1
|
Gu Y, Liu Y, Bühring J, Tian L, Koblenzer M, Schröder KU, Li F, Van Dessel J, Politis C, Jahr H, Sun Y. Biocompatibility and osteogenic capacity of additively manufactured biodegradable porous WE43 scaffolds: An in vivo study in a canine model. BIOMATERIALS ADVANCES 2024; 164:213984. [PMID: 39153456 DOI: 10.1016/j.bioadv.2024.213984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
Magnesium is the most promising absorbable metallic implant material for bone regeneration and alloy WE43 is already FDA approved for cardiovascular applications. This study investigates the cyto- and biocompatibility of novel additively manufactured (AM) porous WE43 scaffolds as well as their osteogenic potential and degradation characteristics in an orthotopic canine bone defect model. The cytocompatibility was demonstrated using modified ISO 10993-conform extract-based indirect and direct assays, respectively. Additionally, degradation rates of WE43 scaffolds were quantified in vitro prior to absorption tests in vivo. Complete blood cell counts, blood biomarker analyses, blood trace element analyses as well as multi-organ histopathology demonstrated excellent biocompatibility of porous y WE43 scaffolds for bone defect repair. Micro-CT analyses further showed a relatively higher absorption rate during the initial four weeks upon implantation (i.e., 36 % ± 19 %) than between four and 12 weeks (41 % ± 14 %), respectively. Of note, the porous WE43 implants were surrounded by newly formed bony tissue as early as four weeks after implantation when unmineralized trabecular ingrowth was detected. After 12 weeks, a substantial amount of mineralized bone was detected inside and around the gradually disappearing implants. This first study on AM porous WE43 implants in canine bone defects demonstrates the potential of this alloy for in vivo applications in humans. Our data further underscore the need to control initial bulk absorption kinetics through surface modifications.
Collapse
Affiliation(s)
- Yifei Gu
- Department of Stomatology, The Fourth Affiliated Hospital of Soochow University, 215000 Suzhou, China; OMFS-IMPATH Research Group, Department of Biomedical Sciences, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yiwen Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Craniofacial Trauma and Orthognathic Surgery, School of Stomatology, FMMU, 710000 Xi'an, China
| | - Jannik Bühring
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - Lei Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Craniofacial Trauma and Orthognathic Surgery, School of Stomatology, FMMU, 710000 Xi'an, China.
| | - Maximilian Koblenzer
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Kai-Uwe Schröder
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - Feng Li
- OMFS-IMPATH Research Group, Department of Biomedical Sciences, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Jeroen Van Dessel
- OMFS-IMPATH Research Group, Department of Biomedical Sciences, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Constantinus Politis
- OMFS-IMPATH Research Group, Department of Biomedical Sciences, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Holger Jahr
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany; Department of Anatomy and Cell Biology, University Hospital RWTH Aachen, 52074 Aachen, Germany.
| | - Yi Sun
- OMFS-IMPATH Research Group, Department of Biomedical Sciences, KU Leuven & Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
2
|
Duan X, Yang Y, Zhang T, Zhu B, Wei G, Li H. Research progress of metal biomaterials with potential applications as cardiovascular stents and their surface treatment methods to improve biocompatibility. Heliyon 2024; 10:e25515. [PMID: 38375258 PMCID: PMC10875388 DOI: 10.1016/j.heliyon.2024.e25515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Facing the growing issue of cardiovascular diseases, metallic materials with higher tensile strength and fatigue resistance play an important role in treating diseases. This review lists the advantages and drawbacks of commonly used medical metallic materials for vascular stents. To avoid post-procedural threats such as thrombosis and in-stent restenosis, surface treatments, and coating methods have been used to further improve the biocompatibility of these materials. Surface treatments including laser, plasma treatment, polishing, oxidization, and fluorination can improve biocompatibility by modifying the surface charges, surface morphology, and surface properties of the material. Coating methods based on polymer coatings, carbon-based coatings, and drug-functional coatings can regulate the surface properties, and also serve as an effective barrier to the interaction of metallic biomaterial surfaces with biomolecules, which can be used to improve corrosion resistance and stability, as well as improve their biocompatibility. Biocompatibility serves as the most fundamental property of cardiovascular stents, and maintaining the excellent and stable biocompatibility of cardiovascular stent surfaces is a current research bottleneck. Few reviews have been published on metallic biomaterials as cardiovascular stents and their surface treatments. For the purpose of advancing research on cardiovascular stents, common metal biomaterials, surface treatment methods, and coating methods to improve biocompatibility and comprehensive properties of the materials are described in this review. Finally, we suggest future directions for stent development, including continuously improving the durability and stability of permanent stents, accelerating the development of biodegradable stents, and strengthening feedback to improve the safety and reliability of cardiovascular stents.
Collapse
Affiliation(s)
- Xuejia Duan
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Yumeng Yang
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| | - Benfeng Zhu
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Guoying Wei
- College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, China
| |
Collapse
|
3
|
Udriște AS, Burdușel AC, Niculescu AG, Rădulescu M, Grumezescu AM. Coatings for Cardiovascular Stents-An Up-to-Date Review. Int J Mol Sci 2024; 25:1078. [PMID: 38256151 PMCID: PMC10817058 DOI: 10.3390/ijms25021078] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cardiovascular diseases (CVDs) increasingly burden health systems and patients worldwide, necessitating the improved awareness of current treatment possibilities and the development of more efficient therapeutic strategies. When plaque deposits narrow the arteries, the standard of care implies the insertion of a stent at the lesion site. The most promising development in cardiovascular stents has been the release of medications from these stents. However, the use of drug-eluting stents (DESs) is still challenged by in-stent restenosis occurrence. DESs' long-term clinical success depends on several parameters, including the degradability of the polymers, drug release profiles, stent platforms, coating polymers, and the metals and their alloys that are employed as metal frames in the stents. Thus, it is critical to investigate new approaches to optimize the most suitable DESs to solve problems with the inflammatory response, delayed endothelialization, and sub-acute stent thrombosis. As certain advancements have been reported in the literature, this review aims to present the latest updates in the coatings field for cardiovascular stents. Specifically, there are described various organic (e.g., synthetic and natural polymer-based coatings, stents coated directly with drugs, and coatings containing endothelial cells) and inorganic (e.g., metallic and nonmetallic materials) stent coating options, aiming to create an updated framework that would serve as an inception point for future research.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
4
|
Smeets R, Henningsen A, Zernial O, Stürmer E, Fiedler I, Schäfer S, Gosau M, Gaudin R, Stolzer C, Reinelt A, Fuest S. New and innovative biomaterials, techniques and therapy concepts: Biologization in maxillofacial surgery, oral surgery and dentistry is in full swing. PRF, PRGF, PRP, blood plasma-stabilized augmentations, supplementation of micronutrients and vitamins - what opportunities do such "biological" approaches actually offer? We introduce them here. GMS INTERDISCIPLINARY PLASTIC AND RECONSTRUCTIVE SURGERY DGPW 2022; 11:Doc05. [PMID: 35909817 PMCID: PMC9285113 DOI: 10.3205/iprs000166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Biomaterials of natural origin have recently gained increasing attention in the field of dental implantology. The requirements for such materials, however, are very high. In addition to high clinical efficiency in tissue regeneration, wound healing should be demonstrably positively influenced. The translational division for regenerative orofacial medicine of the Clinic and Polyclinic for Oral and Maxillofacial Surgery of the University Medical Center Hamburg-Eppendorf (UKE) is examining this research topic by investigating which innovative treatment methods for the reconstruction of bone defects or for augmentative procedures can be applied in the future or are already being applied in the field of oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,Department of Oral and Maxillofacial Surgery, Division Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany,*To whom correspondence should be addressed: Ralf Smeets, Division Regenerative Orofacial Medicine, Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany, E-mail:
| | - Anders Henningsen
- Department of Oral and Maxillofacial Surgery, Division Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Oliver Zernial
- Practice for Implantology, Maxillofacial and Aesthetic Facial Surgery, Kiel, Germany
| | - Ewa Stürmer
- Department of Vascular Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Imke Fiedler
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sogand Schäfer
- Department of Oral and Maxillofacial Surgery, Division Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Gaudin
- Department of Oral and Maxillofacial Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Carolin Stolzer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Reinelt
- Department of Oral and Maxillofacial Surgery, Division Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Fuest
- Department of Oral and Maxillofacial Surgery, Division Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Hong Q, Zhou H, Cheng Y, Yang M, Zhang Q, Liu S, Xiong Q, Pan C. Synthesis of Star 6-Arm Polyethylene Glycol-Heparin Copolymer to Construct Anticorrosive and Biocompatible Coating on Magnesium Alloy Surface. Front Bioeng Biotechnol 2022; 10:853487. [PMID: 35223805 PMCID: PMC8865805 DOI: 10.3389/fbioe.2022.853487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 12/01/2022] Open
Abstract
Magnesium alloy has become a research hotspot of the degradable vascular stent materials due to its biodegradability and excellent mechanical properties. However, its rapid degradation rate after implantation and the limited biocompatibility restrict its application in clinic. Constructing a multifunctional bioactive polymer coating on the magnesium alloys represents one of the popular and effective approaches to simultaneously improve the corrosion resistance and biocompatibility. In the present study, the copolymer of 6-arm polyethylene glycol and heparin (PEG-Hep) was successfully synthesized and then immobilized on the surface of chitosan (Chi)-modified magnesium alloy surface through electrostatic interaction to improve the corrosion resistance and biocompatibility. The results of attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy showed that a dense and compact coating was created on the magnesium alloy surface. The coating displayed excellent hydrophilicity. At the same time, the as-prepared coating can significantly not only improve the corrosion potential, reduce the corrosion current and the pH changes of the immersion solution, but also keep a relatively intact surface morphology after immersing in simulated body fluid solution for 14 days, demonstrating that the coating can significantly improve the corrosion resistance of the magnesium alloy. Moreover, the magnesium alloy with PEG-Hep coating exhibited excellent hemocompatibility according to the results of the hemolysis rate and platelet adhesion and activation. In addition, the modified magnesium alloy had a good ability to promote the endothelial cell adhesion and proliferation. Therefore, the PEG-Hep multifunctional coating can be applied in the surface modification of the biodegradable magnesium alloy stent to simultaneously improve the corrosion resistance and biocompatibility.
Collapse
Affiliation(s)
- Qingxiang Hong
- Faculty of Mechanical and Materials Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Hualan Zhou
- The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Yuxin Cheng
- Faculty of Mechanical and Materials Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Minhui Yang
- Faculty of Mechanical and Materials Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Qiuyang Zhang
- Faculty of Mechanical and Materials Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Sen Liu
- Faculty of Mechanical and Materials Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, China
| | - Qingping Xiong
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Changjiang Pan
- Faculty of Mechanical and Materials Engineering, Jiangsu Provincial Engineering Research Center for Biomaterials and Advanced Medical Devices, Huaiyin Institute of Technology, Huai’an, China
- *Correspondence: Changjiang Pan,
| |
Collapse
|
6
|
Zhang ZQ, Yang YX, Li JA, Zeng RC, Guan SK. Advances in coatings on magnesium alloys for cardiovascular stents - A review. Bioact Mater 2021; 6:4729-4757. [PMID: 34136723 PMCID: PMC8166647 DOI: 10.1016/j.bioactmat.2021.04.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Magnesium (Mg) and its alloys, as potential biodegradable materials, have drawn wide attention in the cardiovascular stent field because of their appropriate mechanical properties and biocompatibility. Nevertheless, the occurrence of thrombosis, inflammation, and restenosis of implanted Mg alloy stents caused by their poor corrosion resistance and insufficient endothelialization restrains their anticipated clinical applications. Numerous surface treatment tactics have mainly striven to modify the Mg alloy for inhibiting its degradation rate and enduing it with biological functionality. This review focuses on highlighting and summarizing the latest research progress in functionalized coatings on Mg alloys for cardiovascular stents over the last decade, regarding preparation strategies for metal oxide, metal hydroxide, inorganic nonmetallic, polymer, and their composite coatings; and the performance of these strategies in regulating degradation behavior and biofunction. Potential research direction is also concisely discussed to help guide biological functionalized strategies and inspire further innovations. It is hoped that this review can give assistance to the surface modification of cardiovascular Mg-based stents and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Zhao-Qi Zhang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Yong-Xin Yang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Jing-An Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| | - Rong-Chang Zeng
- Corrosion Laboratory for Light Metals, College of Material Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Shao-Kang Guan
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), Zhengzhou University, 100 Science Road, Zhengzhou, 450001, PR China
| |
Collapse
|
7
|
Klein M, Kuhn Y, Woelke E, Linde T, Ptock C, Kopp A, Bletek T, Schmitz‐Rode T, Steinseifer U, Arens J, Clauser JC. In vitro study on the hemocompatibility of plasma electrolytic oxidation coatings on titanium substrates. Artif Organs 2019; 44:419-427. [DOI: 10.1111/aor.13592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/09/2019] [Accepted: 10/24/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Mario Klein
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
| | - Yasmin Kuhn
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
| | - Eva Woelke
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
| | | | | | | | | | - Thomas Schmitz‐Rode
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
- Department of Mechanical and Aerospace Engineering, Faculty of Engineering, Monash Institute of Medical Engineering Monash University Melbourne Australia
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
| | - Johanna C. Clauser
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty RWTH Aachen University Aachen Germany
| |
Collapse
|