1
|
Cao-Luu NH, Nguyen TV, Luong HVT, Dang HG, Pham HG. Engineered polyvinyl alcohol/chitosan/carrageenan nanofibrous membrane loaded with Aloe vera for accelerating third-degree burn wound healing. Int J Biol Macromol 2025; 311:143880. [PMID: 40324503 DOI: 10.1016/j.ijbiomac.2025.143880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
This study introduces an innovative nanofibrous membrane included polyvinyl alcohol (PVA), chitosan (CS), carrageenan (CG), and Aloe vera (AV), designed to enhance burn wound healing through a coaxial electrospinning technique. The PVA/AV@PVA/CS/CG membrane exhibited smooth surface, well-defined layered structure, and uniform nanofibers with a diameter of 180 ± 49 nm, as confirmed by SEM, TEM images. AV was efficiently incorporated into the membrane system, achieving encapsulation efficiency exceeding 80 % and loading efficiency of ∼3 %. The release profile of AV followed the Fickian diffusion mechanism, described by the Peppas-Sahlin model, with the membrane demonstrating ∼85 % delivery performance. The membrane exhibited favorable blood coagulation properties and a sufficient water vapor transmission rate. The membrane's balanced performance in boosting cell survival while also demonstrating antibacterial activity as well as anti-inflammatory effect, made it a suitable setting for wound healing. The synergistic interaction between the components significantly accelerated burn wound recovery and histological evaluation showed that less inflammation, fibroblast proliferation, and collagen deposition without formation of hypertrophic scars. The PVA/AV@PVA/CS/CG membrane showed statistically superior performance (p-values) in various experiments compared to the remaining samples. Conclusively, PVA/AV@PVA/CS/CG membrane exhibited numerous positive biochemical features, making it an excellent choice for third-degree burn wound dressing.
Collapse
Affiliation(s)
- Ngoc-Hanh Cao-Luu
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam; Composite Material Laboratory, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam.
| | - Tuong-Vy Nguyen
- Composite Material Laboratory, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam
| | - Huynh-Vu-Thanh Luong
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam; Applied Chemical Engineering Laboratory, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam
| | - Huynh-Giao Dang
- Faculty of Chemical Engineering, College of Engineering, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam
| | - Hong-Gam Pham
- Composite Material Laboratory, Can Tho University, 3/2 Street, Ninh Kieu District, Can Tho 94000, Viet Nam
| |
Collapse
|
2
|
Reis S, Spencer C, Soares CM, Falcão SI, Miguel SP, Ribeiro MP, Barros L, Coutinho P, Vaz J. Chemical Characterization and Bioactivities of Sericin Extracted from Silkworm Cocoons from Two Regions of Portugal. Molecules 2025; 30:1179. [PMID: 40076401 PMCID: PMC11901905 DOI: 10.3390/molecules30051179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Sericin has been characterized as demonstrating a variety of bioactivities, establishing it as a valuable resource for biomedical and pharmaceutical applications. The diverse biological activities of sericin are likely linked to its unique biochemical composition and properties. This study aimed to assess the effect of origin, seasonality, and amino acid composition on the bioactivity of sericin samples from two Portuguese regions compared to commercial sericin. The amino acid profile was analyzed using HPLC-FLD. Moreover, several bioactivities were assessed through in vitro assays, including antiproliferative effects, cell migration, antimicrobial activity, anticoagulant properties, antioxidant capacity, and anti-inflammatory effects. The results obtained in this work revealed that the origin and season affect the sericin amino acid profile. In its pure state, sericin exhibited a low content of free amino acids, with tyrosine being the most abundant (53.42-84.99%). In contrast, hydrolyzed sericin displayed a higher amino acid content dominated by serine (54.05-59.48%). Regarding bioactivities, the sericin tested did not demonstrate antioxidant or anti-inflammatory potential in the conducted tests. Notwithstanding, it showed antiproliferative activity in contact with human tumor cell lines at a minimum concentration of 0.52 mg/mL. Regarding antimicrobial activity, sericin had the capacity to inhibit the growth of the bacteria and fungi tested at concentrations between 5 and 10 mg/mL. Additionally, sericin demonstrated its capacity to prolong the coagulation time in pooled human plasma, indicating a potential anticoagulant activity. In addition, the origin and season also revealed their impact on biological activities, and sericin collected in Bragança in 2021 (S3) and 2022 (S4) demonstrated higher antiproliferative, antibacterial, and anticoagulant potentials. Future studies should focus on optimizing sericin's bioactivities and elucidating its molecular mechanisms for clinical and therapeutic applications.
Collapse
Affiliation(s)
- Sara Reis
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.I.F.); (L.B.)
| | - Carina Spencer
- BRIDGES—Biotechnology Research Innovation Design of Health Products, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (C.S.); (S.P.M.); (M.P.R.)
| | - Cristina M. Soares
- REQUIMTE/LAQV, Instituto Superior de Engenharia, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal;
| | - Soraia I. Falcão
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.I.F.); (L.B.)
| | - Sónia P. Miguel
- BRIDGES—Biotechnology Research Innovation Design of Health Products, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (C.S.); (S.P.M.); (M.P.R.)
| | - Maximiano P. Ribeiro
- BRIDGES—Biotechnology Research Innovation Design of Health Products, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (C.S.); (S.P.M.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Lillian Barros
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.I.F.); (L.B.)
| | - Paula Coutinho
- BRIDGES—Biotechnology Research Innovation Design of Health Products, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal; (C.S.); (S.P.M.); (M.P.R.)
| | - Josiana Vaz
- Research Centre for Active Living and Wellbeing (LiveWell), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (S.I.F.); (L.B.)
| |
Collapse
|
3
|
Khosropanah MH, Ghofrani A, Vaghasloo MA, Zahir M, Bahrami A, Azimzadeh A, Hassannejad Z, Majidi Zolbin M. Biomedical applications of Bombyx morisilk in skin regeneration and cutaneous wound healing. Biomed Mater 2025; 20:022008. [PMID: 39938211 DOI: 10.1088/1748-605x/adb552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/12/2025] [Indexed: 02/14/2025]
Abstract
A mere glance at the foundation of the sericulture industry to produce silk and the consequent establishment of the Silk Road to transport it; elucidates the significant role that this material has played in human history. Owing to its exceptional robustness, silk was introduced into medicine as a surgical suture approximately two millennia ago. During the last decades, silk has garnered attention as a possible source of biological-based materials that can be effectively used in regenerative medicine. Silk's unique characteristics, like its low immunogenicity, suitable adhesive properties, exceptional tensile strength, perfect hemostatic properties, adequate permeability to oxygen and water, resistance to microbial colonization, and most importantly, excellent biodegradability; make it an outstanding choice for biomedical applications. Although there are many different types of silk in nature,Bombyx mori(B. mori) silk accounts for about 90% of global production and is the most thoroughly investigated and the most commonly used. Silk fibroin (SF) and silk sericin (SS) are the two main protein constituents of silk. SF has been manufactured in various morphologic forms (e.g. hydrogels, sponges, films, etc) and has been widely used in the biomedical field, especially as a scaffold in tissue engineering. Similarly, SS has demonstrated a vast potential as a suitable biomaterial in tissue engineering and regenerative medicine. Initial studies on SF and SS as wound dressings have shown encouraging results. This review aims to comprehensively discuss the potential role of silk proteins in refining wound healing and skin regeneration.
Collapse
Affiliation(s)
- Mohammad Hossein Khosropanah
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghofrani
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mahdi Alizadeh Vaghasloo
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine Network (PMN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mazyar Zahir
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Bahrami
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell & Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Golshan M, Dortaj H, Rajabi M, Omidi Z, Golshan M, Pourentezari M, Rajabi A. Animal origins free products in cell culture media: a new frontier. Cytotechnology 2025; 77:12. [PMID: 39654546 PMCID: PMC11625046 DOI: 10.1007/s10616-024-00666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/02/2024] [Indexed: 12/12/2024] Open
Abstract
Despite the importance of finding replacements for fetal bovine serum (FBS), very few studies have focused on this subject. Historically, the use of animals and their derivatives in growth, reproduction, and physiological studies has raised several concerns. The supplementation of culture media with FBS, also known as fetal calf serum, continues to be widespread, despite its limitations in quality, reproducibility, and implications for animal welfare. Moreover, the presence of counterfeit and illegal products can adversely affect cell cultures and treatments, prompting the search for alternative solutions. To reduce reliance on FBS, various substitutes have been introduced, such as plant-derived proteins, bovine eye fluid, sericin protein, human platelet lysate, and inactivated coelomic fluid, which can provide roles similar to that of FBS. Therefore, it is essential to develop serum-free and animal supplement-free environments suitable for therapeutic and clinical applications, tailored to the specific needs of different cell types. Among the alternatives, plant-based options have gained attention as sustainable and ethical solutions. These include plant-derived peptones from sources like soy and wheat, which are rich in amino acids and peptides essential for mammalian cell growth, as well as plant protein hydrolysates from beans and peas that serve as sources of amino acids and growth factors. Plant extracts, especially from soy and various seeds, contain necessary proteins and growth factors, while phytohormones such as cytokinins and plant polysaccharides can help regulate cell growth. While these alternatives offer benefits like reduced costs and lower risks of disease transmission, further research is necessary to refine and align them with the specific requirements of diverse cell types. Graphical abstract
Collapse
Affiliation(s)
- Mahsa Golshan
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| | - Hengameh Dortaj
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rajabi
- Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Omidi
- Department of Cardiovascular Disease, Alzahra Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Golshan
- Shiraz Transplant Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Majid Pourentezari
- Department of Anatomical Sciences, School of Medicine Shahid, Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Rajabi
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| |
Collapse
|
5
|
Quevedo BV, Pinto MF, Asami J, Giorno LP, Moraes AS, Komatsu D, Santos AR, de Rezende Duek EA. Study of the synergistic properties of copaiba oil co-electrospun with poly(L-co-D,L lactic acid) and natural rubber latex for application in bioactive wound dressings. Int J Biol Macromol 2025; 290:139096. [PMID: 39719235 DOI: 10.1016/j.ijbiomac.2024.139096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 12/26/2024]
Abstract
Wound healing is a complex process involving a sequence of factors that can be disrupted, negatively impacting the quality of life for patients and overburdening healthcare systems. Advanced dressings obtained by electrospinning are highlighted by the optimization of this process, allowing air exchange and protection against microorganisms. Aiming to develop bioactive dressings, this study investigated the physicochemical, mechanical, microbiological, and in vitro biological properties of membranes containing 25 %, 50 %, 75 %, and 90 % copaiba oil (CO) co-electrospun with poly(L-co-D,L-lactic acid) (PLDLA) and natural rubber latex (NR). CO, with antimicrobial and anti-inflammatory properties, was co-electrospun with the system, which integrates the bioactivity and elasticity of NR with the mechanical strength of PLDLA. FTIR analysis indicated a physical interaction between CO and PLDLA/NR, promoting its efficient and sustained release. Scanning electron microscopy (SEM) revealed a fibrous and porous morphological structure. The mechanical tensile test revealed the plasticizing effect of CO. The low Young's modulus (26.6 MPa) for 25 % CO indicated its elastic capacity under low stress. In vitro tests have demonstrated efficacy in preventing bacterial infections against Staphylococcus aureus, due to its bacteriostatic effect and air-filtering capacity, allowing gas exchange while preventing the entry of microorganisms. The system composed of PLDLA/NR/25 % CO also exhibited cell viability of 93 % and 80 % after 24 and 72 h, respectively. The scratch assay using PLDLA/NR/25 % CO demonstrated efficacy in promoting cell migration. These results suggest that co-electrospun membranes hold promise as advanced wound dressings, with the potential to accelerate the wound healing process.
Collapse
Affiliation(s)
- Bruna V Quevedo
- Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), 18052-780, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), 18030-070, Brazil.
| | - Marcelo Formigoni Pinto
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), 13083-970, Brazil
| | - Jessica Asami
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), 18030-070, Brazil; Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), 13083-970, Brazil
| | - Luciana Pastena Giorno
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), 09606-045, Brazil
| | - Ariana S Moraes
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), 18030-070, Brazil; Post-Graduation Program of Biomaterials and Regenerative Medicine (PPGBMR), Surgery Department, (PUC-SP), 18030-070, Brazil
| | - Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), 18030-070, Brazil; Post-Graduation Program of Biomaterials and Regenerative Medicine (PPGBMR), Surgery Department, (PUC-SP), 18030-070, Brazil
| | - Arnaldo R Santos
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), 09606-045, Brazil
| | - Eliana Aparecida de Rezende Duek
- Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), 18052-780, Brazil; Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), 18030-070, Brazil; Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), 13083-970, Brazil; Post-Graduation Program of Biomaterials and Regenerative Medicine (PPGBMR), Surgery Department, (PUC-SP), 18030-070, Brazil
| |
Collapse
|
6
|
Kanoujia J, Raina N, Kishore A, Kaurav M, Tuli HS, Kumar A, Gupta M. Revealing the promising era of silk-based nanotherapeutics: a ray of hope for chronic wound healing treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03761-w. [PMID: 39888364 DOI: 10.1007/s00210-024-03761-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025]
Abstract
Chronic wounds significantly contribute to disability and affect the mortality rate in diabetic patients. In addition, pressure ulcers, diabetic foot ulcers, arterial ulcers, and venous ulcers pose a significant health burden due to their associated morbidity and death. The complex healing process, environmental factors, and genetic factors have been identified as the rate-limiting stages of chronic wound healing. Changes in temperature, moisture content, mechanical strain, and genetics can result in slow wound healing, increased susceptibility to bacterial infections, and poor matrix remodelling. These obstacles can be addressed with natural biomaterials exhibiting antimicrobial, collagen synthesis, and granulation tissue formation properties. Recently, silk proteins have gained significant attention as a natural biomaterial owing to good biocompatibility, biodegradability, reduced immunogenicity, ease of sterilization, and promote the wound healing process. The silk components such as sericin and fibroin in combination with nano(platforms) effectively promote wound repair. This review emphasises the potential of sericin and fibroin when combined with nano(platforms) like nanoparticles, nanofibers, and nanoparticles-embedded films, membranes, gels, and nanofibers.
Collapse
Affiliation(s)
- Jovita Kanoujia
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Neha Raina
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Ankita Kishore
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Monika Kaurav
- KIET School of Pharmacy, KIET Group of Institution, Ghaziabad, Uttar Pradesh, 201206, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Akhilesh Kumar
- Division of Medicine, ICAR Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
7
|
Yuan Y, Nasri M, Manayi A, Zhang J, Wu C, Jeon TJ, Kang L. Sericin coats of silk fibres, a degumming waste or future material? Mater Today Bio 2024; 29:101306. [PMID: 39534681 PMCID: PMC11554926 DOI: 10.1016/j.mtbio.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Silk is a fibrous biopolymer with a recorded history in the textile industries for centuries. This fibre is constituted of two different proteins: fibroin and sericin, of which the latter accounting for approximately 20-30 % of the silk mass. Silk sericin (SSER) was previously considered as a waste by-product in silk fibroin extraction. SSER has recently garnered significant scientific interest due to its extensive biological and pharmacological properties. These include antioxidant effects, biocompatibility, low immunogenicity, controlled biodegradability, and the ability to induce cell proliferation. This review covers studies about various aspects of this emerging material, namely, its general morphology, specific structure, molecular weight, features of different layers, and gene sequences. The impact of different extraction methods and the application of extracted SSER based on molecular weight are discussed. Additionally, the characteristic functional groups in the amino acids of sericin facilitate its applications in regenerative medicine, wound healing, drug delivery, textile, environment, and energy, in various forms like hydrogels, films, scaffolds, and conduits. SSER-based materials offer great potentials for multi-functional applications in the upcoming decades, showcasing adaptability for various functional uses and promising future technological advancements.
Collapse
Affiliation(s)
- Yunong Yuan
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, New South Wales 2006, Australia
- Sydney Nano Institute, University of Sydney, NSW, 2006, Australia
| | - Mohammad Nasri
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, New South Wales 2006, Australia
| | - Azadeh Manayi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, New South Wales 2006, Australia
- Medicinal Plants Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Junying Zhang
- Department of TCMs Pharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
| | - Chunyong Wu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Pharmacy and Bank Building A15, Science Road, New South Wales 2006, Australia
- Sydney Nano Institute, University of Sydney, NSW, 2006, Australia
| |
Collapse
|
8
|
Prakash M, Mathikere Naganna C, Radhakrishnan V, Somayaji P, Sabu L. Therapeutic potential of silkworm sericin in wound healing applications. Wound Repair Regen 2024; 32:916-940. [PMID: 39225112 DOI: 10.1111/wrr.13216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic wounds are characterised by an imbalance between pro and anti-inflammatory signals, which result in permanent inflammation and delayed re-epithelialization, consequently hindering wound healing. They are associated with bacterial infections, tissue hypoxia, local ischemia, reduced vascularization and MMP-9 upregulation. The global prevalence of chronic wounds has been estimated at 40 million in the adult population, with an alarming annual growth rate of 6.6%, making it an increasingly significant clinical problem. Sericin is a natural hydrophilic protein obtained from the silkworm cocoon. Due to its biocompatibility, biodegradability, non-immunogenicity and oxidation resistance, coupled with its excellent affinity for target biomolecules, it holds great potential in wound healing applications. The silk industry discards 50,000 tonnes of sericin annually, making it a readily available material. Sericin increases cell union sites and promotes cell proliferation in fibroblasts and keratinocytes, thanks to its cytoprotective and mitogenic effects. Additionally, it stimulates macrophages to release more therapeutic cytokines, thus improving vascularization. This review focuses on the biological properties of sericin that contribute towards enhanced wound healing process and its mechanism of interaction with important biological targets involved in wound healing. Emphasis is placed on diverse wound dressing products that are sericin based and the utilisation of nanotechnology to design sericin nanoparticles that aid in chronic wound management.
Collapse
Affiliation(s)
- Monika Prakash
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | | | - Vivek Radhakrishnan
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Prathik Somayaji
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| | - Leah Sabu
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
9
|
Mazurek Ł, Rybka M, Jurak J, Frankowski J, Konop M. Silk Sericin and Its Effect on Skin Wound Healing: A State of the Art. Macromol Biosci 2024; 24:e2400145. [PMID: 39073276 DOI: 10.1002/mabi.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Despite the significant progress in wound healing, chronic skin wounds remain a challenge for today's medicine. Due to the growing popularity of natural materials, silk protein-based dressings are gaining more attention in this field. Most studies refer to silk fibroin because sericin has been considered a waste product for years. However, sericin is also worth noting. Sericin-based dressings are mainly studied in cell cultures or animals. Sericin is the dressings' main component or can be included in more complex, advanced biomaterials. Recent studies highlight sericin's important role, noting its biocompatibility, biodegradability, and beneficial effects in skin wound healing, such as antibacterial activity, antioxidant and anti-inflammatory effects, or angiogenic properties. Developing sericin-based biomaterials is often simple, free of toxic by-products, and inexpensive, requiring no highly sophisticated apparatus. As a result, sericin-based dressings can be widely used in wound healing and have low environmental impact. However, the literature in this area is further limited. The following review collects and describes recent studies showing silk sericin's influence on skin wound healing.
Collapse
Affiliation(s)
- Łukasz Mazurek
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Pawińskiego 3c, Warsaw, 02-106, Poland
| | - Mateusz Rybka
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Pawińskiego 3c, Warsaw, 02-106, Poland
| | - Jan Jurak
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Pawińskiego 3c, Warsaw, 02-106, Poland
| | - Jakub Frankowski
- Department of Bioeconomy, Institute of Natural Fibres & Medicinal Plants-National Research Institute, Wojska Polskiego 71b, Poznań, 60-630, Poland
| | - Marek Konop
- Department of Experimental Physiology and Pathophysiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Pawińskiego 3c, Warsaw, 02-106, Poland
| |
Collapse
|
10
|
Fong YX, Pakrath C, Kadavan FSP, Nguyen TT, Luu TQ, Stoilov B, Bright R, Nguyen MT, Ninan N, Tang Y, Vasilev K, Truong VK. Antibacterial Electrospun Membrane with Hierarchical Bead-on-String Structured Fibres for Wound Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1429. [PMID: 39269091 PMCID: PMC11397722 DOI: 10.3390/nano14171429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Chronic wounds often result in multiple infections with various kinds of bacteria and uncontrolled wound exudate, resulting in several healthcare issues. Advanced medicated nanofibres prepared by electrospinning have gained much attention for their topical application on infected chronic wounds. The objective of this work is to enhance the critical variables of ciprofloxacin-loaded polycaprolactone-silk sericin (PCL/SS-PVA-CIP) nanofibre production via the process of electrospinning. To examine the antibacterial effectiveness of PCL/SS-PVA-CIP nanocomposites, the material was tested against P. aeruginosa and S. aureus. The combination of PCL/SS-PVA-CIP exhibited potent inhibitory properties, with the most effective concentrations of ciprofloxacin (CIP) being 3 μg/g and 7.0 μg/g for each bacterium, respectively. The biocompatibility was evaluated by conducting cell reduction and proliferation studies using the human epidermal keratinocyte (HaCaT) cells and human gingival fibroblasts (HGFs) in vitro cell lines. The PCL/SS-PVA-CIP showed good cell compatibility with HaCaT and HGF cells, with effective proliferation even at antibiotic doses of up to 7.0 μg/g. The drug release effectiveness of the nanocomposites was assessed at various concentrations of CIP, resulting in a maximum cumulative release of 76.5% and 74.4% after 72 h for CIP concentrations of 3 μg/g and 7 μg/g, respectively. In summary, our study emphasizes the possibility of combining silk sericin (SS) and polycaprolactone (PCL) loading with CIP nanocomposite for wound management.
Collapse
Affiliation(s)
- Yu Xuan Fong
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Catherine Pakrath
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | | | - Tien Thanh Nguyen
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Trong Quan Luu
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Borislav Stoilov
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Manh Tuong Nguyen
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Neethu Ninan
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| |
Collapse
|
11
|
Veiga A, Foster O, Kaplan DL, Oliveira AL. Expanding the boundaries of silk sericin biomaterials in biomedical applications. J Mater Chem B 2024; 12:7020-7040. [PMID: 38935038 DOI: 10.1039/d4tb00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Silk sericin (SS) has a long history as a by-product of the textile industry. SS has emerged as a sustainable material for biomedical engineering due to its material properties including water solubility, diverse impact on biological activities including antibacterial and antioxidant properties, and ability to promote cell adhesion and proliferation. This review addresses the origin, structure, properties, extraction, and underlying functions of this protein. An overview of the growing research studies and market evolution is presented, along with highlights of the most common fabrication matrices (hydrogels, bioinks, porous and fibrous scaffolds) and tissue engineering applications. Finally, the future trends with this protein as a multifaceted toolbox for bioengineering are explored, along with the challenges with SS. Overall, the present review can serve as a foundation for the creation of innovative biomaterials utilizing SS as a fundamental building block that hold market potential.
Collapse
Affiliation(s)
- Anabela Veiga
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology & Energy, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, R. Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Olivia Foster
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St., Medford, MA 02155, USA
| | - Ana Leite Oliveira
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
12
|
Cheng L, Zhang S, Zhang Q, Gao W, Wang B, Mu S. Fabrication of pH-stimuli hydrogel as bioactive materials for wound healing applications. Heliyon 2024; 10:e32864. [PMID: 39021919 PMCID: PMC11252711 DOI: 10.1016/j.heliyon.2024.e32864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Hydrogels exhibit exceptional suitability as wound dressing due to their remarkable three-dimensional (3D) characteristics. Here, we have reported the fabrication of hydrogels from biopolymers carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and gelatin via a simple blending method to mimic the natural extracellular matrix. Scanning electron microscopy (SEM), water contact meters (WCM), and Fourier-transform infrared spectroscopy (FTIR) were used to evaluate the chemical structural, morphological, and wettability behavior. The wetting and degradation behavior were also found to be different for different formulations (Min. (51.60o) and Max. (113.60o)) and (Min. (38.82 mg) and Max. (3.72 mg)), respectively. Swelling was investigated in different media, including phosphate buffer saline solution (PBS) and aqueous media. It was observed that the hydrogel displayed the highest degree of swelling in an aqueous medium (Min. (597.32-1121.49 %) and Max. (1089.51-2139.73 %)) compared to PBS media (Min. (567.01-1021.85 %) and Max. (899.13-1639.17 %)). The release of Neomycin was studied in a PBS medium via the Franz diffusion method at 37 °C. The maximal release in various media demonstrated pH-responsive behavior. The viability and proliferation of fibroblast (3T3) cell lines were examined in vitro to evaluate cytocompatibility. Human Embryonic Kidney (HEK) 293 cells were used to evaluate the hydrogels' ability to promote vascularization and angiogenesis. Therefore, the data demonstrate that hydrogels that have been manufactured have qualities that make them promising for use as wound dressings in wound healing applications.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Song Zhang
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Qian Zhang
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Wenjie Gao
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Benfeng Wang
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Shengzhi Mu
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| |
Collapse
|
13
|
Pal D, Das P, Mukherjee P, Roy S, Chaudhuri S, Kesh SS, Ghosh D, Nandi SK. Biomaterials-Based Strategies to Enhance Angiogenesis in Diabetic Wound Healing. ACS Biomater Sci Eng 2024; 10:2725-2741. [PMID: 38630965 DOI: 10.1021/acsbiomaterials.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Amidst the present healthcare issues, diabetes is unique as an emerging class of affliction with chronicity in a majority of the population. To check and control its effects, there have been huge turnover and constant development of management strategies, and though a bigger part of the health care area is involved in achieving its control and the related issues such as the effect of diabetes on wound healing and care and many of the works have reached certain successful outcomes, still there is a huge lack in managing it, with maximum effect yet to be attained. Studying pathophysiology and involvement of various treatment options, such as tissue engineering, application of hydrogels, drug delivery methods, and enhancing angiogenesis, are at constantly developing stages either direct or indirect. In this review, we have gathered a wide field of information and different new therapeutic methods and targets for the scientific community, paving the way toward more settled ideas and research advances to cure diabetic wounds and manage their outcomes.
Collapse
Affiliation(s)
- Debajyoti Pal
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Pratik Das
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Shubhamitra Chaudhuri
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Shyam Sundar Kesh
- Department of Veterinary Clinical Complex, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Debaki Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, India
| |
Collapse
|
14
|
Türkoğlu GC, Khomarloo N, Mohsenzadeh E, Gospodinova DN, Neznakomova M, Salaün F. PVA-Based Electrospun Materials-A Promising Route to Designing Nanofiber Mats with Desired Morphological Shape-A Review. Int J Mol Sci 2024; 25:1668. [PMID: 38338946 PMCID: PMC10855838 DOI: 10.3390/ijms25031668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Poly(vinyl alcohol) is one of the most attractive polymers with a wide range of uses because of its water solubility, biocompatibility, low toxicity, good mechanical properties, and relatively low cost. This review article focuses on recent advances in poly(vinyl alcohol) electrospinning and summarizes parameters of the process (voltage, distance, flow rate, and collector), solution (molecular weight and concentration), and ambient (humidity and temperature) in order to comprehend the influence on the structural, mechanical, and chemical properties of poly(vinyl alcohol)-based electrospun matrices. The importance of poly(vinyl alcohol) electrospinning in biomedical applications is emphasized by exploring a literature review on biomedical applications including wound dressings, drug delivery, tissue engineering, and biosensors. The study also highlights a new promising area of particles formation through the electrospraying of poly(vinyl alcohol). The limitations and advantages of working with different poly(vinyl alcohol) matrices are reviewed, and some recommendations for the future are made to advance this field of study.
Collapse
Affiliation(s)
- Gizem Ceylan Türkoğlu
- Department of Textile Engineering, Dokuz Eylul University, İzmir 35397, Turkey;
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| | - Niloufar Khomarloo
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Elham Mohsenzadeh
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, Junia, F-59000 Lille, France
| | - Dilyana Nikolaeva Gospodinova
- Faculty of Electrical Engineering, Department of Electrical Apparatus, Technical University of Sofia, 1156 Sofia, Bulgaria;
| | - Margarita Neznakomova
- Faculty of Industrial Technology, Department of Material Science and Technology of Materials, Technical University of Sofia, 1000 Sofia, Bulgaria;
| | - Fabien Salaün
- Univ. Lille, ENSAIT, ULR 2461-GEMTEX-Génie et Matériaux Textiles, F-59000 Lille, France; (N.K.); (E.M.)
| |
Collapse
|
15
|
Wang SL, Li XW, Xu W, Yu QY, Fang SM. Advances of regenerated and functionalized silk biomaterials and application in skin wound healing. Int J Biol Macromol 2024; 254:128024. [PMID: 37972830 DOI: 10.1016/j.ijbiomac.2023.128024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The cocoon silk of silkworms (Bombyx mori) has multiple potential applications in biomedicine due to its good biocompatibility, mechanical properties, degradability, and plasticity. Numerous studies have confirmed that silk material dressings are more effective than traditional ones in the skin wound healing process. Silk material research has recently moved toward functionalized biomaterials and achieved remarkable results. Herein, we summarize the recent advances in functionalized silk materials and their efficacy in skin wound healing. In particular, transgenic technology has realized the specific expression of human growth factors in the silk glands of the silkworms, which lays the foundation for fabricating novel and low-cost functionalized materials. Without a green and safe preparation process, the best raw silk materials cannot be made into medically safe products. Therefore, we provide an overview of green and gentle approaches for silk degumming and silk sericin (SS) extraction. Moreover, we summarize and discuss the processing methods of silk fibroin (SF) and SS materials and their potential applications, such as burns, diabetic wounds, and other wounds. This review aims to enhance our understanding of new advances and directions in silk materials and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China
| | - Xiao-Wei Li
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, PR China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, Sichuan, China.
| |
Collapse
|
16
|
Zhang L, Yao L, Zhao F, Yu A, Zhou Y, Wen Q, Wang J, Zheng T, Chen P. Protein and Peptide-Based Nanotechnology for Enhancing Stability, Bioactivity, and Delivery of Anthocyanins. Adv Healthc Mater 2023; 12:e2300473. [PMID: 37537383 PMCID: PMC11468125 DOI: 10.1002/adhm.202300473] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/18/2023] [Indexed: 08/05/2023]
Abstract
Anthocyanin, a unique natural polyphenol, is abundant in plants and widely utilized in biomedicine, cosmetics, and the food industry due to its excellent antioxidant, anticancer, antiaging, antimicrobial, and anti-inflammatory properties. However, the degradation of anthocyanin in an extreme environment, such as alkali pH, high temperatures, and metal ions, limits its physiochemical stabilities and bioavailabilities. Encapsulation and combining anthocyanin with biomaterials could efficiently stabilize anthocyanin for protection. Promisingly, natural or artificially designed proteins and peptides with favorable stabilities, excellent biocapacity, and wide sources are potential candidates to stabilize anthocyanin. This review focuses on recent progress, strategies, and perspectives on protein and peptide for anthocyanin functionalization and delivery, i.e., formulation technologies, physicochemical stability enhancement, cellular uptake, bioavailabilities, and biological activities development. Interestingly, due to the simplicity and diversity of peptide structure, the interaction mechanisms between peptide and anthocyanin could be illustrated. This work sheds light on the mechanism of protein/peptide-anthocyanin nanoparticle construction and expands on potential applications of anthocyanin in nutrition and biomedicine.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Liang Yao
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Alice Yu
- Schulich School of Medicine and Dentistry, Western University, Ontario, N6A 3K7, Canada
| | - Yueru Zhou
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Qingmei Wen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jun Wang
- College of Biotechnology, Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| |
Collapse
|
17
|
Li K, Zhu Z, Zhai Y, Chen S. Recent Advances in Electrospun Nanofiber-Based Strategies for Diabetic Wound Healing Application. Pharmaceutics 2023; 15:2285. [PMID: 37765254 PMCID: PMC10535965 DOI: 10.3390/pharmaceutics15092285] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Diabetic ulcers are the second largest complication caused by diabetes mellitus. A great number of factors, including hyperchromic inflammation, susceptible microbial infection, inferior vascularization, the large accumulation of free radicals, and other poor healing-promoting microenvironments hold back the healing process of chronic diabetic ulcer in clinics. With the increasing clinical cases of diabetic ulcers worldwide, the design and development of advanced wound dressings are urgently required to accelerate the treatment of skin wounds caused by diabetic complications. Electrospinning technology has been recognized as a simple, versatile, and cost-reasonable strategy to fabricate dressing materials composed of nanofibers, which possess excellent extracellular matrix (ECM)-mimicking morphology, structure, and biological functions. The electrospinning-based nanofibrous dressings have been widely demonstrated to promote the adhesion, migration, and proliferation of dermal fibroblasts, and further accelerate the wound healing process compared with some other dressing types like traditional cotton gauze and medical sponges, etc. Moreover, the electrospun nanofibers are commonly harvested in the structure of nonwoven-like mats, which possess small pore sizes but high porosity, resulting in great microbial barrier performance as well as excellent moisture and air permeable properties. They also serve as good carriers to load various bioactive agents and/or even living cells, which further impart the electrospinning-based dressings with predetermined biological functions and even multiple functions to significantly improve the healing outcomes of different chronic skin wounds while dramatically shortening the treatment procedure. All these outstanding characteristics have made electrospun nanofibrous dressings one of the most promising dressing candidates for the treatment of chronic diabetic ulcers. This review starts with a brief introduction to diabetic ulcer and the electrospinning process, and then provides a detailed introduction to recent advances in electrospinning-based strategies for the treatment of diabetic wounds. Importantly, the synergetic application of combining electrospinning with bioactive ingredients and/or cell therapy was highlighted. The review also discussed the advantages of hydrogel dressings by using electrospun nanofibers. At the end of the review, the challenge and prospects of electrospinning-based strategies for the treatment of diabetic wounds are discussed in depth.
Collapse
Affiliation(s)
- Kun Li
- College of Textile & Clothing, Qingdao University, Qingdao 266071, China;
| | - Zhijun Zhu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China; (Z.Z.); (Y.Z.)
| | - Yanling Zhai
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China; (Z.Z.); (Y.Z.)
| | - Shaojuan Chen
- College of Textile & Clothing, Qingdao University, Qingdao 266071, China;
| |
Collapse
|
18
|
Zhu P, Yin H, Wei J, Wu J, Ping D, Zhang X. A bilayer biocompatible polycaprolactone/zinc oxide/Capparis spinosa L. ethyl acetate extract/polylactic acid nanofibrous composite scaffold for novel wound dressing applications. Int J Biol Macromol 2023; 242:125093. [PMID: 37257530 DOI: 10.1016/j.ijbiomac.2023.125093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Capparis spinosa L. (CSL) is used in traditional medicinal purposes for wound dressing because it contains natural phenolic and flavonoid active compounds. In the current study, a bilayer of biocompatible and mechanically stable nanofiber scaffolds with polycaprolactone (PCL)/zinc oxide and Capparis spinosa L. ethyl acetate extract (CSLE)/polylactic acid (PLA) layers was successfully prepared by an electrostatic spinning technique. Microstructural observations carried out by scanning electron microscopy (SEM) have shown that the nanofibers with a smooth surface are continuous and bead-free, and that the size distribution is uniform, with an average diameter of 314.15 nm. The results of careful observation further suggested that polymers in the nanofibers have excellent compatibility with drugs. The results of Fourier transform infrared (FTIR) spectroscopy suggested that CSLE and zinc oxide nanoparticles (ZnO) were successfully loaded in the nanofiber membranes. Water contact angle measurements revealed that the bilayer nanofiber membranes exhibited satisfactory wettability (outside layer, 130°; inner layer, 72.4°). Tensile testing showed that the bilayer PCL/ZnO-CSLE/PLA nanofibers remained unbroken until reaching 10.69 MPa, which is much higher than the tensile strengths of the individual layers or the individual components. Moreover, agar disk diffusion assessment confirmed that the bilayer nanofiber membranes obviously hindered bacterial growth. Cytotoxicity studies showed that the bilayer nanofiber membranes effectively accelerated cell proliferation. The investigated PCL/ZnO-CSLE/PLA bilayer nanofibers have potential for use as membranes for wound dressing applications.
Collapse
Affiliation(s)
- Peng Zhu
- School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Han Yin
- School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Jiajiao Wei
- School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Jianmeng Wu
- School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Dehai Ping
- School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China.
| | - Xingqun Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
19
|
Emerging Antimicrobial and Immunomodulatory Fiber-Based Scaffolding Systems for Treating Diabetic Foot Ulcers. Pharmaceutics 2023; 15:pharmaceutics15010258. [PMID: 36678887 PMCID: PMC9861857 DOI: 10.3390/pharmaceutics15010258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are one of the main complications of diabetes and are characterized by their complexity and severity, which are frequently aggravated by overexpressed inflammatory factors and polymicrobial infections. Most dressing systems offer a passive action in the treatment of DFUs, being frequently combined with antibiotic or immunomodulatory therapies. However, in many instances due to these combined therapies' inability to properly fight microbial presence, and provide a suitable, breathable and moist environment that is also capable of protecting the site from secondary microbial invasions or further harm, aggravation of the wound state is unavoidable and lower limb amputations are necessary. Considering these limitations and knowing of the urgent demand for new and more effective therapeutic systems for DFU care that will guarantee the quality of life for patients, research in this field has boomed in the last few years. In this review, the emerging innovations in DFU dressing systems via fiber-based scaffolds modified with bioactive compounds have been compiled; data focused on the innovations introduced in the last five years (2017-2022). A generalized overview of the classifications and constraints associated with DFUs healing and the bioactive agents, both antimicrobial and immunomodulatory, that can contribute actively to surpass such issues, has also been provided.
Collapse
|
20
|
Schäfer S, Aavani F, Köpf M, Drinic A, Stürmer EK, Fuest S, Grust ALC, Gosau M, Smeets R. Silk proteins in reconstructive surgery: Do they possess an inherent antibacterial activity? A systematic review. Wound Repair Regen 2023; 31:99-110. [PMID: 36106818 DOI: 10.1111/wrr.13049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/27/2023]
Abstract
The field of reconstructive surgery encompasses a wide range of surgical procedures and regenerative approaches to treat various tissue types. Every surgical procedure is associated with the risk of surgical site infections, which are not only a financial burden but also increase patient morbidity. The surgical armamentarium in this area are biomaterials, particularly natural, biodegradable, biocompatible polymers, including the silk proteins fibroin (SF) and sericin (SS). Silk is known to be derived from silkworms and is mainly composed of 60-80% fibroin, which provides the structural form, and 15-35% sericin, which acts as a glue-like substance for the SF threads. Silk proteins possess most of the desired properties for biomedical applications, including biocompatibility, biodegradability, minimal immunogenicity, and tunable biomechanical behaviour. In an effort to alleviate or even prevent infections associated with the use of biomaterials in surgery, antibacterial/antimicrobial properties have been investigated in numerous studies. In this systematic review, the following question was addressed: Do silk proteins, SF and SS, possess an intrinsic antibacterial property and how could these materials be tailored to achieve such a property?
Collapse
Affiliation(s)
- Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Ewa K Stürmer
- Department of Vascular Medicine, University Heart Centre, Translational Wound Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Audrey Laure Céline Grust
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Biopolymer-Based Wound Dressings with Biochemical Cues for Cell-Instructive Wound Repair. Polymers (Basel) 2022; 14:polym14245371. [PMID: 36559739 PMCID: PMC9783382 DOI: 10.3390/polym14245371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine is an active research sphere that focuses on the repair, regeneration, and replacement of damaged tissues and organs. A plethora of innovative wound dressings and skin substitutes have been developed to treat cutaneous wounds and are aimed at reducing the length or need for a hospital stay. The inception of biomaterials with the ability to interact with cells and direct them toward desired lineages has brought about innovative designs in wound healing and tissue engineering. This cellular engagement is achieved by cell cues that can be biochemical or biophysical in nature. In effect, these cues seep into innate repair pathways, cause downstream cell behaviours and, ultimately, lead to advantageous healing. This review will focus on biomolecules with encoded biomimetic, instructive prompts that elicit desired cellular domino effects to achieve advanced wound repair. The wound healing dressings covered in this review are based on functionalized biopolymeric materials. While both biophysical and biochemical cues are vital for advanced wound healing applications, focus will be placed on biochemical cues and in vivo or clinical trial applications. The biochemical cues aforementioned will include peptide therapy, collagen matrices, cell-based therapy, decellularized matrices, platelet-rich plasma, and biometals.
Collapse
|
22
|
Analyzing and mapping the research status, hotspots, and frontiers of biological wound dressings: An in-depth data-driven assessment. Int J Pharm 2022; 629:122385. [DOI: 10.1016/j.ijpharm.2022.122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
23
|
Silva AS, Costa EC, Reis S, Spencer C, Calhelha RC, Miguel SP, Ribeiro MP, Barros L, Vaz JA, Coutinho P. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers (Basel) 2022; 14:polym14224931. [PMID: 36433058 PMCID: PMC9699483 DOI: 10.3390/polym14224931] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Silk is a natural composite fiber composed mainly of hydrophobic fibroin and hydrophilic sericin, produced by the silkworm Bombyx mori. In the textile industry, the cocoons of B. mori are processed into silk fabric, where the sericin is substantially removed and usually discarded in wastewater. This wastewater pollutes the environment and water sources. However, sericin has been recognized as a potential biomaterial due to its biocompatibility, immunocompatibility, biodegradability, anti-inflammatory, antibacterial, antioxidant and photoprotective properties. Moreover, sericin can produce hydrogels, films, sponges, foams, dressings, particles, fibers, etc., for various biomedical and pharmaceutical applications (e.g., tissue engineering, wound healing, drug delivery, cosmetics). Given the severe environmental pollution caused by the disposal of sericin and its beneficial properties, there has been growing interest in upcycling this biomaterial, which could have a strong and positive economic, social and environmental impact.
Collapse
Affiliation(s)
- Andreia S. Silva
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Elisabete C. Costa
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Sara Reis
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carina Spencer
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (R.C.C.); (P.C.)
| | - Sónia P. Miguel
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Maximiano P. Ribeiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Lillian Barros
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana A. Vaz
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Paula Coutinho
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- Correspondence: (R.C.C.); (P.C.)
| |
Collapse
|
24
|
Li J, Wen P, Qin G, Zhang J, Zhao P, Ye Y. Toxicological evaluation of water-extract sericin from silkworm (Bombyx mori) in pregnant rats and their fetus during pregnancy. Front Pharmacol 2022; 13:982841. [PMID: 36120341 PMCID: PMC9478611 DOI: 10.3389/fphar.2022.982841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Sericin is a natural protein produced by the silkworm Bombyx mori, which has a wide range of biological activities and has a broad application prospect in multiple areas. However, systemic toxicity and safety assessment of sericin is still rare. This study was aimed to evaluate the toxic effects of water-extract sericin from cocoons of Bombyx mori in pregnant rats and their fetuses during pregnancy. Eighty pregnant rats were randomly divided into three treatment groups, one negative and one positive control group. The treatment groups were administered water-extract sericin solutions at doses of 1,000, 500, and 250 mg/kg, while the negative and positive control groups were administered pure water and 300 mg/kg aspirin, respectively. Rats were exposed daily by oral gavage from the seventh day of gestation for 10 consecutive days and sacrificed on the 20th day of gestation. The results showed that water-extract sericin did not induce any treatment-related changes on pregnant rats (clinical signs, body weights, food consumption, ovarian and uterine weights) and fetuses (body weights, body lengths, tail lengths, visceral, and skeletal development). The no-observed-adverse-effect-level (NOAEL) of sericin was determined to be 1,000 mg/kg body weight in rats. These results indicated that water-extract sericin is of low teratogenic potential under the experimental conditions of this study.
Collapse
Affiliation(s)
- Jinyue Li
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Pingjing Wen
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Guangqiu Qin
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, China
- *Correspondence: Guangqiu Qin, ; Jiehong Zhang,
| | - Jiehong Zhang
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, China
- *Correspondence: Guangqiu Qin, ; Jiehong Zhang,
| | - Peng Zhao
- Institute of Toxicology, Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Yixin Ye
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
25
|
|
26
|
Kumar V, Kumar A, Chauhan NS, Yadav G, Goswami M, Packirisamy G. Design and Fabrication of a Dual Protein-Based Trilayered Nanofibrous Scaffold for Efficient Wound Healing. ACS APPLIED BIO MATERIALS 2022; 5:2726-2740. [PMID: 35594572 DOI: 10.1021/acsabm.2c00200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic wound healing is a major threat all over the world. There are currently a plethora of biomaterials-based wound dressings available for wound healing applications. In this study, a dual protein-based (silk fibroin and sericin) nanofibrous scaffold from a natural source (B.mori silkworm cocoons) with antibacterial and antioxidative properties for wound healing was investigated. An electrospun layer-by-layer silk protein-based nanofibrous scaffold was fabricated with a top layer of hydrophobic silk fibroin protein blended with polyvinyl alcohol (PVA), a middle layer of waste protein silk sericin loaded with silver(I) sulfadiazine as an antibacterial agent, and a bottom layer using silk fibroin blended with polycaprolactone (PCL). The trilayered nanofibrous scaffold with a smooth and bead-free morphology demonstrated excellent wettability, slow in vitro degradation, controlled drug release, and potent antibacterial and antioxidant properties. In vitro, the scaffold also demonstrated excellent hemocompatibility and biocompatibility. Furthermore, in vivo wound contraction, histological, and micro-CT investigations show complete wound healing and the formation of new skin tissue in a male Balb/c mouse model treated with the scaffold. The antioxidant properties of the sericin protein and SSD-based triple-layered nanofibrous scaffold protect the wound from bacterial infection and improve wound healing in a mouse model. The current study develops a dual protein-based nanofibrous scaffold with antibacterial and antioxidant properties as a promising wound dressing material.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee 247667, Uttarakhand, India
| | - Amit Kumar
- Laboratory Animal Facility, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu and Kashmir, India
| | - Narendra Singh Chauhan
- Laboratory Animal Facility, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu and Kashmir, India
| | - Govind Yadav
- Laboratory Animal Facility, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, Jammu and Kashmir, India
| | - Mayank Goswami
- Divyadrishti Imaging Laboratory, Department of Physics, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee Roorkee 247667, Uttarakhand, India.,Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
27
|
Qin K, Pereira RFP, Coradin T, de Zea Bermudez V, Fernandes FM. Biomimetic Silk Macroporous Materials for Drug Delivery Obtained via Ice-Templating. ACS APPLIED BIO MATERIALS 2022; 5:2556-2566. [PMID: 35537179 DOI: 10.1021/acsabm.2c00020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Silk from Bombyx mori is one of the most exciting materials in nature. The apparently simple arrangement of its two major components─two parallel filaments of silk fibroin (SF) coated by a common sericin (SS) sheath─provides a combination of mechanical and surface properties that can protect the moth during its most vulnerable phase, the pupal stage. Here, we recapitulate the topology of native silk fibers but shape them into three-dimensional porous constructs using an unprecedented design strategy. We demonstrate, for the first time, the potential of these macroporous silk foams as dermal patches for wound protection and for the controlled delivery of Rifamycin (Rif), a model antibiotic. The method implies (i) removing SS from silk fibers; (ii) shaping SF solutions into macroporous foams via ice-templating; (iii) stabilizing the SF macroporous foam in a methanolic solution of Rif; and (iv) coating Rif-loaded SF foams with a SS sheath. The resulting SS@SF foams exhibit water wicking capacity and accommodate up to ∼20% deformation without detaching from a skin model. The antibacterial behavior of Rif-loaded SS@SF foams against Staphylococcus aureus on agar plates outperforms that of SF foams (>1 week and 4 days, respectively). The reassembly of natural materials as macroporous foams─illustrated here for the reconstruction of silk-based materials─can be extended to other multicomponent natural materials and may play an important role in applications where controlled release of molecules and fluid transport are pivotal.
Collapse
Affiliation(s)
- Kankan Qin
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Rui F P Pereira
- Chemistry Center and Chemistry Department, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Thibaud Coradin
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Verónica de Zea Bermudez
- Chemistry Department and CQ-VR, University of Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real, Portugal
| | - Francisco M Fernandes
- Sorbonne Université, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| |
Collapse
|
28
|
Abstract
Wound dressing adherence is an important problem that is frequently encountered in wound care, and is associated with both clinical and economic burdens. However, only a few review articles have focused on this issue. The objective of this review was to present a comprehensive discussion of wound dressing adherence, including the mechanism of dressing adherence, adverse consequences (clinical burdens and economic burdens), factors affecting adherence (dressing-, patient- and wound-related factors, and factors related to the wound care procedure), tests to assess dressing adherence (in vitro assay, in vivo assay and clinical trials), and reduction of wound adherence (modification of dressing adherence and special care in particular patients). Accordingly, this review article emphasises an awareness of dressing adherence, and is intended to be an informative source for the development of new dressings and for wound management.
Collapse
Affiliation(s)
- Apirujee Punjataewakupt
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand.,The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| |
Collapse
|
29
|
Agarwal A, Rao GK, Majumder S, Shandilya M, Rawat V, Purwar R, Verma M, Srivastava CM. Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges. 3 Biotech 2022; 12:92. [PMID: 35342680 PMCID: PMC8921418 DOI: 10.1007/s13205-022-03152-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Electrospinning is an electrostatic fiber fabrication technique that operates by the application of a strong electric field on polymer solution or melts. It is used to fabricate fibers whose size lies in the range of few microns to the nanometer range. Historic development of electrospinning has evinced attention due to its outstanding attributes such as small diameter, excellent pore inter-connectivity, high porosity, and high surface-to-volume ratio. This review aims to highlight the theory behind electrospinning and the machine setup with a detailed discussion about the processing parameters. It discusses the latest innovations in natural protein-based electrospun nanofibers for health care applications. Various plant- and animal-based proteins have been discussed with detailed sample preparation and corresponding processing parameters. The usage of these electrospun nanofibers in regenerative medicine and drug delivery has also been discussed. Some technical innovations in electrospinning techniques such as emulsion electrospinning and coaxial electrospinning have been highlighted. Coaxial electrospun core-shell nanofibers have the potential to be utilized as an advanced nano-architecture for sustained release targeted delivery as well as for regenerative medicine. Healthcare applications of nanofibers formed via emulsion and coaxial electrospinning have been discussed briefly. Electrospun nanofibers have still much scope for commercialization on large scale. Some of the available wound-dressing materials have been discussed in brief.
Collapse
Affiliation(s)
- Anushka Agarwal
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Gyaneshwar K. Rao
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Sudip Majumder
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Manish Shandilya
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Varun Rawat
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Roli Purwar
- Department of Applied Chemistry, Delhi Technological University, New Delhi, Delhi 110042 India
| | - Monu Verma
- Department of Environmental Engineering, University of Seoul, Seoul, 130743 South Korea
| | - Chandra Mohan Srivastava
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
- Centre for Polymer Technology, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| |
Collapse
|
30
|
Schäfer S, Smeets R, Köpf M, Drinic A, Kopp A, Kröger N, Hartjen P, Assaf AT, Aavani F, Beikler T, Peters U, Fiedler I, Busse B, Stürmer EK, Vollkommer T, Gosau M, Fuest S. Antibacterial properties of functionalized silk fibroin and sericin membranes for wound healing applications in oral and maxillofacial surgery. BIOMATERIALS ADVANCES 2022; 135:212740. [PMID: 35929202 DOI: 10.1016/j.bioadv.2022.212740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
Oral wounds are among the most troublesome injuries which easily affect the patients' quality of life. To date, the development of functional antibacterial dressings for oral wound healing remains a challenge. In this regard, we investigated antibacterial silk protein-based membranes for the application as wound dressings in oral and maxillofacial surgery. The present study includes five variants of casted membranes, i.e., i) membranes-silver nanoparticles (CM-Ag), ii) membranes-gentamicin (CM-G), iii) membranes-control (without functionalization) (CM-C), iv) membranes-silk sericin control (CM-SSC), and v) membranes-silk fibroin/silk sericin (CM-SF/SS), and three variants of nonwovens, i.e., i) silver nanoparticles (NW-Ag), ii) gentamicin (NW-G), iii) control (without functionalization) (NW-C). The surface structure of the samples was visualized with scanning electron microscopy. In addition, antibacterial testing was accomplished using agar diffusion assay, colony forming unit (CFU) analysis, and qrt-PCR. Following antibacterial assays, biocompatibility was evaluated by cell proliferation assay (XTT), cytotoxicity assay (LDH), and live-dead assay on L929 mouse fibroblasts. Findings indicated significantly lower bacterial colony growth and DNA counts for CM-Ag with a reduction of bacterial counts by 3log levels (99.9% reduction) in CFU and qrt-PCR assay compared to untreated control membranes (CM-C and CM-SSC) and membranes functionalized with gentamicin (CM-G and NW-G) (p < 0.001). Similarly, NW-G yielded significantly lower DNA and colony growth counts compared to NW-Ag and NW-C (p < 0.001). In conclusion, CM-Ag represented 1log level better antibacterial activity compared to NW-G, whereas NW-G showed better cytocompatibility for L929 cells. As data suggest, these two membranes have the potential of application in the field of bacteria-free oral wound healing. However, provided that loading strategy and cytocompatibility are adjusted according to the antibacterial agents' characteristic and fabrication technique of the membranes.
Collapse
Affiliation(s)
- Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany; Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | | | | | | | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Alexandre Thomas Assaf
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Farzaneh Aavani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Imke Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Ewa K Stürmer
- Department of Vascular Medicine, University Heart Center, Translational Wound Research, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Tobias Vollkommer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany.
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany.
| |
Collapse
|
31
|
Ziauddin, Hussain T, Nazir A, Mahmood U, Hameed M, Ramakrishna S, Abid S. Nanoengineered therapeutic scaffolds for burn wound management. Curr Pharm Biotechnol 2022; 23:1417-1435. [PMID: 35352649 DOI: 10.2174/1389201023666220329162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/05/2021] [Accepted: 11/19/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Wound healing is a complex process, and selecting an appropriate treatment is crucial and varies from one wound to another. Among injuries, burn wounds are more challenging to treat. Different dressings and scaffolds come into play when skin is injured. These scaffolds provide the optimum environment for wound healing. With the advancements of nanoengineering, scaffolds have been engineered to improve wound healing with lower fatality rates. OBJECTIVES Nanoengineered systems have emerged as one of the promising candidates for burn wound management. This review paper aims to provide an in-depth understanding of burn wounds and the role of nanoengineering in burn wound management. The advantages of nanoengineered scaffolds, their properties, and their proven effectiveness have been discussed. Nanoparticles and nanofibers-based nanoengineered therapeutic scaffolds provide optimum protection, infection management, and accelerated wound healing due to their unique characteristics. These scaffolds increase cell attachment and proliferation for desired results. RESULTS The literature review suggested that the utilization of nanoengineered scaffolds has accelerated burn wound healing. Nanofibers provide better cell attachment and proliferation among different nanoengineered scaffolds due to their 3D structure mimics the body's extracellular matrix. CONCLUSION With the application of these advanced nanoengineered scaffolds, better burn wound management is possible due to sustained drug delivery, better cell attachment, and an infection-free environment.
Collapse
Affiliation(s)
- Ziauddin
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Tanveer Hussain
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Ahsan Nazir
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Urwa Mahmood
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| | - Misbah Hameed
- Department of Pharmaceutics, Faculty of pharmaceutical science, Government College University, Faisalabad, Pakistan
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology (CNN), National University of Singapore (NUS), Singapore
| | - Sharjeel Abid
- Electrospun Materials & Polymeric Membranes Research Group, National Textile University, Pakistan
| |
Collapse
|
32
|
Enhancing clinical applications of PVA hydrogel by blending with collagen hydrolysate and silk sericin. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-02965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Chigama H, Kanetaka H, Furuya M, Yokota K, Kawashita M. Indirect cytotoxicity evaluations of antibacterial raw silk fabric doped with calcium, copper and zinc on fibroblasts and osteoblasts. J Biomater Appl 2022; 36:1417-1426. [PMID: 34984930 DOI: 10.1177/08853282211058941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antibacterial materials are widely used to prevent hospital-acquired infections. In our previous report, metal (calcium, copper or zinc)-doped raw silk fabrics were shown to possess strong antibacterial activities against Escherichia coli. However, antibacterial materials may occasionally be harmful to the human body; thus, in this study, we investigated the cytotoxicities of extracts from metal-doped raw silk fabrics with respect to fibroblasts and osteoblasts indirectly. Calcium-doped raw silk fabric demonstrated cytocompatibility with fibroblasts. Contrarily, copper- and zinc-doped raw silk fabrics remarkably decreased the cell densities of fibroblasts, indicating their cytotoxic effects. This observation could be attributed to the high concentrations of the released copper or zinc ions. However, calcium-, copper- and zinc-doped raw silk fabrics did not demonstrate any cytotoxic effects on osteoblasts because a high concentration of the serum alleviated the effects of these metal ions released from the fabrics. Thus, calcium-doped raw silk fabric is a promising antibacterial material that does not induce strong cytotoxicity. This study will facilitate the design of materials that are both antibacterial and safe.
Collapse
Affiliation(s)
- Hiroki Chigama
- Graduate School of Dentistry, 13101Tohoku University, Sendai, Japan
| | | | - Maiko Furuya
- Graduate School of Dentistry, 13101Tohoku University, Sendai, Japan
| | - Kotone Yokota
- Graduate School of Dentistry, 13101Tohoku University, Sendai, Japan
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, 13100Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
34
|
Dhilip Kumar SS, Abrahamse H. Sericin-based nanomaterials and their applications in drug delivery. BIO-BASED NANOMATERIALS 2022:211-229. [DOI: 10.1016/b978-0-323-85148-0.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
35
|
Gao Z, Wang Q, Yao Q, Zhang P. Application of Electrospun Nanofiber Membrane in the Treatment of Diabetic Wounds. Pharmaceutics 2021; 14:6. [PMID: 35056901 PMCID: PMC8780153 DOI: 10.3390/pharmaceutics14010006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetic wounds are complications of diabetes which are caused by skin dystrophy because of local ischemia and hypoxia. Diabetes causes wounds in a pathological state of inflammation, resulting in delayed wound healing. The structure of electrospun nanofibers is similar to that of the extracellular matrix (ECM), which is conducive to the attachment, growth, and migration of fibroblasts, thus favoring the formation of new skin tissue at the wound. The composition and size of electrospun nanofiber membranes can be easily adjusted, and the controlled release of loaded drugs can be realized by regulating the fiber structure. The porous structure of the fiber membrane is beneficial to gas exchange and exudate absorption at the wound, and the fiber surface can be easily modified to give it function. Electrospun fibers can be used as wound dressing and have great application potential in the treatment of diabetic wounds. In this study, the applications of polymer electrospun fibers, nanoparticle-loaded electrospun fibers, drug-loaded electrospun fibers, and cell-loaded electrospun fibers, in the treatment of diabetic wounds were reviewed, and provide new ideas for the effective treatment of diabetic wounds.
Collapse
Affiliation(s)
| | | | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; (Z.G.); (Q.W.)
| | - Pingping Zhang
- School of Pharmacy and Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China; (Z.G.); (Q.W.)
| |
Collapse
|
36
|
Lei F, Zhou G, Chen Y, Cai J, Wang J, Shuai Y, Xu Z, Wang Z, Mao C, Yang M. Arginine induces protein self-assembly into nanofibers for triggering osteogenic differentiation of stem cells. J Mater Chem B 2021; 9:9764-9769. [PMID: 34806096 DOI: 10.1039/d1tb01921j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although silk proteins are considered promising in building a scaffold for tissue engineering, one of the silk proteins, Bombyx mori silk sericin (BS), has limited processability in producing nanofibrous scaffolds because its surface charge anisotropy promotes gelation instead. To overcome this daunting challenge, we developed a mild and simple procedure for assembling BS into nanofibers and nanofibrous scaffolds. Briefly, arginine was added to the aqueous BS solution to reduce the negative charge of BS, thereby inducing BS to self-assemble into nanofibers in the solution. Circular dichroism (CD) and Fourier transform infrared (FT-IR) spectra showed that arginine promoted the formation of β-sheet conformation in BS and increased its thermal stability. Furthermore, the arginine-induced BS nanofiber solution could be casted into scaffolds made of abundant network-like nanofibrous structures. The BS scaffolds promoted cell adhesion and growth and stimulated osteogenic differentiation of the bone marrow mesenchymal stem cells (BMSCs) in the absence of differentiation inducers in culture media. Our study presents a new strategy for assembling proteins into osteogenic nanofibrous scaffolds for inducing stem cell differentiation in regenerative medicine.
Collapse
Affiliation(s)
- Fang Lei
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
| | - Guanshan Zhou
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
| | - Yuping Chen
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
| | - Jiangfeng Cai
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
| | - Jie Wang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
| | - Yajun Shuai
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
| | - Zongpu Xu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
| | - Zhangfu Wang
- Department of Orthopaedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang, China
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, USA. .,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China.
| |
Collapse
|
37
|
Bhar B, Chouhan D, Pai N, Mandal BB. Harnessing Multifaceted Next-Generation Technologies for Improved Skin Wound Healing. ACS APPLIED BIO MATERIALS 2021; 4:7738-7763. [PMID: 35006758 DOI: 10.1021/acsabm.1c00880] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulation of sequential and synchronized events of skin regeneration often results in the impairment of chronic wounds. Conventional wound dressings fail to trigger the normal healing mechanism owing to the pathophysiological conditions. Tissue engineering approaches that deal with the fabrication of dressings using various biomaterials, growth factors, and stem cells have shown accelerated healing outcomes. However, most of these technologies are associated with difficulties in scalability and cost-effectiveness of the products. In this review, we survey the latest developments in wound healing strategies that have recently emerged through the multidisciplinary approaches of bioengineering, nanotechnology, 3D bioprinting, and similar cutting-edge technologies to overcome the limitations of conventional therapies. We also focus on the potential of wearable technology that supports complete monitoring of the changes occurring in the wound microenvironment. In addition, we review the role of advanced devices that can precisely enable the delivery of nanotherapeutics, oligonucleotides, and external stimuli in a controlled manner. These technological advancements offer the opportunity to actively influence the regeneration process to benefit the treatment regime further. Finally, the clinical relevance, trajectory, and prospects of this field have been discussed in brief that highlights their potential in providing a beneficial wound care solution at an affordable cost.
Collapse
Affiliation(s)
- Bibrita Bhar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Dimple Chouhan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Nakhul Pai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Biman B Mandal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.,School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
38
|
Tuancharoensri N, Ross G, Punyodom W, Mahasaranon S, Jongjitwimol J, Topham PD, Ross S. Multifunctional core–shell electrospun nanofibrous fabrics of poly(vinyl alcohol)/silk sericin (core) and poly(lactide‐
co
‐glycolide) (shell). POLYM INT 2021. [DOI: 10.1002/pi.6319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Gareth Ross
- Department of Chemistry, Faculty of Science Naresuan University Phitsanulok Thailand
- Biopolymer Group, Excellent Center of Biomaterials, Department of Chemistry Faculty of Science, Naresuan University Phitsanulok Thailand
| | - Winita Punyodom
- Center of Excellence in Materials Science and Technology Chiang Mai University Chiang Mai Thailand
- Department of Chemistry, Faculty of Science Chiang Mai University Chiang Mai Thailand
| | - Sararat Mahasaranon
- Department of Chemistry, Faculty of Science Naresuan University Phitsanulok Thailand
- Biopolymer Group, Excellent Center of Biomaterials, Department of Chemistry Faculty of Science, Naresuan University Phitsanulok Thailand
| | - Jirapas Jongjitwimol
- Clinical Microbiology, Department of Medical Technology Faculty of Allied Health Sciences, Naresuan University Phitsanulok Thailand
| | - Paul D Topham
- Aston Institute of Materials Research Aston University Birmingham UK
| | - Sukunya Ross
- Department of Chemistry, Faculty of Science Naresuan University Phitsanulok Thailand
- Biopolymer Group, Excellent Center of Biomaterials, Department of Chemistry Faculty of Science, Naresuan University Phitsanulok Thailand
| |
Collapse
|
39
|
Superior Technique for the Production of Agarose Dressing Containing Sericin and Its Wound Healing Property. Polymers (Basel) 2021; 13:polym13193370. [PMID: 34641182 PMCID: PMC8512865 DOI: 10.3390/polym13193370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
Finding a simple and eco-friendly production technique that matches to the natural agent and results in a truly valuable natural scaffold production is still limited amongst the intensively competitive natural scaffold development. Therefore, the purpose of this study was to develop natural scaffolds that were environmentally friendly, low cost, and easily produced, using natural agents and a physical crosslinking technique. These scaffolds were prepared from agarose and sericin using the freeze-drying method (D) or freeze-thawing together with the freeze-drying method (TD). Moreover, plasticizers were added into the scaffold to improve their properties. Their physical, mechanical, and biological properties were investigated. The results showed that scaffolds that were prepared using the TD method had stronger bonding between sericin and other compounds, leading to a low swelling ratio and low protein release of the scaffolds. This property may be applied in the development of further material as a controlled drug release scaffold. Adding plasticizers, especially glycerin, into the scaffolds significantly increased elongation properties, leading to an increase in elasticity of the scaffold. Moreover, all scaffolds could activate cell migration, which had an advantage on wound healing acceleration. Accordingly, this study was successful in developing natural scaffolds using natural agents and simple and green crosslinking methods.
Collapse
|
40
|
Naskar D, Sapru S, Ghosh AK, Reis RL, Dey T, Kundu SC. Nonmulberry silk proteins: multipurpose ingredient in bio-functional assembly. Biomed Mater 2021; 16. [PMID: 34428758 DOI: 10.1088/1748-605x/ac20a0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 01/27/2023]
Abstract
The emerging field of tissue engineering and regenerative medicines utilising artificial polymers is facing many problems. Despite having mechanical stability, non-toxicity and biodegradability, most of them lack cytocompatibility and biocompatibility. Natural polymers (such as collagen, hyaluronic acid, fibrin, fibroin, and others), including blends, are introduced to the field to solve some of the relevant issues. Another natural biopolymer: silkworm silk gained special attention primarily due to its specific biophysical, biochemical, and material properties, worldwide availability, and cost-effectiveness. Silk proteins, namely fibroin and sericin extracted from domesticated mulberry silkwormBombyx mori, are studied extensively in the last few decades for tissue engineering. Wild nonmulberry silkworm species, originated from India and other parts of the world, also produce silk proteins with variations in their nature and properties. Among the nonmulberry silkworm species,Antheraea mylitta(Indian Tropical Tasar),A. assamensis/A. assama(Indian Muga), andSamia ricini/Philosamia ricini(Indian Eri), along withA. pernyi(Chinese temperate Oak Tasar/Tussah) andA. yamamai(Japanese Oak Tasar) exhibit inherent tripeptide motifs of arginyl glycyl aspartic acid in their fibroin amino acid sequences, which support their candidacy as the potential biomaterials. Similarly, sericin isolated from such wild species delivers unique properties and is used as anti-apoptotic and growth-inducing factors in regenerative medicines. Other characteristics such as biodegradability, biocompatibility, and non-inflammatory nature make it suitable for tissue engineering and regenerative medicine based applications. A diverse range of matrices, including but not limited to nano-micro scale structures, nanofibres, thin films, hydrogels, and porous scaffolds, are prepared from the silk proteins (fibroins and sericins) for biomedical and tissue engineering research. This review aims to represent the progress made in medical and non-medical applications in the last couple of years and depict the present status of the investigations on Indian nonmulberry silk-based matrices as a particular reference due to its remarkable potentiality of regeneration of different types of tissues. It also discusses the future perspective in tissue engineering and regenerative medicines in the context of developing cutting-edge techniques such as 3D printing/bioprinting, microfluidics, organ-on-a-chip, and other electronics, optical and thermal property-based applications.
Collapse
Affiliation(s)
- Deboki Naskar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,Present address: Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Sunaina Sapru
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,Present address: Robert H. Smith Faculty of Agriculture, Food and Environment, The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, IL, Israel
| | - Ananta K Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-4805-017 Barco, Guimaraes, Portugal
| | - Tuli Dey
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Subhas C Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-4805-017 Barco, Guimaraes, Portugal
| |
Collapse
|
41
|
Nam G, Kim M, Jang Y, Cho S. Cold Atmospheric Pressure Microplasma Pipette for Disinfection of Methicillin-Resistant Staphylococcus aureus. MICROMACHINES 2021; 12:1103. [PMID: 34577746 PMCID: PMC8465082 DOI: 10.3390/mi12091103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022]
Abstract
Microbial infections should be controlled and prevented for successful wound healing and tissue regeneration. Various disinfection methods exist that use antibiotics, ultraviolet (UV), heat, radiation, or chemical disinfectants; however, cold atmospheric pressure plasma has exhibited a unique and effective antibacterial ability that is not affected by antibiotic resistance or pain. This study develops a cold atmospheric pressure microplasma pipette (CAPMP) that outputs an Ar plasma plume through a tube with an inner radius of 180 μm for disinfection in a small area. The CAPMP was evaluated using Staphylococcus aureus and methicillin-resistant Staphylococcus aureus diluted in liquid media, spread on solid agar, or covered by dressing gauze. An increase in the treatment time of CAPMP resulted in a decrease in the number of colonies of the grown microorganism (colony forming unit) and an increase in the disinfected area for both bacteria. The disinfection ability of CAPMP was observed when the bacteria were covered with dressing gauze and was dependent on the number of gauze layers.
Collapse
Affiliation(s)
- Geunyoung Nam
- Department of Biomedical Engineering, Gachon Advanced Institute for Health Science & Technology, Gachon University, 191 Hambakmoe-ro, Incheon 21999, Korea;
| | - Muhwan Kim
- Femto Science Inc., 557 Dongtangiheung-ro, Hwaseong-si 18469, Gyeonggi-do, Korea; (M.K.); (Y.J.)
| | - Yeonsook Jang
- Femto Science Inc., 557 Dongtangiheung-ro, Hwaseong-si 18469, Gyeonggi-do, Korea; (M.K.); (Y.J.)
| | - Sungbo Cho
- Department of Biomedical Engineering, Gachon Advanced Institute for Health Science & Technology, Gachon University, 191 Hambakmoe-ro, Incheon 21999, Korea;
- Department of Electronic Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea
| |
Collapse
|
42
|
Liu Y, Fan J, Lv M, She K, Sun J, Lu Q, Han C, Ding S, Zhao S, Wang G, Zhang Y, Zang G. Photocrosslinking silver nanoparticles-aloe vera-silk fibroin composite hydrogel for treatment of full-thickness cutaneous wounds. Regen Biomater 2021; 8:rbab048. [PMID: 34513005 PMCID: PMC8419525 DOI: 10.1093/rb/rbab048] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Damage to the skin causes physiological and functional issues. The most effective treatment approach is the use of wound dressings. Silk fibroin (SF) is a promising candidate biomaterial for regulating wound healing; however, its antibacterial properties and biological activity must be further improved. In this study, a photocrosslinking hydrogel was developed to treat full-thickness cutaneous wounds. The composite hydrogel (Ag–AV–SF hydrogel) was prepared by introducing the silver nanoparticles (AgNPs) and aloe vera (AV) as the modifiers. In vitro study exhibited great antibacterial ability, biocompatibility and cell-proliferation and -migration-promoting capacities. It also showed the pH-response releasing properties which release more AgNPs in a simulated chronic infection environment. The healing effect evaluation in vivo showed the healing-promoting ability of the Ag–AV–SF hydrogel was stronger than the single-modifiers groups, and the healing rate of it reached 97.02% on Day 21, higher than the commercial wound dressing, silver sulfadiazine (SS) cream on sale. Additionally, the histological and protein expression results showed that the Ag–AV–SF hydrogel has a greater effect on the pro-healing regenerative phenotype with M2 macrophages at the early stage, reconstructing the blood vessels networks and inhibiting the formation of scars. In summary, the Ag–AV–SF hydrogel developed in this study had good physical properties, overwhelming antibacterial properties, satisfactory biocompatibility and significantly promoting effect on cell proliferation, migration and wound healing. Overall, our results suggest that the Ag–AV–SF hydrogel we developed has great potential for improving the wound healing in clinical treatment.
Collapse
Affiliation(s)
- Yangkun Liu
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - JinChuan Fan
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - MingQi Lv
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Kepeng She
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Jiale Sun
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Qingqing Lu
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Changhao Han
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - SongTao Ding
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - Shuang Zhao
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China.,Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - GuiXue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - YuChan Zhang
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| | - GuangChao Zang
- Institute of Life Science, And Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
43
|
Additive Manufacturing of Biopolymers for Tissue Engineering and Regenerative Medicine: An Overview, Potential Applications, Advancements, and Trends. INT J POLYM SCI 2021. [DOI: 10.1155/2021/4907027] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
As a technique of producing fabric engineering scaffolds, three-dimensional (3D) printing has tremendous possibilities. 3D printing applications are restricted to a wide range of biomaterials in the field of regenerative medicine and tissue engineering. Due to their biocompatibility, bioactiveness, and biodegradability, biopolymers such as collagen, alginate, silk fibroin, chitosan, alginate, cellulose, and starch are used in a variety of fields, including the food, biomedical, regeneration, agriculture, packaging, and pharmaceutical industries. The benefits of producing 3D-printed scaffolds are many, including the capacity to produce complicated geometries, porosity, and multicell coculture and to take growth factors into account. In particular, the additional production of biopolymers offers new options to produce 3D structures and materials with specialised patterns and properties. In the realm of tissue engineering and regenerative medicine (TERM), important progress has been accomplished; now, several state-of-the-art techniques are used to produce porous scaffolds for organ or tissue regeneration to be suited for tissue technology. Natural biopolymeric materials are often better suited for designing and manufacturing healing equipment than temporary implants and tissue regeneration materials owing to its appropriate properties and biocompatibility. The review focuses on the additive manufacturing of biopolymers with significant changes, advancements, trends, and developments in regenerative medicine and tissue engineering with potential applications.
Collapse
|
44
|
Zhang M, Wang D, Ji N, Lee S, Wang G, Zheng Y, Zhang X, Yang L, Qin Z, Yang Y. Bioinspired Design of Sericin/Chitosan/Ag@MOF/GO Hydrogels for Efficiently Combating Resistant Bacteria, Rapid Hemostasis, and Wound Healing. Polymers (Basel) 2021; 13:2812. [PMID: 34451350 PMCID: PMC8398496 DOI: 10.3390/polym13162812] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/03/2021] [Accepted: 08/17/2021] [Indexed: 01/21/2023] Open
Abstract
Due to the spread of drug-resistant bacteria in hospitals, the development of antibacterial dressings has become a strategy to control wound infections caused by bacteria. Here, we reported a green strategy for in situ biomimetic syntheses of silver nanoparticles@organic frameworks/graphene oxide (Ag@MOF-GO) in sericin/chitosan/polyvinyl alcohol hydrogel. Ag@MOF-GO was synthesized in situ from the redox properties of tyrosine residues in silk sericin without additional chemicals, similar to a biomineralization process. The sericin/chitosan/Ag@MOF-GO dressing possessed a high porosity, good water retention, and a swelling ratio. The hemolysis rate of the composite was 3.9% and the cell viability rate was 131.2%, which indicated the hydrogel possessed good biocompatibility. The composite also showed excellent lasting antibacterial properties against drug-sensitive and drug-resistant pathogenic bacteria. The composite possessed excellent hemostatic activity. The coagulation effect of the composite may be related to its effect on the red blood cells and platelets, but it has nothing to do with the activation of coagulation factors. An in vitro cell migration assay confirmed and an in vivo evaluation of mice indicated that the composite could accelerate wound healing and re-epithelialization. In summary, the composite material is an ideal dressing for accelerating hemostasis, preventing bacterial infection, and promoting wound healing.
Collapse
Affiliation(s)
- Meng Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Dong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Nana Ji
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoxiang Lee
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guohui Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuqi Zheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xin Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (M.Z.); (D.W.); (N.J.); (G.W.); (Y.Z.); (X.Z.)
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, Qingdao University of Science and Technology, Qingdao 266042, China
- Shandong Engineering Technology Research Center for Advanced Coating, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Lin Yang
- Sinochem Chemical Science and Technology Research Institute Co., Ltd., Beijing 100089, China; (L.Y.); (Z.Q.)
| | - Zhiwei Qin
- Sinochem Chemical Science and Technology Research Institute Co., Ltd., Beijing 100089, China; (L.Y.); (Z.Q.)
| | - Yang Yang
- National Marine Data and Information Service, Tianjin 300171, China;
| |
Collapse
|
45
|
Zare MR, Khorram M, Barzegar S, Sarkari B, Asgari Q, Ahadian S, Zomorodian K. Dissolvable carboxymethyl cellulose/polyvinylpyrrolidone microneedle arrays for transdermal delivery of Amphotericin B to treat cutaneous leishmaniasis. Int J Biol Macromol 2021; 182:1310-1321. [PMID: 34000308 DOI: 10.1016/j.ijbiomac.2021.05.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 01/21/2023]
Abstract
Cutaneous leishmaniasis (CL) is a significant public health problem caused by different species of Leishmania parasites. Due to low skin permeability, the development of an effective system for delivery of Amphotericin B (AMB), the common effective drug for leishmaniasis treatment, is required to replace the unpleasant and problematic injections. To overcome this problem, a dissolvable microneedle (MN) patch was developed, using biodegradable polymers (a mixture of polyvinylpyrrolidone and carboxymethyl cellulose) for AMB's transdermal delivery. Scanning electron microscopy and fluorescent images showed successful fabrication of the MNs and homogeneous dispersion of the drug into the needles. MNs showed good mechanical properties with the ability to penetrate the rat skin and reach the lower layers. After insertion to the skin, the MNs were rapidly dissolved to release the encapsulated drug, and the resulted micropores in the skin were quickly resealed within 30 min. MN patches showed non-toxicity as exposed to HT-29 cell line. Flow cytometry results showed a potent in vitro leishmanicidal activity of AMB-loaded MN patches against the Leishmania parasites (up to 86% of the parasites' death). Taken together, MN patches might represent a new, efficient and clinically translational approach for transdermal AMB delivery to treat CL.
Collapse
Affiliation(s)
- Mohammad Reza Zare
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Mohammad Khorram
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran.
| | - Sajjad Barzegar
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Bahador Sarkari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Qasem Asgari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Kamiar Zomorodian
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.
| |
Collapse
|
46
|
Li H, Zhang X, Zheng H, Fan Y, Cheng T, Liu C. Identification and location of sericin in silkworm with anti-sericin antibodies. Int J Biol Macromol 2021; 184:522-529. [PMID: 34119553 DOI: 10.1016/j.ijbiomac.2021.06.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/01/2022]
Abstract
Sericin, as the main component of silkworm cocoon silk, surrounds and protects the silk fibroin. Sericin is a natural macromolecular protein complex encoded by the genes Ser1, Ser2, and Ser3. At present, there are no available antibodies against sericin that may be used to identify and locate it at the protein level, hindering the study of its secretion mechanism and materials application. Therefore, the development of effective antibodies against sericin is an urgent necessity. To address this problem, we prepared polyclonal antibodies against the Ser1, Ser2 and Ser3 proteins using synthesized peptides for the first time. The specificity of the antibodies was confirmed using dot blot, immunoblotting and mass spectrometry on the hybrid bands of the middle silk gland. The immunoblotting results of anti-sericin antibodies showed that sericin has different molecular weights in different regions of the middle silk gland and strains in the 5th instar. Through immunohistochemistry, anti-sericin antibodies revealed that sericin presented different distributions in the anterior part of the middle silk gland of 872 strain at the 7th day of 5th instar. In addition, the prepared antibodies not only detected intact sericin molecules, but also detected degraded sericin that was dissolved in five different solvents. In summary, this work prepared effective sericin antibodies for silk protein synthesis and secretion research and provides a possible molecular detection method for biological products containing silkworm sericin.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Xuan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Hongsheng Zheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Yinfeng Fan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, China; Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.
| |
Collapse
|
47
|
Chagas PA, Schneider R, dos Santos DM, Otuka AJ, Mendonça CR, Correa DS. Bilayered electrospun membranes composed of poly(lactic-acid)/natural rubber: A strategy against curcumin photodegradation for wound dressing application. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Zare MR, Khorram M, Barzegar S, Asadian F, Zareshahrabadi Z, Saharkhiz MJ, Ahadian S, Zomorodian K. Antimicrobial core-shell electrospun nanofibers containing Ajwain essential oil for accelerating infected wound healing. Int J Pharm 2021; 603:120698. [PMID: 33989750 DOI: 10.1016/j.ijpharm.2021.120698] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 01/05/2023]
Abstract
Treatment of skin injuries is still facing major challenges, such as chronicity and infections, particularly those caused by multi-drug resistance pathogens. An effective treatment of such wounds should accelerate the wound healing process while preventing bacterial contamination. Here, a novel core-shell nanofiber mat was fabricated comprising gelatin/polyvinyl alcohol (as a core) and aloe vera/arabinose/polyvinylpyrrolidone (as a shell) for accelerating the healing process of bacteria-infected wounds. Trachyspermum Ammi (Ajwain) essential oil (EO), as a potent and natural antimicrobial agent against microorganisms, was incorporated into the core of nanofiber mats using coaxial electrospinning. The microscopy images demonstrated the successful fabrication of the core-shell structure with a uniform fiber size of 564 ± 106.35 nm. Moreover, Ajwain EO-loaded nanofiber mat (core-shell/EO) provided excellent antimicrobial activity and antioxidant ability. The in vitro and ex vivo release of Ajwain EO from the fabricated nanofiber mat corroborated a prolonged release profile. Furthermore, in vivo antibacterial activity, wound closure, and histomorphological examinations showed the high efficacy of the core-shell/EO mat in the treatment of Staphylococcus aureus-infected full-thickness rat wounds compared to standard control treatment with a gauze. Overall, these results represent the core-shell/EO mat's potential as a newly developed wound dressing for bacteria-infected full-thickness skin injuries.
Collapse
Affiliation(s)
- Mohammad Reza Zare
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Mohammad Khorram
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran.
| | - Sajjad Barzegar
- Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 71348-51154, Iran
| | - Fatemeh Asadian
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Zahra Zareshahrabadi
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Sciences, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz 71348-45794, Iran.
| |
Collapse
|
49
|
Rehan M, El-Naggar ME, Al-Enizi AM, Alothman AA, Nafady A, Abdelhameed RM. Development of silk fibers decorated with the in situ synthesized silver and gold nanoparticles: antimicrobial activity and creatinine adsorption capacity. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Zhu P, Zhang X, Wang Y, Li C, Wang X, Tie J, Wang Y. Electrospun
polylactic acid nanofiber membranes containing
Capparis spinosa
L
. extracts for potential wound dressing applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.50800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Zhu
- College of Textile and Clothing Xin Jiang University Wulumuqi China
| | - Xingqun Zhang
- College of Textile and Clothing Xin Jiang University Wulumuqi China
- College of Chemistry, Chemical Engineering and Biotechnology Donghua University Shanghai China
| | - Yunlong Wang
- College of Textile and Clothing Xin Jiang University Wulumuqi China
| | - Changen Li
- College of Textile and Clothing Xin Jiang University Wulumuqi China
| | - Xianzhu Wang
- College of Textile and Clothing Xin Jiang University Wulumuqi China
| | - Jiancheng Tie
- College of Textile and Clothing Xin Jiang University Wulumuqi China
| | - Ying Wang
- College of Textile and Clothing Xin Jiang University Wulumuqi China
| |
Collapse
|