) transformation to metal sulfides nanoparticles (NPs) for pollutant treatment; (3) transformation to "metal sulfides-microbe" biohybrid system for clean energy production and pollutant remediation. Finally, we further provide critical views on the application of microbe-mediated metal sulfides transformation in the environmental field and discuss the need for future research.
Collapse
Affiliation(s)
- Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Bo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
9
|
Zheng M, Yuan J. Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness. Org Biomol Chem 2021; 20:749-767. [PMID: 34908082 DOI: 10.1039/d1ob01823j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amphiphilic polymers can self-assemble to form nanoparticles with different structures under suitable conditions. Polymer nanoparticles functionalized with aromatic azo groups are endowed with photo-responsive properties. In recent years, a variety of photoresponsive polymers and nanoparticles have been developed based on azobenzene, using different molecular design strategies and synthetic routes. This article reviews the progress of this rapidly developing research field, focusing on the structure, synthesis, assembly and response of photo-responsive polymer assemblies. According to the molecular structure, photo-responsive polymers can be divided into linear polymers containing azobenzene in a side chain, linear polymers containing azobenzene in the main chain, linear polymers containing azobenzene in an end group, branched polymers containing azobenzene and supramolecular polymers containing azobenzene. These systems have broad biomedical application prospects in the field of drug delivery and imaging applications.
Collapse
Affiliation(s)
- Mingxin Zheng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Suárez-Cruz A, Molina-Pinilla I, Hakkou K, Rangel-Núñez C, Bueno-Martínez M. Novel poly(azoamide triazole)s containing twin azobenzene units in the backbone. Synthesis, characterization, and in vitro degradation studies. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Lin Y, Hu W, Bai X, Ju Y, Cao C, Zou S, Tong Z, Cen C, Jiang G, Kong X. Glucose- and pH-Responsive Supramolecular Polymer Vesicles Based on Host-Guest Interaction for Transcutaneous Delivery of Insulin. ACS APPLIED BIO MATERIALS 2020; 3:6376-6383. [PMID: 35021768 DOI: 10.1021/acsabm.0c00813] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Smart insulin delivery platforms having the ability of mimicking pancreatic cells are highly expected for diabetes treatment. Herein, a smart glucose-sensitive insulin delivery platform on the basis of transcutaneous microneedles has been designed. The as-prepared microneedles are composed of glucose- and pH-responsive supramolecular polymer vesicles (PVs) as the drug storage and water soluble polymers as the matrix. The well-defined PVs are constructed from the host-guest inclusion complex between water-soluble pillar[5]arene (WP5) with pH-responsiveness and paraquat-ended poly(phenylboronic acid) (PPBA-G) with glucose-sensitivity. The drug-loaded PVs, including insulin and glucose oxidase (GOx) can quickly respond to elevated glucose level, accompanied by the disassociation of PVs and fast release of encapsulated insulin. Moreover, the insulin release rate is further accelerated by GOx, which generates gluconic acid at high glucose levels, thus decreasing the local pH. Therefore, the host-guest interaction between WP5 and PPBA-G is destroyed and a total structure disassociation of PVs takes place, contributing to a fast release of encapsulated insulin. The in vivo insulin delivery to diabetic rats displays a quick response to hyperglycemic levels and then can fast regulate the blood glucose concentrations to normal levels, which demonstrates that the obtained smart insulin device has a highly potential application in the treatment of diabetes.
Collapse
Affiliation(s)
- Yonghui Lin
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wei Hu
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaowen Bai
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanshan Ju
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Cong Cao
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shufen Zou
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology, and Materials Science, East China University of Technology, Nanchang 330013, China
| | - Zaizai Tong
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chao Cen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Guohua Jiang
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiangdong Kong
- College of Materials Science and Engineering & Institute of Smart Biomedical Materials & Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
12
|
Hua Y, Chen L, Hou C, Liu S, Pei Z, Lu Y. Supramolecular Vesicles Based on Amphiphilic Pillar[n]arenes for Smart Nano-Drug Delivery. Int J Nanomedicine 2020; 15:5873-5899. [PMID: 32848395 PMCID: PMC7429218 DOI: 10.2147/ijn.s255637] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022] Open
Abstract
Supramolecular vesicles are the most popular smart nano-drug delivery systems (SDDs) because of their unique cavities, which have high loading carrying capacity and controlled-release action in response to specific stimuli. These vesicles are constructed from amphiphilic molecules via host-guest complexation, typically with targeted stimuli-responsive units, which are particularly important in biotechnology and biomedicine applications. Amphiphilic pillar[n]arenes, which are novel and functional macrocyclic host molecules, have been widely used to construct supramolecular vesicles because of their intrinsic rigid and symmetrical structure, electron-rich cavities and excellent properties. In this review, we first explain the synthesis of three types of amphiphilic pillar[n]arenes: neutral, anionic and cationic pillar[n]arenes. Second, we examine supramolecular vesicles composed of amphiphilic pillar[n]arenes recently used for the construction of SDDs. In addition, we describe the prospects for multifunctional amphiphilic pillar[n]arenes, particularly their potential in novel applications.
Collapse
Affiliation(s)
- Yijie Hua
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| | - Lan Chen
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| | - Chenxi Hou
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Shengbo Liu
- School of Chemistry, Biology, and Material Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu215009, People’s Republic of China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Shaanxi Key Laboratory of Natural Products & Chemical Biology, Northwest A&F University, Yangling, Shaanxi712100, People’s Republic of China
| | - Yuchao Lu
- Analysis Center of College of Science & Technology, Hebei Agricultural University, Huanghua, Hebei061100, People’s Republic of China
| |
Collapse
|
13
|
Rostami-Tapeh-Esmail E, Golshan M, Salami-Kalajahi M, Roghani-Mamaqani H. UV-stabilized self-assembled amphiphilic triblock terpolymers supramolecular structures with low cytotoxicity as doxorubicin carriers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110745. [DOI: 10.1016/j.msec.2020.110745] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
|
14
|
Zhang J, Zhou ZH, Li L, Luo YL, Xu F, Chen Y. Dual Stimuli-Responsive Supramolecular Self-Assemblies Based on the Host–Guest Interaction between β-Cyclodextrin and Azobenzene for Cellular Drug Release. Mol Pharm 2020; 17:1100-1113. [DOI: 10.1021/acs.molpharmaceut.9b01142] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- JianGuo Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Zi-Hao Zhou
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Lin Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| | - Yashao Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, P.R. China
| |
Collapse
|
15
|
Lei Z, Tang Q, Ju Y, Lin Y, Bai X, Luo H, Tong Z. Block copolymer@ZIF-8 nanocomposites as a pH-responsive multi-steps release system for controlled drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:695-711. [DOI: 10.1080/09205063.2020.1713451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhentao Lei
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiuju Tang
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanshan Ju
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghui Lin
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaowen Bai
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haipeng Luo
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zaizai Tong
- College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
16
|
Pourjavadi A, Doroudian M, Bagherifard M, Bahmanpour M. Magnetic and light-responsive nanogels based on chitosan functionalized with Au nanoparticles and poly(N-isopropylacrylamide) as a remotely triggered drug carrier. NEW J CHEM 2020. [DOI: 10.1039/d0nj02345k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthesis of thermosensitive nanogels based on functionalized chitosan with Au nanoparticles (NPs) and poly(NIPAM) to release of drug molecules under light exposure.
Collapse
Affiliation(s)
- Ali Pourjavadi
- Polymer Research Laboratory
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Mohadeseh Doroudian
- Polymer Research Laboratory
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Mina Bagherifard
- Polymer Research Laboratory
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| | - Maryam Bahmanpour
- Polymer Research Laboratory
- Department of Chemistry
- Sharif University of Technology
- Tehran
- Iran
| |
Collapse
|
17
|
Ding JD, Jin WJ, Pei Z, Pei Y. Morphology transformation of pillararene-based supramolecular nanostructures. Chem Commun (Camb) 2020; 56:10113-10126. [DOI: 10.1039/d0cc03682j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this feature article, the construction methods and the factors that influence the morphological transformation of pillararene-based supramolecular nanostructures are reviewed.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Wen-Juan Jin
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
18
|
Yang Y, Yang J, Du Y, Li C, Wei K, Lu J, Chen W, Yang L. Preparation and Characterization of Cationic Water-Soluble Pillar[5]arene-Modified Zeolite for Adsorption of Methyl Orange. ACS OMEGA 2019; 4:17741-17751. [PMID: 31681880 PMCID: PMC6822123 DOI: 10.1021/acsomega.9b02180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
A novel quaternary cationic pillar[5]arene-modified zeolite (WPA5/zeolite) was prepared via charge interaction between the cationic WPA5 and natural zeolite and characterized by scanning electron microscopy (SEM), Fourier transform infrared absorption spectroscopy, X-ray diffraction, solid-state nuclear magnetic resonance, and thermogravimetric (TG) analysis. The effects of zeolite particle size, WPA5 concentration, adsorption time, initial concentration, and pH on the removal of methyl orange (MO) were studied. The SEM and XRD results revealed a strong interaction between WPA5 and natural zeolite, and the modified composites showed novel microscopic morphology and structural properties. TG analysis indicated excellent thermal stability of the composite. MO was removed via electrostatic adsorption, and the removal efficiency was 84% at an initial concentration of 100 mg/L. Increase in the initial dye concentration enhanced the adsorption capacity of WPA5/zeolite and decreased the removal of MO. Based on the adsorption kinetics, the pseudo-second-order model (R 2 = 0.998) described the kinetic behavior of MO on WPA5/zeolite. In addition, UV and fluorescence spectra revealed that MO and WPA5 are complexed by a 1:1 complex ratio, and the binding constant between them was 12 595 L·mol-1. NMR and molecular docking also verified their interaction. Therefore, the potential application of the prepared composite includes removal of organic anionic dyes.
Collapse
Affiliation(s)
- Yunhan Yang
- School
of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular
Chemistry at the University of Yunnan Province, National and Local
Joint Engineering Research Center for Green Preparation Technology
of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Junli Yang
- School
of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular
Chemistry at the University of Yunnan Province, National and Local
Joint Engineering Research Center for Green Preparation Technology
of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yao Du
- School
of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular
Chemistry at the University of Yunnan Province, National and Local
Joint Engineering Research Center for Green Preparation Technology
of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Canhua Li
- School
of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular
Chemistry at the University of Yunnan Province, National and Local
Joint Engineering Research Center for Green Preparation Technology
of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Keke Wei
- School
of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular
Chemistry at the University of Yunnan Province, National and Local
Joint Engineering Research Center for Green Preparation Technology
of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Jiajia Lu
- School
of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular
Chemistry at the University of Yunnan Province, National and Local
Joint Engineering Research Center for Green Preparation Technology
of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Wen Chen
- Key
Laboratory of Medicinal Chemistry for Natural Resources, Ministry
of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. China
| | - Lijuan Yang
- School
of Chemistry & Environment, Key Laboratory of Intelligent Supramolecular
Chemistry at the University of Yunnan Province, National and Local
Joint Engineering Research Center for Green Preparation Technology
of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| |
Collapse
|
19
|
Hu W, Bai X, Wang Y, Lei Z, Luo H, Tong Z. Upper critical solution temperature polymer-grafted hollow mesoporous silica nanoparticles for near-infrared-irradiated drug release. J Mater Chem B 2019; 7:5789-5796. [PMID: 31483429 DOI: 10.1039/c9tb01071h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Near-infrared (NIR) irradiation responsive drug delivery systems have many advantages, which have attracted extensive interest from researchers. In this study, a NIR-triggered drug release system was established by grafting upper critical solution temperature (UCST) polymers on the surface of hollow mesoporous silica nanoparticles (HMSNs) followed by treatment with the photothermal conversion agent indocyanine green (ICG). The as-prepared UCST polymers showed the clearing temperature of 45 °C, which were advantageous to serve as gatekeepers in the physiological environment (37 °C). Under NIR irradiation, the temperature of the solution was elevated above the clearing point due to the presence of ICG; consequently, the collapsed UCST polymer chains became more hydrophilic; this resulted in the exposure of the mesoporous channels of the HMSNs and achievement of a burst drug release. Moreover, this NIR-responsive delivery system showed good biocompatibility and high anticancer efficiency towards the MCF-7 cancer cells upon exposure to NIR irradiation. In addition, a synergistic effect of thermal and chemo treatment has been achieved by the application of NIR irradiation since cancer cells are more vulnerable to high temperatures than normal cells.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China. and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaowen Bai
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yaping Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China. and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhentao Lei
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China. and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haipeng Luo
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China. and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China. and Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
20
|
Hayashi K, Watanabe M, Iwasaki T, Shudou M, Uda RM. Endosomal escape by photo-activated fusion of liposomes containing a malachite green derivative: a novel class of photoresponsive liposomes for drug delivery vehicles. Photochem Photobiol Sci 2019; 18:1471-1478. [PMID: 30964475 DOI: 10.1039/c8pp00495a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We conducted photo-activated delivery of drugs based on the fusion of liposomes with endocytic membranes, thus allowing the direct release of encapsulated drugs inside the cytoplasm. As described in our earlier works, liposomes can be photoresponsive and fusogenic following the incorporation of a malachite green derivative carrying a long alkyl chain (MGL) into the lipid membrane. We prepared MGL liposomes using 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine and encapsulated doxorubicin (DOX). Though the shape of MGL liposomes became elliptical after encapsulating DOX, UV irradiation did not enhance DOX leakage from MGL liposomes. We demonstrated the cellular uptake of MGL liposomes into murine cells derived from colon cancer (Colon 26 cells) using flow cytometry, and we found that the uptake was governed by a clathrin-dependent endocytosis pathway. Confocal fluorescence microscopic observations of Colon 26 cells treated with MGL liposomes encapsulating DOX revealed that DOX was localized in endosomes under dark conditions, while DOX was observed in the cytosol and nucleus after UV irradiation. The viability of Colon 26 cells treated with MGL liposomes encapsulating DOX was reduced by UV irradiation, indicating photo-induced enhancement of anti-cancer efficacy.
Collapse
Affiliation(s)
- Keita Hayashi
- Department of Chemical Engineering, National Institute of Technology, Nara college, Yata 22, Yamato-koriyama, Nara 639-1080, Japan.
| | | | | | | | | |
Collapse
|
21
|
Lei Z, Ju Y, Lin Y, Bai X, Hu W, Wang Y, Luo H, Tong Z. Reactive Oxygen Species Synergistic pH/H2O2-Responsive Poly(l-lactic acid)-block-poly(sodium 4-styrenesulfonate)/Citrate-Fe(III)@ZIF-8 Hybrid Nanocomposites for Controlled Drug Release. ACS APPLIED BIO MATERIALS 2019; 2:3648-3658. [DOI: 10.1021/acsabm.9b00497] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Lee DC, Lamm RJ, Prossnitz AN, Boydston AJ, Pun SH. Dual Polymerizations: Untapped Potential for Biomaterials. Adv Healthc Mater 2019; 8:e1800861. [PMID: 30369103 PMCID: PMC6426662 DOI: 10.1002/adhm.201800861] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/05/2018] [Indexed: 12/11/2022]
Abstract
Block copolymers with unique architectures and those that can self-assemble into supramolecular structures are used in medicine as biomaterial scaffolds and delivery vehicles for cells, therapeutics, and imaging agents. To date, much of the work relies on controlling polymer behavior by varying the monomer side chains to add functionality and tune hydrophobicity. Although varying the side chains is an efficient strategy to control polymer behavior, changing the polymer backbone can also be a powerful approach to modulate polymer self-assembly, rigidity, reactivity, and biodegradability for biomedical applications. There are many developments in the syntheses of polymers with segmented backbones, but these developments are not widely adopted as strategies to address the unique constraints and requirements of polymers for biomedical applications. This review highlights dual polymerization strategies for the synthesis of backbone-segmented block copolymers to facilitate their adoption for biomedical applications.
Collapse
Affiliation(s)
- Daniel C. Lee
- Molecular Engineering and Sciences Institute, University of Washington
| | | | | | - Andrew J. Boydston
- Molecular Engineering and Sciences Institute, University of Washington
- Department of Chemistry, University of Washington
| | - Suzie H. Pun
- Molecular Engineering and Sciences Institute, University of Washington
- Department of Bioengineering, University of Washington
| |
Collapse
|
23
|
Zhong J, Luo H, Tang Q, Lei Z, Tong Z. Counterion-Mediated Self-Assembly of Ion-Containing Block Copolymers on the Basis of the Hofmeister Series. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiaxing Zhong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Haipeng Luo
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Qiuju Tang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zhentao Lei
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT); Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| |
Collapse
|
24
|
Zhong J, Tang Q, Ju Y, Lin Y, Bai X, Zhou J, Luo H, Lei Z, Tong Z. Redox and pH responsive polymeric vesicles constructed from a water-soluble pillar[5]arene and a paraquat-containing block copolymer for rate-tunable controlled release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:202-214. [PMID: 30587090 DOI: 10.1080/09205063.2018.1561814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Herein, for rate-tunable controlled release, pH and redox dual responsive polymeric vesicles were constructed based on host-guest interaction between a water soluble pillar[5]arene (WP5) and a paraquat-containing block copolymer (BCP) in water. The yielding polymeric vesicles can be further applied in the controlled release of a hydrophilic model drug, doxorubicin hydrochloride (DOX). The drug release rate is regulated depending on the type of single stimulus or the combination of two stimuli. Meanwhile, DOX-loaded polymeric vesicles present anticancer activity in vitro comparable to free DOX under the studied conditions, which may be important for applications in the therapy of cancers as a controlled-release drug carrier.
Collapse
Affiliation(s)
- Jiaxing Zhong
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Qiuju Tang
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Yanshan Ju
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Yonghui Lin
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Xiaowen Bai
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Junyi Zhou
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Haipeng Luo
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Zhentao Lei
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| | - Zaizai Tong
- a Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University , Hangzhou , China.,b Institute of Smart Fiber Materials , Zhejiang Sci-Tech University , Hangzhou , China
| |
Collapse
|
25
|
Luo H, Tang Q, Zhong J, Lei Z, Zhou J, Tong Z. Interplay of Solvation and Size Effects Induced by the Counterions in Ionic Block Copolymers on the Basis of Hofmeister Series. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201800508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Haipeng Luo
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Qiuju Tang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Jiaxing Zhong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zhentao Lei
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Junyi Zhou
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology; Ministry of Education; Department of Polymer Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
- Institute of Smart Fiber Materials; Zhejiang Sci-Tech University; Hangzhou 310018 China
| |
Collapse
|
26
|
Wang Y, Pei Z, Feng W, Pei Y. Stimuli-responsive supramolecular nano-systems based on pillar[n]arenes and their related applications. J Mater Chem B 2019; 7:7656-7675. [DOI: 10.1039/c9tb01913h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive supramolecular nano-systems (SRNS) have been a trending interdisciplinary research area due to the responsiveness upon appropriate stimuli, which makes SRNS very attractive in multiple fields where precise control is vital.
Collapse
Affiliation(s)
- Yang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Weiwei Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
27
|
Feng W, Jin M, Yang K, Pei Y, Pei Z. Supramolecular delivery systems based on pillararenes. Chem Commun (Camb) 2018; 54:13626-13640. [PMID: 30444504 DOI: 10.1039/c8cc08252a] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Supramolecular delivery systems (SDSs) fabricated via molecular assembly, which conveniently allow integration of multiple functions in a single system and structural diversity of systems, are a very active research area due to their enormous potential in biomedical applications, including drug delivery, cell imaging, diagnosis, and release monitoring. Pillararenes, a novel type of macrocyclic molecule, are gaining increasing interest as an important component in the construction of SDSs due to their unique structural and chemical properties. This feature article summarizes pillararene-based SDSs constructed via host-guest interactions via four strategies: (1) supramolecular host-guest complexation; (2) self-assembly of supramolecular amphiphiles; (3) self-assembly of amphiphilic supramolecular polymer conjugates; (4) hybridization with other porous materials, such as inorganic materials and metal-organic frameworks (MOFs). The various SDSs based on pillararenes for the delivery of different cargoes from anti-cancer drugs, fluorescent molecules, siRNAs, and insulin to antibiotics are reviewed. Furthermore, future challenges for advanced SDSs based on pillararenes and their broader applications are outlined.
Collapse
Affiliation(s)
- Weiwei Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | | | | | | | | |
Collapse
|
28
|
Tong Z, Zhou J, Zhong J, Tang Q, Lei Z, Luo H, Ma P, Liu X. Glucose- and H 2O 2-Responsive Polymeric Vesicles Integrated with Microneedle Patches for Glucose-Sensitive Transcutaneous Delivery of Insulin in Diabetic Rats. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20014-20024. [PMID: 29787231 DOI: 10.1021/acsami.8b04484] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Herein, a dual-responsive insulin delivery device by integrating glucose- and H2O2-responsive polymeric vesicles (PVs) with transcutaneous microneedles (MNs) has been designed. This novel microneedle delivery device achieves a goal of fast response, excellent biocompatibility, and painless administration. The PVs are self-assembled from a triblock copolymer including poly(ethylene glycol), poly(phenylboronic acid) (glucose-sensitive block), and poly(phenylboronic acid pinacol ester) (H2O2-sensitive block). After loading with insulin and glucose oxidase (GO x), the drug-loaded PVs display a basal insulin release as well as a promoted insulin release in response to hyperglycemic states. The insulin release rate responds quickly to elevated glucose and can be further promoted by the incorporated GO x, which will generate the H2O2 at high glucose levels and further break the chemical links of phenylboronic acid pinacol ester group. Finally, the transdermal delivery of insulin to the diabetic rats ((insulin + GO x)-loaded MNs) presents an effective hypoglycemic effect compared to that of subcutaneous injection or only insulin-loaded MNs, which indicates the as-prepared MNs insulin delivery system could be of great importance for the applications in the therapy of diabetes.
Collapse
Affiliation(s)
- Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education , Hangzhou 310018 , China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang) , Hangzhou 310018 , China
| | | | | | | | | | | | - Pianpian Ma
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education , Hangzhou 310018 , China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang) , Hangzhou 310018 , China
| | - Xiangdong Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT) , Ministry of Education , Hangzhou 310018 , China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang) , Hangzhou 310018 , China
| |
Collapse
|