1
|
Ma H, Su X, Liang J, Liu L, Sun J, Tong J, Lu J, Zhang Y, Lei B, Zhao H. Bioactive protein/polysaccharide hydrogel functionalized bone implants surface for enhanced osteogenesis. Int J Biol Macromol 2025:144626. [PMID: 40419044 DOI: 10.1016/j.ijbiomac.2025.144626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/06/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025]
Abstract
Bone implants play a critical role in the treatment of orthopedic diseases, however, conventional polymer or ceramic or metal implants possess various problems in enhancing bone repair and osteointegration. Recent years, the bioactive bone implants with biomimetic mechanical surface with natural extracellular matrix has shown promising role in reinforcing bone integration and regeneration. Biomedical hydrogels coating strategy has attracted much attention in bone implants modification, due to their adjustable surface biomechanics, bioactivities and drug release ability. Based on the principles of mechanical compatibility for biodegradable scaffold materials, it facilitates a "soft-hard synergy" in bone repair. This review provides an overview of recent advances in the field of hydrogel modification for bone implants, including the polysaccharide hydrogels (such as chitosan, alginate, and hyaluronic acid) and protein hydrogels (such as gelatin and collagen). Furthermore, this review explores the current understanding of the biomechanical mechanisms underlying bone formation in hydrogel-modified implants within the body, presents the challenges and future directions in this field. This study integrates engineering, developmental biology, and clinical perspectives, offering unique insights for the development of functional strategies for bone implants aimed at enhancing the treatment of orthopedic diseases.
Collapse
Affiliation(s)
- Hongyun Ma
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Xiaochen Su
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China; Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingqi Liang
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Liang Liu
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jianbo Sun
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jin Tong
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Jun Lu
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yingang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China; Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Hongmou Zhao
- Foot and Ankle Surgery Department, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
2
|
Wang J, Yang F, Chen R, Yang X, Wang J, Zhang H. Hydrogel Composite Incorporating Deferoxamine-Loaded Gelatin-Based Microspheres Enhance Angiogenesis Ability of Dental Pulp Stem Cells. ACS OMEGA 2025; 10:12579-12589. [PMID: 40191326 PMCID: PMC11966253 DOI: 10.1021/acsomega.5c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025]
Abstract
Fast reconstruction of the pulpal vasculature is crucial for effective pulp regeneration. Dental pulp stem cells (DPSCs) are promising candidates for pulp regeneration because of their potential for multilineage differentiation and vasculogenic properties. Deferoxamine (DFO) has been shown to stimulate angiogenesis during wound healing and bone regeneration; however, the effects of DFO on the angiogenic potential of DPSCs remain unknown. Moreover, its usefulness is restricted by a limited half-life and challenges in achieving localized tissue enrichment. This study aimed to develop a sustained-release injectable hydrogel composite as a drug delivery system and to investigate its influence on DPSCs. Herein, gelatin-based microspheres (GMSs) were loaded with DFO, and temperature-sensitive injectable hydrogels incorporating collagen and chitosan were synthesized to enable controlled DFO release. The experimental findings demonstrated that the DFO-loaded GMSs (DFO-GMSs) hydrogel composite possessed favorable physical properties and biocompatibility, enabling sustained DFO delivery for up to 15 days. DFO effectively stimulated DPSC migration, promoted the secretion of angiogenesis-related factors, and induced tube formation in vitro. These results suggest that the DFO-GMSs hydrogel composite significantly increased the migration and angiogenic potential of DPSCs, highlighting its promise for tissue regeneration applications.
Collapse
Affiliation(s)
- Jie Wang
- College
and Hospital of Stomatology, Anhui Medical
University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei230032, China
| | - Fan Yang
- College
and Hospital of Stomatology, Anhui Medical
University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei230032, China
| | - Ruting Chen
- College
and Hospital of Stomatology, Anhui Medical
University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei230032, China
- Department
of Stomatology, Yangjiang People’s
Hospital, Affiliated Yangjiang Hospital of Guangdong Medical University, Yangjiang529500, China
| | - Xinyue Yang
- College
and Hospital of Stomatology, Anhui Medical
University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei230032, China
| | - Jingjing Wang
- College
and Hospital of Stomatology, Anhui Medical
University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei230032, China
| | - Hongyan Zhang
- College
and Hospital of Stomatology, Anhui Medical
University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei230032, China
| |
Collapse
|
3
|
Che Z, Sheng X, Sun Q, Wu Y, Song K, Chen A, Chen J, Chen Q, Cai M. Deferoxamine functionalized alginate-based collagen composite material enhances the integration of metal implant and bone interface. Carbohydr Polym 2025; 349:122944. [PMID: 39643405 DOI: 10.1016/j.carbpol.2024.122944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 12/09/2024]
Abstract
Poor osseointegration markedly compromises the longevity of prostheses. To enhance the stability of titanium implants, surface functionalization is a proven strategy to promote prosthesis-bone integration. This study developed a hydrogel coating capable of simultaneous osteoangiogenesis and vascularization by incorporating deferoxamine (DFO) into a sodium alginate mineralized collagen composite hydrogel. The physicochemical properties of this hydrogel were thoroughly analyzed. In vivo and in vitro experiments confirmed the hydrogel scaffold's osteogenic and angiogenic capabilities. Results indicated that sodium alginate notably enhanced the mechanical characteristics of the mineralized collagen, allowing it to fully infiltrate the interstices of the 3D-printed titanium scaffold. Furthermore, as the hydrogel degraded, collagen, calcium ion, phosphate ion, and DFO were gradually released around the scaffolds, altering the local osteogenic microenvironment and strongly inducing new bone tissue growth. These findings offer novel perspectives for the creation and utilization of functionalized bone implant materials.
Collapse
Affiliation(s)
- Zhenjia Che
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Xiao Sheng
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Wuxing, Huzhou, Zhejiang 313000, People's Republic of China
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Yanglin Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Kaihang Song
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Aopan Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Jing Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Qiyun Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| |
Collapse
|
4
|
Liu X, Zhou C, Xie Q, Xia L, Liu L, Bao W, Lin H, Xiong X, Zhang H, Zheng Z, Zhao J, Liang W. Recent advances in layer-by-layer assembly scaffolds for co-delivery of bioactive molecules for bone regeneration: an updated review. J Transl Med 2024; 22:1001. [PMID: 39501263 PMCID: PMC11539823 DOI: 10.1186/s12967-024-05809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024] Open
Abstract
Orthopedic implants have faced challenges in treating bone defects due to various factors, including inadequate osseointegration, oxidative stress, bacterial infection, immunological rejection, and poor individualized treatment. These challenges profoundly affect both the results of treatment and patients' daily lives. There is great promise for the layer-by-layer (LbL) assembly method in tissue engineering. The method primarily relies on electrostatic attraction and entails the consecutive deposition of electrolyte complexes with opposite charges onto a substrate, leading to the formation of homogeneous single layers that can be quickly deposited to produce nanolayer films. LbL has attracted considerable interest as a coating technology because of its ease of production, cost-effectiveness, and capability to apply diverse biomaterial coatings without compromising the primary bio-functional properties of the substrate materials. This review will look into the fundamentals and evolution of LbL in orthopedics, provide an analysis of the chemical strategy used to prepare bone implants with LbL and introduce the application of LbL bone implants in orthopedics over recent years. Among the many potential uses of LbL, such as the implementation of sustained-release and programmed drug delivery, which in turn promotes the osseointegration and the development of new blood vessels, as well as antibacterial, antioxidant, and other similar applications. In addition, we offer a thorough examination of cell behavior and biomaterial interaction to facilitate the advancement of next-generation LbL films for tissue engineering.
Collapse
Affiliation(s)
- Xiankun Liu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000, Zhejiang, China
| | - Qiong Xie
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000, Zhejiang, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Wenwen Bao
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hongming Lin
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000, Zhejiang, China
| | - Xiaochun Xiong
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China
| | - Hao Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China
| | - Zeping Zheng
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China.
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Yi Q, Sun M, Jiang G, Liang P, Chang Q, Yang R. Echinacoside promotes osteogenesis and angiogenesis and inhibits osteoclast formation. Eur J Clin Invest 2024; 54:e14198. [PMID: 38501711 DOI: 10.1111/eci.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE The purpose of this research is to demonstrate echinacoside promotes osteogenesis and angiogenesis and inhibits osteoclast formation. METHODS We conducted a cell experiment in vitro to study how echinacoside affects angiogenesis, osteogenesis and osteoclast formation. We used polymerase chain reaction and Western blotting to detect the expression levels of proteins and genes related to angiogenesis, osteogenesis and osteoclast formation. We established a bone fracture model with rats to test angiogenesis, osteogenesis and osteoclast formation of echinacoside. We labelled osteogenic markers, blood vessels and osteoclastic markers in fracture sections of rats. RESULTS The in vitro cell experiments showed echinacoside improved the osteogenic activity of mouse embryo osteoblast precursor cells and promoted the migration and tube formation of human umbilical vein endothelial cells. In addition, it inhibited differentiation of mouse leukaemia cells of monocyte macrophage. Echinacoside increased the expression of related proteins and genes and improved angiogenesis and osteogenesis while inhibiting osteoclast formation by repressing the expression of related proteins and genes. From in vivo experiments, the results of IHC and HE experiments demonstrated echinacoside significantly decreased the content of MMP-9 and improved the content of VEGF and OCN. The fluorescence immunoassay showed echinacoside promoted the activities of RUNX2 and VEGF and inhibited CTSK. Echinacoside reduced the content of TNF-α, IL-1β and IL-6, thus demonstrating its anti-inflammatory activity. CONCLUSION Echinacoside improved angiogenesis and osteogenesis and inhibited osteoclast formation to promote fracture healing.
Collapse
Affiliation(s)
- Qingqing Yi
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Miaomiao Sun
- Luoxi (Shanghai) Medical Technology Co LTD, Shanghai, China
| | - Guowei Jiang
- Pharmacy Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Pengchen Liang
- School of Microelectronics, Shanghai University, Shanghai, China
| | - Qing Chang
- Institute of Digestive Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Yang
- Pathology Department, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Shen H, Ma Y, Qiao Y, Zhang C, Chen J, Zhang R. Application of Deferoxamine in Tissue Regeneration Attributed to Promoted Angiogenesis. Molecules 2024; 29:2050. [PMID: 38731540 PMCID: PMC11085206 DOI: 10.3390/molecules29092050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Deferoxamine, an iron chelator used to treat diseases caused by excess iron, has had a Food and Drug Administration-approved status for many years. A large number of studies have confirmed that deferoxamine can reduce inflammatory response and promote angiogenesis. Blood vessels play a crucial role in sustaining vital life by facilitating the delivery of immune cells, oxygen, and nutrients, as well as eliminating waste products generated during cellular metabolism. Dysfunction in blood vessels may contribute significantly to the development of life-threatening diseases. Anti-angiogenesis therapy and pro-angiogenesis/angiogenesis strategies have been frequently recommended for various diseases. Herein, we describe the mechanism by which deferoxamine promotes angiogenesis and summarize its application in chronic wounds, bone repair, and diseases of the respiratory system. Furthermore, we discuss the drug delivery system of deferoxamine for treating various diseases, providing constructive ideas and inspiration for the development of new treatment strategies.
Collapse
Affiliation(s)
- Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Yane Ma
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Yi Qiao
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Chun Zhang
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Jialing Chen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Y.M.); (Y.Q.); (C.Z.); (J.C.)
| | - Ran Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42 Baiziting, Nanjing 210009, China
| |
Collapse
|
7
|
Liu H, Li K, Yi D, Ding Y, Gao Y, Zheng X. Deferoxamine-Loaded Chitosan-Based Hydrogel on Bone Implants Showing Enhanced Bond Strength and Pro-Angiogenic Effects. J Funct Biomater 2024; 15:112. [PMID: 38667569 PMCID: PMC11051205 DOI: 10.3390/jfb15040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Angiogenesis is vital for bone fracture healing and plays a significant role in the fate of orthopedic implants. The growth and maintenance of new blood vessels at the fracture site of patients is essential, which promotes the clinical outcome of plasma sprayed Ti (PST) coated orthopedic implants. In order to endow the PST coating with pro-angiogenic effects, deferoxamine-loaded chitosan-based hydrogel was fabricated on the coating surface. Polydopamine-modified chitosan (CS/PDA) hydrogel exhibited enhanced bonding strength to PST coatings as evidenced by scratch test. The deferoxamine-loaded CS/PDA (CS/PDA-DFO) exhibited a sustained drug-release property, and the cumulative concentration of released DFO reached 20.21 μg/mL on day 7. PST-CS/PDA with higher wettability and active group quantity enhanced the viability and adhesion characteristics of human umbilical vein endothelial cells (HUVECs) and upregulated the secretion level of nitric oxide and vascular endothelial growth factor. Moreover, the introduction of DFO in PST-CS/PDA further enhanced the pro-angiogenic effects. Above all, this study offers a novel approach for developing hydrogel coating on orthopedic implants showing enhanced bonding strength and pro-angiogenic effects.
Collapse
Affiliation(s)
- Huan Liu
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China;
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (D.Y.); (Y.D.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Deliang Yi
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (D.Y.); (Y.D.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yi Ding
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (D.Y.); (Y.D.)
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China;
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China; (D.Y.); (Y.D.)
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
8
|
Xu Q, Bai Y, Li S, Hou W, Hao Y, Yang R, Li X, Zhang X. Enhancing osteogenesis and angiogenesis functions for Ti-24Nb-4Zr-8Sn scaffolds with methacrylated gelatin and deferoxamine. Front Bioeng Biotechnol 2024; 12:1372636. [PMID: 38707506 PMCID: PMC11066197 DOI: 10.3389/fbioe.2024.1372636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Repair of large bone defects remains challenge for orthopedic clinical treatment. Porous titanium alloys have been widely fabricated by the additive manufacturing, which possess the elastic modulus close to that of human cortical bone, good osteoconductivity and osteointegration. However, insufficient bone regeneration and vascularization inside the porous titanium scaffolds severely limit their capability for repair of large-size bone defects. Therefore, it is crucially important to improve the osteogenic function and vascularization of the titanium scaffolds. Herein, methacrylated gelatin (GelMA) were incorporated with the porous Ti-24Nb-4Zr-8Sn (Ti2448) scaffolds prepared by the electron beam melting (EBM) method (Ti2448-GelMA). Besides, the deferoxamine (DFO) as an angiogenic agent was doped into the Ti2448-GelMA scaffold (Ti2448-GelMA/DFO), in order to promote vascularization. The results indicate that GelMA can fully infiltrate into the pores of Ti2448 scaffolds with porous cross-linked network (average pore size: 120.2 ± 25.1 μm). Ti2448-GelMA scaffolds facilitated the differentiation of MC3T3-E1 cells by promoting the ALP expression and mineralization, with the amount of calcium contents ∼2.5 times at day 14, compared with the Ti2448 scaffolds. Impressively, the number of vascular meshes for the Ti2448-GelMA/DFO group (∼7.2/mm2) was significantly higher than the control group (∼5.3/mm2) after cultivation for 9 h, demonstrating the excellent angiogenesis ability. The Ti2448-GelMA/DFO scaffolds also exhibited sustained release of DFO, with a cumulative release of 82.3% after 28 days. Therefore, Ti2448-GelMA/DFO scaffolds likely provide a new strategy to improve the osteogenesis and angiogenesis for repair of large bone defects.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
| | - Yun Bai
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Shujun Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Wentao Hou
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yulin Hao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Rui Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
9
|
Wang R, Zha X, Chen J, Fu R, Fu Y, Xiang J, Yang W, Zhao L. Hierarchical Composite Scaffold with Deferoxamine Delivery System to Promote Bone Regeneration via Optimizing Angiogenesis. Adv Healthc Mater 2024:e2304232. [PMID: 38375993 DOI: 10.1002/adhm.202304232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Indexed: 02/21/2024]
Abstract
A bone defect refers to the loss of bone tissue caused by trauma or lesion. Bone defects result in high morbidity and deformity rates worldwide. Autologous bone grafting has been widely applied in clinics as the gold standard of treatment; however, it has limitations. Hence, bone tissue engineering has been proposed and developed as a novel therapeutic strategy for treating bone defects. Rapid and effective vascularization is essential for bone regeneration. In this study, a hierarchical composite scaffold with deferoxamine (DFO) delivery system, DFO@GMs-pDA/PCL-HNTs (DGPN), is developed, focusing on vascularized bone regeneration. The hierarchical structure of DGPN imitates the microstructure of natural bone and interacts with the local extracellular matrix, facilitating cell adhesion and proliferation. The addition of 1 wt% of halloysite nanotubes (HNTs) improves the material properties. Hydrophilic and functional groups conferred by polydopamine (pDA) modifications strengthen the scaffold bioactivity. Gelatin microspheres (GMs) protect the pharmacological activity of DFO, achieving local application and sustained release for 7 days. DFO effectively promotes angiogenesis by activating the signaling pathway of hypoxia inducible factor-1 α. In addition, DFO synergizes with HNTs to promote osteogenic differentiation and matrix mineralization. These results indicate that DGPN promotes bone regeneration and accelerates cranial defect healing.
Collapse
Affiliation(s)
- Raokaijuan Wang
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Xiangjun Zha
- Liver Transplant Center and Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jouchen Chen
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Ruijie Fu
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Yajun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jie Xiang
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Lixing Zhao
- Department of Orthodontics, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| |
Collapse
|
10
|
Michailidou G, Li Y, Zamboulis A, Karlioti G, Meimaroglou D, Pantopoulos K, Bikiaris DN. A Water-Soluble Chitosan Derivative for the Release of Bioactive Deferoxamine. Int J Mol Sci 2024; 25:913. [PMID: 38255991 PMCID: PMC10815119 DOI: 10.3390/ijms25020913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Deferoxamine (DFO) is a water-soluble iron chelator used pharmacologically for the management of patients with transfusional iron overload. However, DFO is not cell-permeable and has a short plasma half-life, which necessitates lengthy parenteral administration with an infusion pump. We previously reported the synthesis of chitosan (CS) nanoparticles for sustained slow release of DFO. In the present study, we developed solid dispersions and nanoparticles of a carboxymethyl water-soluble chitosan derivative (CMCS) for improved DFO encapsulation and release. CS dispersions and nanoparticles with DFO have been prepared by ironical gelation using sodium triphosphate (TPP) and were examined for comparison purposes. The successful presence of DFO in CMCS polymeric dispersions and nanoparticles was confirmed through FTIR measurements. Furthermore, the formation of CMCS nanoparticles led to inclusion of DFO in an amorphous state, while dispersion of DFO in the polymeric matrix led to a decrease in its crystallinity according to X-ray diffraction (XRD) and differential scanning calorimetry (DSC) results. An in vitro release assay indicated sustained release of DFO from CS and CMCS nanoparticles over 48 h and 24 h, respectively. Application of CMCS-DFO dispersions to murine RAW 264.7 macrophages or human HeLa cervical carcinoma cells triggered cellular responses to iron deficiency. These were exemplified in the induction of the mRNA encoding transferrin receptor 1, the major iron uptake protein, and the suppression of ferritin, the iron storage protein. Our data indicate that CMCS-DFO nanoparticles release bioactive DFO that causes effective iron chelation in cultured cells.
Collapse
Affiliation(s)
- Georgia Michailidou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| | - Yupeng Li
- Department of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Alexandra Zamboulis
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| | - Georgia Karlioti
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| | - Despoina Meimaroglou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| | - Kostas Pantopoulos
- Department of Medicine, McGill University, Montreal, QC H3T 1E2, Canada;
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (G.M.); (A.Z.); (G.K.); (D.M.)
| |
Collapse
|
11
|
Xie X, Cai J, Li D, Chen Y, Wang C, Hou G, Steinberg T, Rolauffs B, EL-Newehy M, EL-Hamshary H, Jiang J, Mo X, Zhao J, Wu J. Multiphasic bone-ligament-bone integrated scaffold enhances ligamentization and graft-bone integration after anterior cruciate ligament reconstruction. Bioact Mater 2024; 31:178-191. [PMID: 37637081 PMCID: PMC10448241 DOI: 10.1016/j.bioactmat.2023.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
The escalating prevalence of anterior cruciate ligament (ACL) injuries in sports necessitates innovative strategies for ACL reconstruction. In this study, we propose a multiphasic bone-ligament-bone (BLB) integrated scaffold as a potential solution. The BLB scaffold comprised two polylactic acid (PLA)/deferoxamine (DFO)@mesoporous hydroxyapatite (MHA) thermally induced phase separation (TIPS) scaffolds bridged by silk fibroin (SF)/connective tissue growth factor (CTGF)@Poly(l-lactide-co-ε-caprolactone) (PLCL) nanofiber yarn braided scaffold. This combination mimics the native architecture of the ACL tissue. The mechanical properties of the BLB scaffolds were determined to be compatible with the human ACL. In vitro experiments demonstrated that CTGF induced the expression of ligament-related genes, while TIPS scaffolds loaded with MHA and DFO enhanced the osteogenic-related gene expression of bone marrow stem cells (BMSCs) and promoted the migration and tubular formation of human umbilical vein endothelial cells (HUVECs). In rabbit models, the BLB scaffold efficiently facilitated ligamentization and graft-bone integration processes by providing bioactive substances. The double delivery of DFO and calcium ions by the BLB scaffold synergistically promoted bone regeneration, while CTGF improved collagen formation and ligament healing. Collectively, the findings indicate that the BLB scaffold exhibits substantial promise for ACL reconstruction. Additional investigation and advancement of this scaffold may yield enhanced results in the management of ACL injuries.
Collapse
Affiliation(s)
- Xianrui Xie
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China
| | - Dan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Yujie Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Chunhua Wang
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China
| | - Guige Hou
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085, Freiburg im Breisgau, Germany
| | - Mohamed EL-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Hany EL-Hamshary
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xiumei Mo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinglei Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
- School of Pharmacy, Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|
12
|
Saberi A, Kouhjani M, Mohammadi M, Hosta-Rigau L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach. J Nanobiotechnology 2023; 21:351. [PMID: 37770928 PMCID: PMC10536787 DOI: 10.1186/s12951-023-02115-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Despite the recent advances in the development of bone graft substitutes, treatment of critical size bone defects continues to be a significant challenge, especially in the elderly population. A current approach to overcome this challenge involves the creation of bone-mimicking scaffolds that can simultaneously promote osteogenesis and angiogenesis. In this context, incorporating multiple bioactive agents like growth factors, genes, and small molecules into these scaffolds has emerged as a promising strategy. To incorporate such agents, researchers have developed scaffolds incorporating nanoparticles, including nanoparticulate carriers, inorganic nanoparticles, and exosomes. Current paper provides a summary of the latest advancements in using various bioactive agents, drugs, and cells to synergistically promote osteogenesis and angiogenesis in bone-mimetic scaffolds. It also discusses scaffold design properties aimed at maximizing the synergistic effects of osteogenesis and angiogenesis, various innovative fabrication strategies, and ongoing clinical studies.
Collapse
Affiliation(s)
- Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
13
|
Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, Yang Y, Tang P, Lin C. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater 2023; 27:15-57. [PMID: 37035422 PMCID: PMC10074421 DOI: 10.1016/j.bioactmat.2023.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
Collapse
Affiliation(s)
- Pinliang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ren Hu
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Shi
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Changjian Lin
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
14
|
Zhu Y, Chang B, Pang Y, Wang H, Zhou Y. Advances in Hypoxia-Inducible Factor-1 α Stabilizer Deferoxamine in Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:347-357. [PMID: 36475887 DOI: 10.1089/ten.teb.2022.0168] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deferoxamine (DFO) is an iron chelator with FDA approval for the clinical treatment of iron excess. As a well-established stabilizer of hypoxia-inducible factor-1α (HIF-1α), DFO can efficiently upregulate HIF-1α and relevant downstream angiogenic factors, leading to accelerated vascularization. Moreover, as increasing studies have focused on DFO as a hypoxia-mimetic agent in recent years, it has been shown that DFO exhibited multiple functions, including stem cell regulation, immunoregulation, provascularization, and pro-osteogenesis. On the contrary, DFO can bind excess iron ions in wounds of chronic inflammation, while serving as an antioxidant with the characteristic of removing reactive oxygen species. Collectively, these characteristics make DFO a potent modulator in tissue engineering for increasing tissue integration of biomaterials in vivo and facilitating wound healing. This review outlines the activity of DFO as a representative hypoxia-mimetic agent in cells as well as the evolution of its application in tissue engineering. It can be concluded that DFO is a medication with tremendous promise and application value in future trends, which can optimize biomaterials and existing tissue engineering techniques for tissue regeneration.
Collapse
Affiliation(s)
- Yanlin Zhu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, P.R. China
| | - Bei Chang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, P.R. China
| | - Yuxuan Pang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, P.R. China
| | - Huimin Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, P.R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, P.R. China
| |
Collapse
|
15
|
Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, Sun X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater 2023; 164:1-14. [PMID: 36972808 DOI: 10.1016/j.actbio.2023.03.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: : • This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Junning Kang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
16
|
Hou J, Ding Z, Zheng X, Shen Y, Lu Q, Kaplan DL. Tough Porous Silk Nanofiber-Derived Cryogels with Osteogenic and Angiogenic Capacity for Bone Repair. Adv Healthc Mater 2023:e2203050. [PMID: 36841910 DOI: 10.1002/adhm.202203050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Indexed: 02/27/2023]
Abstract
Tough porous cryogels with angiogenesis and osteogenesis features remain a design challenge for utility in bone regeneration. Here, building off of the recent efforts to generate tough silk nanofiber-derived cryogels with osteogenic activity, deferoxamine (DFO) is loaded in silk nanofiber-derived cryogels to introduce angiogenic capacity. Both the mechanical cues (stiffness) and the sustained release of DFO from the gels are controlled by tuning the concentration of silk nanofibers in the system, achieving a modulus above 400 kPa and slow release of the DFO over 60 days. The modulus of the cryogels and the released DFO induce osteogenic and angiogenic activity, which facilitates bone regeneration in vivo in femur defects in rat, resulting in faster regeneration of vascularized bone tissue. The tunable physical and chemical cues derived from these nanofibrous-microporous structures support the potential for silk cryogels in bone tissue regeneration.
Collapse
Affiliation(s)
- Jianwen Hou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China.,Department of Trauma Orthopedics, The Second People's Hospital of Lianyungang Affiliated to Bengbu Medical College, Lianyungang, 222023, P. R. China
| | - Zhaozhao Ding
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| | - Xin Zheng
- Department of Orthopedics, Taizhou Municipal Hospital, Taizhou, 318000, P. R. China
| | - Yixin Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, P. R. China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou, 215123, P. R. China
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
17
|
Chen W, Wu P, Yu F, Luo G, Qing L, Tang J. HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells 2022; 11:cells11223552. [PMID: 36428981 PMCID: PMC9688488 DOI: 10.3390/cells11223552] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the physiological condition, the skeletal system's bone resorption and formation are in dynamic balance, called bone homeostasis. However, bone homeostasis is destroyed under pathological conditions, leading to the occurrence of bone metabolism diseases. The expression of hypoxia-inducible factor-1α (HIF-1α) is regulated by oxygen concentration. It affects energy metabolism, which plays a vital role in preventing bone metabolic diseases. This review focuses on the HIF-1α pathway and describes in detail the possible mechanism of its involvement in the regulation of bone homeostasis and angiogenesis, as well as the current experimental studies on the use of HIF-1α in the prevention of bone metabolic diseases. HIF-1α/RANKL/Notch1 pathway bidirectionally regulates the differentiation of macrophages into osteoclasts under different conditions. In addition, HIF-1α is also regulated by many factors, including hypoxia, cofactor activity, non-coding RNA, trace elements, etc. As a pivotal pathway for coupling angiogenesis and osteogenesis, HIF-1α has been widely studied in bone metabolic diseases such as bone defect, osteoporosis, osteonecrosis of the femoral head, fracture, and nonunion. The wide application of biomaterials in bone metabolism also provides a reasonable basis for the experimental study of HIF-1α in preventing bone metabolic diseases.
Collapse
|
18
|
Xing D, Zuo W, Chen J, Ma B, Cheng X, Zhou X, Qian Y. Spatial Delivery of Triple Functional Nanoparticles via an Extracellular Matrix-Mimicking Coaxial Scaffold Synergistically Enhancing Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37380-37395. [PMID: 35946874 DOI: 10.1021/acsami.2c08784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It remains a major challenge to simultaneously achieve bone regeneration and prevent infection in the complex microenvironment of repairing bone defects. Here, we developed a novel ECM-mimicking scaffold by coaxial electrospinning to be endowed with multibiological functions. Lysophosphatidic acid (LPA) and zinc oxide (ZnO) nanoparticles were loaded into the poly-lactic-co-glycolic acid/polycaprolactone (PLGA/PCL, PP) sheath layer of coaxial nanofibers, and deferoxamine (DFO) nanoparticles were loaded into its core layer. The novel scaffold PP-LPA-ZnO/DFO maintained a porous nanofibrous architecture after incorporating three active nanoparticles, showing better physicochemical properties and eximious biocompatibility. In vitro studies showed that the bio-scaffold loaded with LPA nanoparticles had excellent cell adhesion, proliferation, and differentiation for MC3T3-E1 cells and synergistic osteogenesis with the addition of ZnO and DFO nanoparticles. Further, the PP-LPA-ZnO/DFO scaffold promoted tube formation and facilitated the expression of vascular endothelial markers in HUVECs. In vitro antibacterial studies against Escherichia Coli and Staphylococcus aureus demonstrated effective antibacterial activity of the PP-LPA-ZnO/DFO scaffold. In vivo studies showed that the PP-LPA-ZnO/DFO scaffold exhibited excellent biocompatibility after subcutaneous implantation and remarkable osteogenesis at 4 weeks post-implantation in the mouse alveolar bone defects. Importantly, the PP-LPA-ZnO/DFO scaffold showed significant antibacterial activity, prominent neovascularization, and new bone formation in the rat fenestration defect model. Overall, the spatially sustained release of LPA, ZnO, and DFO nanoparticles through the coaxial scaffold synergistically enhanced biocompatibility, osteogenesis, angiogenesis, and effective antibacterial properties, which is ultimately beneficial for bone regeneration. This project provides the optimized design of bone regenerative biomaterials and a new strategy for bone regeneration, especially in the potentially infected microenvironment.
Collapse
Affiliation(s)
- Danlei Xing
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Wei Zuo
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Jiahong Chen
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Buyun Ma
- Nano Science and Technology Institute, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xi Cheng
- Department of Plastic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| |
Collapse
|
19
|
Bai H, Wang Y, Zhao Y, Chen X, Xiao Y, Bao C. HIF signaling: A new propellant in bone regeneration. BIOMATERIALS ADVANCES 2022; 138:212874. [PMID: 35913258 DOI: 10.1016/j.bioadv.2022.212874] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Bone tissue destruction leads to severe pain, physical flaws, and loss of motility. Bone repair using biocompatible and osteo-inductive scaffolds is regarded as a viable and potential therapeutic approach. However, for large-scale bone regeneration, oxygen and nutrient supply have become limiting factors. Further, a considerable need exists for recruited cell activities and blood vessel growth. Hypoxia-inducible factor (HIF) signaling pathways induced by hypoxia are involved in angiogenesis and osteogenesis. As an important transcription factor, HIF-1 functions by modulating vital genes, such as VEGF, PDK1, and EPO, and is a crucial regulator that influences the final fate of bone regeneration. Collectively, to achieve better osteogenesis results, the in-depth molecular mechanisms that underpin the links between materials, cells, and HIF signaling pathways must be determined. This review aimed to provide an in-depth insight into recent progress in HIF-regulated bone regeneration. Hypoxia and cellular oxygen-sensing mechanisms and their correlations with osteogenesis were determined, and recent studies on hypoxia-inducing and hypoxia-mimicking strategies were briefly described. Finally, the potential applications of HIF signaling in bone regeneration were highlighted. This review provides theoretical support for establishing a novel and viable bone repair strategy in the clinic by harnessing HIF signaling.
Collapse
Affiliation(s)
- Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Yi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Xin Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Yu Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China.
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, No. 14, Section 3, Renmin Nan Road, Chengdu 610041, Sichuan, China
| |
Collapse
|
20
|
Zhao D, Nuntanaranont T, Thuaksubun N, Meesane J. Osteo-conductive hydrogel scaffolds of poly(vinylalcohol) with silk fibroin particles for bone augmentation: Structural formation and in vitro testing. J BIOACT COMPAT POL 2021. [DOI: 10.1177/08839115211055720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bone augmentation is an effective approach to treat patients who have bone loss at the maxillofacial area. In this research, osteo-conductive hydrogel scaffolds of poly(vinylalcohol) (PVA) with silk fibroin particles (SFP) were fabricated. The SFP were formed by dropping a solution of silk fibroin into acetone at different volume ratios (v/v) of silk to acetone: 1:3 (SFP-3), 1:6 (SFP-6), 1:12 (SFP-12), and 1:24 (SFP-24). The various SFP solutions were mixed with a PVA solution before fabrication into hydrogels by freeze-thawing. Afterwards, the hydrogels were freeze-dried to fabricate the scaffolds. The particle size and charge, molecular organization, and morphology of the SFP were characterized and observed with dynamic light scattering, Fourier transform infrared spectroscopy, differential scanning calorimetry, and scanning electron microscopy (SEM). The morphologies of the hydrogel scaffolds were observed with SEM. Swelling percentage was used to assess the swelling behavior of the hydrogel scaffolds. The mechanical properties were also tested. The scaffolds were cultured with osteoblast cells to test the biological performance, cell viability and performance, alkaline phosphatase activity, calcium deposition, and total protein. The SFP-24 was the smallest in particle size. PVA hydrogel scaffolds with SFP-24 demonstrated low particle aggregation, good particle distribution within the scaffold, and a lower swelling percentage. PVA hydrogel scaffolds with SFP had higher mechanical stability than scaffolds without the SFP. Furthermore, the PVA hydrogel scaffold with SFP-24 had better biological performance. Finally, the results demonstrated that PVA hydrogel scaffolds with SFP-24 showed good osteo-conductive performance which is promising for bone augmentation.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thongchai Nuntanaranont
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuttawut Thuaksubun
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
21
|
Pawlaczyk M, Schroeder G. Deferoxamine-Modified Hybrid Materials for Direct Chelation of Fe(III) Ions from Aqueous Solutions and Indication of the Competitiveness of In Vitro Complexing toward a Biological System. ACS OMEGA 2021; 6:15168-15181. [PMID: 34151096 PMCID: PMC8210399 DOI: 10.1021/acsomega.1c01411] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 05/03/2023]
Abstract
Deferoxamine (DFO) is one of the most potent iron ion complexing agent belonging to a class of trihydroxamic acids. The extremely high stability constant of the DFO-Fe complex (log β = 30.6) prompts the use of deferoxamine as a targeted receptor for scavenging Fe(III) ions. The following study aimed at deferoxamine immobilization on three different supports: poly(methyl vinyl ether-alt-maleic anhydride), silica particles, and magnetite nanoparticles, leading to a class of hybrid materials exhibiting effectiveness in ferric ion adsorption. The formed deferoxamine-loaded hybrid materials were characterized with several analytical techniques. Their adsorptive properties toward Fe(III) ions in aqueous samples, including pH-dependence, isothermal, kinetic, and thermodynamic experiments, were investigated. The materials were described with high values of maximal adsorption capacity q m, which varied between 87.41 and 140.65 mg g-1, indicating the high adsorptive potential of the DFO-functionalized materials. The adsorption processes were also described as intense, endothermic, and spontaneous. Moreover, an exemplary magnetically active deferoxamine-modified material has been proven for competitive in vitro binding of ferric ions from the biological complex protoporphyrin IX-Fe(III), which may lead to a further examination of the materials' biological or medical applicability.
Collapse
|
22
|
Han X, Sun M, Chen B, Saiding Q, Zhang J, Song H, Deng L, Wang P, Gong W, Cui W. Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact Mater 2021; 6:1639-1652. [PMID: 33313444 PMCID: PMC7701916 DOI: 10.1016/j.bioactmat.2020.11.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022] Open
Abstract
In the field of bone defect repair, 3D printed scaffolds have the characteristics of personalized customization and accurate internal structure. However, how to construct a well-structured vascular network quickly and effectively inside the scaffold is essential for bone repair after transplantation. Herein, inspired by the unique biological structure of "lotus seedpod", hydrogel microspheres encapsulating deferoxamine (DFO) liposomes were prepared through microfluidic technology as "lotus seeds", and skillfully combined with a three-dimensional (3D) printed bioceramic scaffold with biomimetic "lotus" biological structure which can internally grow blood vessels. In this composite scaffold system, DFO was effectively released by 36% in the first 6 h, which was conducive to promote the growth of blood vessels inside the scaffold quickly. In the following 7 days, the release rate of DFO reached 69%, which was fundamental in the formation of blood vessels inside the scaffold as well as osteogenic differentiation of bone mesenchymal stem cells (BMSCs). It was confirmed that the composite scaffold could significantly promote the human umbilical vein endothelial cells (HUVECs) to form the vascular morphology within 6 h in vitro. In vivo, the composite scaffold increased the expression of vascularization and osteogenic related proteins Hif1-α, CD31, OPN, and OCN in the rat femoral defect model, significantly cutting down the time of bone repair. To sum up, this "lotus seedpod" inspired porous bioceramic 3D printed scaffold with internal vascularization functionality has broad application prospects in the future.
Collapse
Affiliation(s)
- Xiaoyu Han
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Mingjie Sun
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Bo Chen
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Qimanguli Saiding
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Junyue Zhang
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Hongliang Song
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Peng Wang
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Weiming Gong
- Department of Orthopedics, Jinan Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, 105 Jiefang Road, Lixia District, Jinan, Shandong, 250013, PR China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| |
Collapse
|
23
|
Titanium dioxide nanotubes as drug carriers for infection control and osteogenesis of bone implants. Drug Deliv Transl Res 2021; 11:1456-1474. [PMID: 33942245 DOI: 10.1007/s13346-021-00980-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Titanium implants have been widely used as one of the most effective treatments of bone defects. However, the lack of osteogenesis and bacteria-resistant activities result in high infection and loosening rates of titanium implants. Anodic oxidation could easily construct titanium dioxide nanotubes (TNTs) array on the surface of titanium, and the rough surface of TNTs is beneficial to the growth of osteoblast-related cells on the surface. And TNTs could be excellent drug carriers because of their single-entry tubular hollow structure. In this review, we aim at detailing the application of TNTs as drug carriers in the field of bone implants. Starting from the topography of TNTs, we illustrated the biological activity of the TNTs surface, the drugs for loading in TNTs, and the controlled and responsive release strategies of drug-loaded TNTs, respectively. At the end of this review, the shortcomings of TNTs as the drug carrier in the field of bone implants are discussed, and the development direction of this research field is also prospected.
Collapse
|
24
|
Multifunctional natural polymer-based metallic implant surface modifications. Biointerphases 2021; 16:020803. [PMID: 33906356 DOI: 10.1116/6.0000876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High energy traumas could cause critical damage to bone, which will require permanent implants to recover while functionally integrating with the host bone. Critical sized bone defects necessitate the use of bioactive metallic implants. Because of bioinertness, various methods involving surface modifications such as surface treatments, the development of novel alloys, bioceramic/bioglass coatings, and biofunctional molecule grafting have been utilized to effectively integrate metallic implants with a living bone. However, the applications of these methods demonstrated a need for an interphase layer improving bone-making to overcome two major risk factors: aseptic loosening and peri-implantitis. To accomplish a biologically functional bridge with the host to prevent loosening, regenerative cues, osteoimmunomodulatory modifications, and electrochemically resistant layers against corrosion appeared as imperative reinforcements. In addition, interphases carrying antibacterial cargo were proven to be successful against peri-implantitis. In the literature, metallic implant coatings employing natural polymers as the main matrix were presented as bioactive interphases, enabling rapid, robust, and functional osseointegration with the host bone. However, a comprehensive review of natural polymer coatings, bridging and grafting on metallic implants, and their activities has not been reported. In this review, state-of-the-art studies on multifunctional natural polymer-based implant coatings effectively utilized as a bone tissue engineering (BTE) modality are depicted. Protein-based, polysaccharide-based coatings and their combinations to achieve better osseointegration via the formation of an extracellular matrix-like (ECM-like) interphase with gap filling and corrosion resistance abilities are discussed in detail. The hypotheses and results of these studies are examined and criticized, and the potential future prospects of multifunctional coatings are also proposed as final remarks.
Collapse
|
25
|
Shi R, Zhang J, Niu K, Li W, Jiang N, Li J, Yu Q, Wu C. Electrospun artificial periosteum loaded with DFO contributes to osteogenesis via the TGF-β1/Smad2 pathway. Biomater Sci 2021; 9:2090-2102. [PMID: 33475652 DOI: 10.1039/d0bm01304h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deferoxamine (DFO), an iron chelator regarded as a hypoxic analogue, has been reported to be involved in angiogenesis and osteogenic differentiation. In this study, DFO was loaded into nanospheres, Then, DFO-loaded NPs and free DFO were co-encapsulated in nanofibers through coaxial electrospinning and its effects on cell viability, migration, and osteogenic differentiation, and the potential mechanisms were investigated. The results suggested that DFO maintained cell viability and promoted the migration of human mesenchymal stem cells (hMSCs) and MC3T3-E1 cells. ALP activity, calcium deposition, and expression of osteogenesis-related markers, including collagen, osteocalcin, and osteopontin, were all increased with DFO. Moreover, hypoxia-inducible factor-1α, transforming growth factor-β, and Smad2 were upregulated with DFO, which indicated activation of the TGF-β1/Smad2 signalling pathway. This may contribute to osteogenic differentiation of cells.
Collapse
Affiliation(s)
- Rui Shi
- Beijing Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim HS, Lee BN, Choi S, Kim MS, Kim JH. Behavior of Muscle-Derived Stem Cells on Silica Nanostructured Substrates. NANOMATERIALS 2020; 10:nano10091651. [PMID: 32842628 PMCID: PMC7558836 DOI: 10.3390/nano10091651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
The aim of the present work was to evaluate the responses of rat muscle-derived stem cells (rMDSCs) to growth on silica nanostructured substrates (SN) with nanoscale topographic surfaces. SN of different sizes (SN-60, SN-150, SN-300, SN-500, and SN-700) were prepared using silica nanoparticles with sizes of 60-700 nm. The prepared SN showed roughness at the nanoscale level. The total number of adherent cells on SN increased with increasing nanoscale level and incubation time. The rMDSCs attached to SN-500 and SN-700 were extensively flattened, whereas those grown on SN-60, SN-150, and SN-300 were more rounded. The rank order of the cell length and height of attached rMDSCs at 5 d on different surfaces was SN-60 ≈ SN-150 >> SN-300 > SN-500 > SN-700 > glass. Compared with rMDSCs grown on SN-60, SN-150, or SN-300, those attached to SN-500 and SN-700 exhibited a distinct morphology with filopodial extensions and stronger expression of focal adhesion, integrin, and actin. An evaluation of the gene expression of adhered rMDSCs showed that rMDSCs grown on SN-300 exhibited a higher environmental stress response than those grown on glass or SN-700. Collectively, our data provide fundamental insight into the cellular response and gene expression of rMDSCs grown on nanostructured substrates.
Collapse
Affiliation(s)
| | | | | | - Moon Suk Kim
- Correspondence: (M.S.K.); (J.-H.K.); Tel.: +82-(31)-219-2608 (M.S.K.); +82-(31)-219-2517 (J.-H.K.); Fax: +82-(31)-219-3931 (M.S.K.); +82-(31)-219-2516 (J.-H.K.)
| | - Jae-Ho Kim
- Correspondence: (M.S.K.); (J.-H.K.); Tel.: +82-(31)-219-2608 (M.S.K.); +82-(31)-219-2517 (J.-H.K.); Fax: +82-(31)-219-3931 (M.S.K.); +82-(31)-219-2516 (J.-H.K.)
| |
Collapse
|
27
|
Liu R, Ding J. Chromosomal Repositioning and Gene Regulation of Cells on a Micropillar Array. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35799-35812. [PMID: 32667177 DOI: 10.1021/acsami.0c05883] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While various cell responses on material surfaces have been examined, relatively few reports are focused on significant self-deformation of cell nuclei and corresponding chromosomal repositioning. Herein, we prepared a micropillar array of poly(lactide-co-glycolide) (PLGA) and observed significant nuclear deformation of HeLa cells on the polymeric micropillars. In particular, we detected the territory positioning of chromosomes 18 and 19 and gene expression profiles of HeLa cells on the micropillar array using fluorescence in situ hybridization and a DNA microarray. Chromosome 18 was found to be translocated closer to the nuclear periphery than chromosome 19 on the micropillar array. With the repositioning of chromosomal territories, HeLa cells changed their gene expressions on the micropillar array with 180 genes upregulated and 255 genes downregulated for all of the 23 pairs of chromosomes under the experimental conditions and the employed Bioinformatics criteria. Hence, this work deepens the understanding on cell-material interactions by revealing that material surface topography can probably influence chromosomal repositioning in the nuclei and gene expressions of cells.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
28
|
Additively Manufactured Continuous Cell-Size Gradient Porous Scaffolds: Pore Characteristics, Mechanical Properties and Biological Responses In Vitro. MATERIALS 2020; 13:ma13112589. [PMID: 32517161 PMCID: PMC7321598 DOI: 10.3390/ma13112589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Porous scaffolds with graded open porosity combining a morphology similar to that of bone with mechanical and biological properties are becoming an attractive candidate for bone grafts. In this work, scaffolds with a continuous cell-size gradient were studied from the aspects of pore properties, mechanical properties and bio-functional properties. Using a mathematical method named triply periodic minimal surfaces (TPMS), uniform and graded scaffolds with Gyroid and Diamond units were manufactured by selective laser melting (SLM) with Ti-6Al-4V, followed by micro-computer tomography (CT) reconstruction, mechanical testing and in vitro evaluation. It was found that gradient scaffolds were preferably replicated by SLM with continuous graded changes in surface area and pore size, but their pore size should be designed to be ≥ 450 μm to ensure good interconnectivity. Both the Gyroid and Diamond structures have superior strength compared to cancellous bones, and their elastic modulus is comparable to the bones. In comparison, Gyroid exhibits better performances than Diamond in terms of the elastic modulus, ultimate strength and ductility. In vitro cell culture experiments show that the gradients provide an ideal growth environment for osteoblast growth in which cells survive well and distribute uniformly due to biocompatibility of the Ti-6Al-4V material, interconnectivity and suitable pore size.
Collapse
|
29
|
Okawa H, Egusa H, Nishimura I. Implications of the circadian clock in implant dentistry. Dent Mater J 2020; 39:173-180. [PMID: 32115492 DOI: 10.4012/dmj.2019-291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Circadian rhythms are approximately 24-h cell-autonomous cycles driven by transcription and translation feedback loops of a set of core circadian clock genes, such as circadian locomoter output cycles kaput (Clock), brain and muscle arnt-like protein-1 (Bmal1), period (Per), and cryptochrome (Cry). The genetic clockwork of these genes produces circadian rhythms in cells throughout the body, including the craniofacial region. During development, dento-alveolar bone tissue formation could be regulated by site-specific circadian patterns. Studies using knockout mice and mesenchymal stem cells (MSCs) to evaluate clock genes revealed regulatory effects of clock function on bone remodeling, suggesting involvement of the circadian clockwork in osseointegration of titanium implants. Indeed, rough surface titanium modulates specific clock genes, Neuronal PAS domain protein-2 (Npas2) and Per, in MSCs to facilitate osseointegration. Further understanding of the bone clock machinery associated with biomaterial surface properties might improve preoperative diagnosis for dental implant treatments.
Collapse
Affiliation(s)
- Hiroko Okawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry.,Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry
| | - Ichiro Nishimura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry
| |
Collapse
|
30
|
Hadidi L, Constantin J, Dalisson B, Vieira D, Drager J, Harvey E, Merle G. Biodegradable hypoxia biomimicry microspheres for bone tissue regeneration. J Biomater Appl 2019; 34:1028-1037. [PMID: 31648612 DOI: 10.1177/0885328219884023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lina Hadidi
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | - Justine Constantin
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | | | - Daniela Vieira
- Experimental Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | - Justin Drager
- Department of Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | - Edward Harvey
- Department of Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| | - Geraldine Merle
- Department of Surgery, Faculty of Medicine, McGill University, Montreal General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
31
|
Yu Y, Ran Q, Shen X, Zheng H, Cai K. Enzyme responsive titanium substrates with antibacterial property and osteo/angio-genic differentiation potentials. Colloids Surf B Biointerfaces 2019; 185:110592. [PMID: 31639570 DOI: 10.1016/j.colsurfb.2019.110592] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
After implantation into a host, titanium (Ti) orthopaedic materials are facing two major clinical challenges: bacterial infection and aseptic loosening, which directly determine the long-term survival of the implant. To endow Ti implant with self-defensive antibacterial properties and desirable osteo/angio-genic differentiation potentials, hyaluronic acid (HA)-gentamicin (Gen) conjugates (HA-Gen) and chitosan (Chi) polyelectrolyte multilayers were constructed on deferoxamine (DFO) loaded titania nanotubes (TNT) substrates via layer-by-layer (LBL) assembly technique, termed as TNT/DFO/HA-Gen. The HA-Gen conjugate was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR). The physicochemical properties of the substrates were characterized by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. The on-demand DFO release was associated with the degradation of multilayers triggered by exogenous hyaluronidase, which indicated enzymatic and bacterial responsiveness. The TNT/DFO/HA-Gen substrates displayed effective antifouling and antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), while were favourable for the adhesion, proliferation and osteo/angio-genic differentiation of mesenchymal stem cells (MSCs). The multifaceted drug-device combination (DDC) strategy showed potential applications in orthopaedic fields.
Collapse
Affiliation(s)
- Yonglin Yu
- Department of Pathology, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, China.
| | - Qichun Ran
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xinkun Shen
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Hong Zheng
- Department of Pathology, Affiliated Hospital of Zunyi Medical College, Zunyi 563003, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
32
|
Yin N, Zhu L, Ding L, Yuan J, Du L, Pan M, Xue F, Xiao H. MiR-135-5p promotes osteoblast differentiation by targeting HIF1AN in MC3T3-E1 cells. Cell Mol Biol Lett 2019; 24:51. [PMID: 31410089 PMCID: PMC6686269 DOI: 10.1186/s11658-019-0177-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background MicroRNAs (miRNAs or miRs) serve crucial roles in the progression of osteoporosis. This study investigated the role and specific molecular mechanism of miR-135-5p in regulating osteoblast differentiation and calcification. Methods Bone morphogenetic protein 2 (BMP2) was employed to interfere with the differentiation of MC3T3-E1. Then, miR-135-5p mimic or miR-135-5p inhibitor was transfected into MC3T3-E1, and quantitative RT-PCR was used to measure the expression of miR-135-5p. The expressions of runt-related transcription factor 2 (Runx2), osterix (OSX), osteopontin (OPN), and osteocalcin (OCN) were determined using western blot. Alkaline phosphatase (ALP) activity was measured using an appropriate kit assay. Calcium nodule staining was evaluated with alizarin red staining. A luciferase reporter assay was used to verify the target of miR-135-5p. Hypoxia-inducible factor 1 α inhibitor (HIF1AN) overexpression was applied to investigate its own role in the mechanism and a miR-135-5p rescue experiment was also performed. Results Overexpression of miR-135-5p promoted osteogenic differentiation and calcification, as shown by the increase in ALP activity, calcification and osteogenic marker levels, including Runx2, OSX, OPN and OCN. Knockdown of miR-135-5p yielded the opposite results. HIF1AN was confirmed as a direct target of miR-135-5p. HIF1AN overexpression inhibited osteogenic differentiation and calcification while miR-135-5p reversed these effects. Conclusions These results indicate that miR-135-5p might have a therapeutic application related to its promotion of bone formation through the targeting of HIF1AN.
Collapse
Affiliation(s)
- Nuo Yin
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Longzhang Zhu
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Liang Ding
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Junjie Yuan
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Li Du
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Mingmang Pan
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Feng Xue
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| | - Haijun Xiao
- Department of Orthopaedics, Shanghai Fengxian District Central Hospital, No. 6600, Nanfeng Highway, Shanghai, 201499 China
| |
Collapse
|
33
|
Liu R, Liu Q, Pan Z, Liu X, Ding J. Cell Type and Nuclear Size Dependence of the Nuclear Deformation of Cells on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7469-7477. [PMID: 30226387 DOI: 10.1021/acs.langmuir.8b02510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While various cellular responses to materials have been published, little concerns the deformation of cell nuclei. Herein we fabricated a polymeric micropillar array of appropriate dimensions to trigger the significant self-deformation of cell nuclei and examined six cell types, which could be classified into cancerous cells (Hela and HepG2) versus healthy cells (HCvEpC, MC3T3-E1, NIH3T3, and hMSC) or epithelial-like cells (Hela, HepG2, and HCvEpC) versus fibroblast-like cells (MC3T3-E1, NIH3T3, and hMSC). While all of the cell types exhibited severe nuclear deformation on the poly(lactide- co-glycolide) (PLGA) micropillar array, the difference between the epithelial-like and fibroblast-like cells was much more significant than that between the cancerous and healthy cells. We also examined the statistics of nuclear shape indexes of cells with an inevitable dispersity of nuclear sizes. It was found that larger nuclei favored more significant deformation on the micropillar array for each cell type. In the same region of nuclear size, the parts of the epithelial-like cells exhibited more significant nuclear deformation than those of the fibroblast-like cells. Hence, this article reports the nuclear size dependence of the self-deformation of cell nuclei on micropillar arrays for the first time and meanwhile strengthens the cell-type dependence.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Qiong Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Zhen Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
34
|
Effects of titania nanotube surfaces on osteogenic differentiation of human adipose-derived stem cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:380-390. [DOI: 10.1016/j.nano.2019.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/06/2018] [Accepted: 01/11/2019] [Indexed: 12/28/2022]
|
35
|
Augustine R, Prasad P, Khalaf IMN. Therapeutic angiogenesis: From conventional approaches to recent nanotechnology-based interventions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:994-1008. [DOI: 10.1016/j.msec.2019.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/06/2018] [Accepted: 01/02/2019] [Indexed: 12/27/2022]
|
36
|
Liu R, Yao X, Liu X, Ding J. Proliferation of Cells with Severe Nuclear Deformation on a Micropillar Array. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:284-299. [PMID: 30513205 DOI: 10.1021/acs.langmuir.8b03452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellular responses on a topographic surface are fundamental topics about interfaces and biology. Herein, a poly(lactide- co-glycolide) (PLGA) micropillar array was prepared and found to trigger significant self-deformation of cell nuclei. The time-dependent cell viability and thus cell proliferation was investigated. Despite significant nuclear deformation, all of the examined cell types (Hela, HepG2, MC3T3-E1, and NIH3T3) could survive and proliferate on the micropillar array yet exhibited different proliferation abilities. Compared to the corresponding groups on the smooth surface, the cell proliferation abilities on the micropillar array were decreased for Hela and MC3T3-E1 cells and did not change significantly for HepG2 and NIH3T3 cells. We also found that whether the proliferation ability changed was related to whether the nuclear sizes decreased in the micropillar array, and thus the size deformation of cell nuclei should, besides shape deformation, be taken into consideration in studies of cells on topological surfaces.
Collapse
Affiliation(s)
- Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|