1
|
Niu X, Zhang J, Yuan M, Liu Y, Wang Y, Li H, Wang K. Chiral nanoenzymes: synthesis and applications. Mikrochim Acta 2024; 191:723. [PMID: 39495306 DOI: 10.1007/s00604-024-06803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Chiral nanoenzymes are a new type of material that possesses both chiral nanostructures and enzymatic catalytic activity. These materials exhibit selectivity in their catalytic activity towards organisms due to the introduction of chiral features in nanomaterials and have inherent chiral discrimination in organisms. As synthetic enzymes, chiral nanoenzymes offer significant advantages over natural enzymes. Due to their unique chiral structure and distinctive physicochemical properties, chiral nanoenzymes play an important role in various fields, including biology, medicine, and environmental protection. Their strong stereospecificity and biocompatibility make them useful in disease therapy, biosensing, and chiral catalysis, setting them apart from conventional and natural enzymes. In recent years, the design of synthetic methods and biological applications of chiral nanoenzymes has received significant attention and extensive research among scientists. This paper provides a systematic review of the research progress in the discovery, development, and application of chiral nanoenzymes in the last decade. Additionally, it presents various applications of chiral nanoenzymes, such as disease therapy, biosensing, and chiral catalysis. Finally, the challenges and future prospects of chiral nanoenzymes are discussed.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China.
| | - Jianying Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Yuewei Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, 730050, Lanzhou, P.R. China.
| |
Collapse
|
2
|
Chwojnowska E, Kowalska AA, Kamińska A, Lewiński J. Direct Readout of Homo- vs Heterochiral Ligand Shell of Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37308-37317. [PMID: 38973569 PMCID: PMC11261568 DOI: 10.1021/acsami.4c07648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/20/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
The chiroptical activity of various semiconductor inorganic nanocrystalline materials has typically been tested using circular dichroism or circularly polarized luminescence. Herein, we report on a high-throughput screening method for identifying and differentiating chiroptically active quantum-sized ZnO crystals using Raman spectroscopy combined with principal component analysis. ZnO quantum dots (QDs) coated by structurally diverse homo- and heterochiral aminoalcoholate ligands (cis- and trans-1-amino-2-indanolate, 2-amino-1-phenylethanolate, and diphenyl-2-pyrrolidinemethanolate) were prepared using the one-pot self-supporting organometallic procedure and then extensively studied toward the identification of specific Raman fingerprints and spectral variations. The direct comparison between the spectra demonstrates that it is very difficult to make definite recognition and identification between QDs coated with enantiomers based only on the differences in the respective Raman bands' position shifts and their intensities. However, the applied approach involving the principal component analysis performed on the Raman spectra allows the simultaneous differentiation and identification of the studied QDs. The first and second principal components explain 98, 97, 97, and 87% of the variability among the studied families of QDs and demonstrate the possibility of using the presented method as a qualitative assay. Thus, the reported multivariate approach paves the way for simultaneous differentiation and identification of chirotopically active semiconductor nanocrystals.
Collapse
Affiliation(s)
- Elżbieta Chwojnowska
- Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52 , Warsaw 01-224, Poland
| | - Aneta A. Kowalska
- Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52 , Warsaw 01-224, Poland
| | - Agnieszka Kamińska
- Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52 , Warsaw 01-224, Poland
| | - Janusz Lewiński
- Institute
of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52 , Warsaw 01-224, Poland
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3 , Warsaw 00-664, Poland
| |
Collapse
|
3
|
Satapathy S, Kumar S, Kurmi BD, Gupta GD, Patel P. Expanding the Role of Chiral Drugs and Chiral Nanomaterials as a Potential Therapeutic Tool. Chirality 2024; 36:e23698. [PMID: 38961803 DOI: 10.1002/chir.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Chirality, the property of molecules having mirror-image forms, plays a crucial role in pharmaceutical and biomedical research. This review highlights its growing importance, emphasizing how chiral drugs and nanomaterials impact drug effectiveness, safety, and diagnostics. Chiral molecules serve as precise diagnostic tools, aiding in accurate disease detection through unique biomolecule interactions. The article extensively covers chiral drug applications in treating cardiovascular diseases, CNS disorders, local anesthesia, anti-inflammatories, antimicrobials, and anticancer drugs. Additionally, it explores the emerging field of chiral nanomaterials, highlighting their suitability for biomedical applications in diagnostics and therapeutics, enhancing medical treatments.
Collapse
Affiliation(s)
- Sourabh Satapathy
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
4
|
López-Sánchez C, de Andrés F, Ríos Á. Implications of analytical nanoscience in pharmaceutical and biomedical fields: A critical view. J Pharm Biomed Anal 2024; 243:116118. [PMID: 38513499 DOI: 10.1016/j.jpba.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
This review summarizes recent progress performed in the design and application of analytical tools and methodologies using nanomaterials for pharmaceutical analysis, and specifically new nanomedicines at distinct phases of development and translation from preclinical to clinical stages. Over the last 10-15 years, a growing number of studies have utilized various nanomaterials, including carbon-based, metallic nanoparticles, polymeric nanomaterials, materials based on biological molecules, and composite nanomaterials as tools for improving the analysis of pharmaceutical products. New and more complex nanomaterials are currently being explored to influence different stages of the analytical process. These materials provide unique properties to support the extraction of analytes in complex samples, increase the selectivity and efficiency of chromatographic separations, and improve the analytical properties of many sensor applications. Indeed, nanomaterials, including electrochemical detection approaches and biosensing, are expanding at a remarkable rate. Furthermore, the analytical performance of numerous approaches to determine drugs in different matrices can be significantly improved in terms of precision, detection limits, selectivity, and time of analysis. However, the quality control and metrological characterization of the currently synthesized nanomaterials still depend on the development of new and improved analytical methodologies, and the application of specific and improved instrumentation. Therefore, there is still much to explore about the properties of nanomaterials which need to be determined even more precisely and accurately.
Collapse
Affiliation(s)
- Claudia López-Sánchez
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain
| | - Fernando de Andrés
- Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Dr. José María Sánchez Ibáñez Av. s/n, Albacete 02071, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain.
| |
Collapse
|
5
|
Wang X, Zhao Q, Song Q, Bu H, Gao J, Li L, Yu X, Yang X, Lu Z, Zhang X. Chemical synthesis of carbon dots with blue, green and red emission for dopamine reversible switching probes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123952. [PMID: 38295594 DOI: 10.1016/j.saa.2024.123952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
Carbon dots (CDs) possess the merits such as energy efficiency, green sustainability and environmental friendliness, comparing with top-down synthesis methods at higher pressure or temperature condition. Here, a variety of emission states CDs were prepared by using the method of room temperature chemistry by selecting green raw materials such as glucose, p-phthalaldehyde and m-diethylaminophenol. The luminescence mechanism was studied in detail. The luminescent center of blue emitting carbon dots (B-CDs) and green emitting carbon dots (G-CDs) is CO bond, and the increased contents of CO bond lead to the creation of new energy levels between the energy gaps of HOMO and LUMO levels, which results in the red shift of luminescence wavelength. The emission state of red emitting carbon dots (R-CDs) is due to the formation of amino N. In addition, R-CDs have an exclusive respond to dopamine (DA) and are regarded as good fluorescent probes for detecting DA. Furthermore, the addition of ascorbic acid (AA) restores the luminescence of R-CDs quenched by DA. Therefore, R-CDs has great application potential as a selective fluorescent "turn on-off" probe.
Collapse
Affiliation(s)
- Xiaotong Wang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Qingling Zhao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Qinghong Song
- Tian Jin Medical Union Center, Tianjin 300122, China
| | - He Bu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Jie Gao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
6
|
Fan X, Ren C, Ning K, Shoala MA, Ke Q, Zhou Y, Wu Y, Qiu R, Liang J, Xiao S. Enantioselective Antiviral Activities of Chiral Zinc Oxide Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58251-58259. [PMID: 38053348 DOI: 10.1021/acsami.3c15463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chiral nanoparticles (C-NPs) play a crucial role in biomedical applications, especially in their biological effects on cytotoxicity and metabolism. However, there are rare reports about the antivirus property of C-NPs and their working mechanism. Here, three different types of chiral ZnO NPs (l-ZnO, d-ZnO, and dl-ZnO) were prepared as enantioselective antivirals. Biocompatibility test results showed that the three different chiral ZnO NPs varied significantly in cytotoxicity. Evaluation of their effects against porcine reproductive and respiratory syndrome virus (PRRSV) indicated that compared with d-ZnO and dl-ZnO NPs, l-ZnO NPs exhibited stronger anti-PRRSV activity due to their higher cognate cell adhesion and uptake. Furthermore, the high concentration of l-ZnO NPs can obviously reduce cellular reactive oxygen species (ROS) in MARC-145 cells, thus effectively preventing PRRSV-induced oxidative damage. This study demonstrated the outstanding antiviral properties of l-ZnO NPs, which may facilitate the development and application of C-NPs in antiviral drugs and tissue engineering.
Collapse
Affiliation(s)
- Xiaoxia Fan
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Caifeng Ren
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Keke Ning
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Mohamed A Shoala
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Qiyun Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yanrong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Yuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Runhui Qiu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Science, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, P. R. China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Huazhong Agricultural University, Wuhan 430070, P. R. China
| |
Collapse
|
7
|
Yang J, Qin D, Wang N, Wu Y, Fang K, Deng B. Electrochemiluminescence resonance energy transfer between a Ru-ZnMOF self-enhanced luminophore and a double quencher ZnONF@PDA to detect NSE. Analyst 2023; 148:4539-4547. [PMID: 37585262 DOI: 10.1039/d3an01106b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The construction of advanced systems capable of accurately detecting neuron-specific enolase (NSE) is essential for rapidly diagnosing small-cell lung cancer. In this study, an electrochemiluminescence (ECL) resonance energy transfer immunosensor was proposed for the ultra-sensitive detection of NSE. The co-reactants C2O42- and Ru(bpy)32+ were integrated to form a self-enhanced ECL luminophore (Ru-ZnMOF) as the ECL donor. The abundant carboxyl functional groups of Ru-ZnMOF supported antibody 1 via an amidation reaction. Polydopamine-modified zinc dioxide nanoflowers, as ECL acceptors, inhibited Ru-ZnMOF ECL signaling. The linear range of NSE was 10 fg mL-1 to 100 ng mL-1 with a detection limit of 3.3 fg mL-1 (S/N = 3), which is suitably low for determining NSE in real samples.
Collapse
Affiliation(s)
- Juan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Na Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Kanjun Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
8
|
Fan Y, Lin J, Li Z, Wang J, Wei J. Optical and Antibacterial Properties of Chiral Arginine-Stabilized ZnO Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4161-4169. [PMID: 36882387 DOI: 10.1021/acs.langmuir.3c00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The surface ligands of nanoparticles (NPs) play essential roles in material synthesis, properties, and applications. Chiral molecules have been the new hot topic in tuning the properties of inorganic NPs. Herein, l-arginine- and d-arginine-stabilized ZnO NPs were prepared, and the TEM, UV-vis, and PL spectra were investigated, which demonstrated that the l-arginine and d-arginine have different effects on the self-assembly and photoluminescence properties of ZnO NPs, showing an evident chiral effect. Furthermore, the results of the cell viability assays, plate counting method, and bacterial SEM images showed that ZnO@LA possessed lower biocompatibility and higher antibacterial efficiency than those of ZnO@DA, implying that the chiral molecules on the surface of nanomaterials may affect their bioproperties.
Collapse
Affiliation(s)
- Yuan Fan
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Jun Lin
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Zhihua Li
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Jiaolong Wang
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
| | - Junchao Wei
- School of Stomatology, Nanchang University, Nanchang 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang 330006, China
- College of Chemistry, Nanchang University, Nanchang 330031, China
- Jiangxi Province Clinical Research Center for Oral Disease, Nanchang 330006, China
| |
Collapse
|
9
|
Li J, Reimers A, Dang KM, Brunk MGK, Drewes J, Hirsch UM, Willems C, Schmelzer CEH, Groth T, Nia AS, Feng X, Adelung R, Sacher WD, Schütt F, Poon JKS. 3D printed neural tissues with in situ optical dopamine sensors. Biosens Bioelectron 2023; 222:114942. [PMID: 36493722 DOI: 10.1016/j.bios.2022.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022]
Abstract
Engineered neural tissues serve as models for studying neurological conditions and drug screening. Besides observing the cellular physiological properties, in situ monitoring of neurochemical concentrations with cellular spatial resolution in such neural tissues can provide additional valuable insights in models of disease and drug efficacy. In this work, we demonstrate the first three-dimensional (3D) tissue cultures with embedded optical dopamine (DA) sensors. We developed an alginate/Pluronic F127 based bio-ink for human dopaminergic brain tissue printing with tetrapodal-shaped-ZnO microparticles (t-ZnO) additive as the DA sensor. DA quenches the autofluorescence of t-ZnO in physiological environments, and the reduction of the fluorescence intensity serves as an indicator of the DA concentration. The neurons that were 3D printed with the t-ZnO showed good viability, and extensive 3D neural networks were formed within one week after printing. The t-ZnO could sense DA in the 3D printed neural network with a detection limit of 0.137 μM. The results are a first step toward integrating tissue engineering with intensiometric biosensing for advanced artificial tissue/organ monitoring.
Collapse
Affiliation(s)
- Jianfeng Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada.
| | - Armin Reimers
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany
| | - Ka My Dang
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Michael G K Brunk
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Jonas Drewes
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany
| | - Ulrike M Hirsch
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120, Halle, Germany
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120, Halle, Germany
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Ali Shaygan Nia
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Rainer Adelung
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118 Kiel, Germany
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Fabian Schütt
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118 Kiel, Germany
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Canada.
| |
Collapse
|
10
|
Fan Y, Ou-Yang S, Zhou D, Wei J, Liao L. Biological applications of chiral inorganic nanomaterials. Chirality 2022; 34:760-781. [PMID: 35191098 DOI: 10.1002/chir.23428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/29/2021] [Accepted: 02/06/2022] [Indexed: 12/16/2022]
Abstract
Chirality is common in nature and plays the essential role in maintaining physiological process. Chiral inorganic nanomaterials with intense optical activity have attracted more attention due to amazing properties in recent years. Over the past decades, many efforts have been paid to the preparation and chirality origin of chiral nanomaterials; furthermore, emerging biological applications have been investigated widely. This review mainly summarizes recent advances in chiral nanomaterials. The top-down and bottom-up preparation methods and chirality origin of chiral nanomaterials are introduced; besides, the biological applications, such as sensing, therapy, and catalysis, will be introduced comprehensively. Finally, we also provide a perspective on the biomedical applications of chiral nanomaterials.
Collapse
Affiliation(s)
- Yuan Fan
- The School of Stomatological Hospital, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Shaobo Ou-Yang
- The School of Stomatological Hospital, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China.,Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Dong Zhou
- College of Chemistry, Nanchang University, Nanchang, China
| | - Junchao Wei
- The School of Stomatological Hospital, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China.,College of Chemistry, Nanchang University, Nanchang, China.,Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Lan Liao
- The School of Stomatological Hospital, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China.,Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| |
Collapse
|
11
|
Shao Y, Yang G, Lin J, Fan X, Guo Y, Zhu W, Cai Y, Huang H, Hu D, Pang W, Liu Y, Li Y, Cheng J, Xu X. Shining light on chiral inorganic nanomaterials for biological issues. Theranostics 2021; 11:9262-9295. [PMID: 34646370 PMCID: PMC8490512 DOI: 10.7150/thno.64511] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/28/2021] [Indexed: 12/15/2022] Open
Abstract
The rapid development of chiral inorganic nanostructures has greatly expanded from intrinsically chiral nanoparticles to more sophisticated assemblies made by organics, metals, semiconductors, and their hybrids. Among them, lots of studies concerning on hybrid complex of chiral molecules with achiral nanoparticles (NPs) and superstructures with chiral configurations were accordingly conducted due to the great advances such as highly enhanced biocompatibility with low cytotoxicity and enhanced penetration and retention capability, programmable surface functionality with engineerable building blocks, and more importantly tunable chirality in a controlled manner, leading to revolutionary designs of new biomaterials for synergistic cancer therapy, control of enantiomeric enzymatic reactions, integration of metabolism and pathology via bio-to nano or structural chirality. Herein, in this review our objective is to emphasize current research state and clinical applications of chiral nanomaterials in biological systems with special attentions to chiral metal- or semiconductor-based nanostructures in terms of the basic synthesis, related circular dichroism effects at optical frequencies, mechanisms of induced optical chirality and their performances in biomedical applications such as phototherapy, bio-imaging, neurodegenerative diseases, gene editing, cellular activity and sensing of biomarkers so as to provide insights into this fascinating field for peer researchers.
Collapse
Affiliation(s)
- Yining Shao
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Guilin Yang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Jiaying Lin
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaofeng Fan
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yue Guo
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wentao Zhu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Ying Cai
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Huiyu Huang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Wei Pang
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| | - Yanjun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yiwen Li
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Jiaji Cheng
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China
| |
Collapse
|
12
|
Xue J, Yao C, Li N, Su Y, Xu L, Hou S. Construction of polydopamine-coated three-dimensional graphene-based conductive network platform for amperometric detection of dopamine. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Dalal C, Garg AK, Sonkar SK. β-Cyclodextrin-capped ZnO-doped carbon dot as an advanced fluorescent probe for selective detection of dopamine. NEW J CHEM 2021. [DOI: 10.1039/d1nj03665c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selective and sensitive detection of dopamine in presence of other interfering biomolecules using β-cyclodextrin-capped ZnO-doped carbon dot.
Collapse
Affiliation(s)
- Chumki Dalal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur-302017, India
| | - Anjali Kumari Garg
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur-302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur-302017, India
| |
Collapse
|
14
|
Fan J, Kotov NA. Chiral Nanoceramics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906738. [PMID: 32500963 DOI: 10.1002/adma.201906738] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/12/2019] [Accepted: 02/21/2020] [Indexed: 05/27/2023]
Abstract
The study of different chiral inorganic nanomaterials has been experiencing rapid growth during the past decade, with its primary focus on metals and semiconductors. Ceramic materials can substantially expand the range of mechanical, optical, chemical, electrical, magnetic, and biological properties of chiral nanostructures, further stimulating theoretical, synthetic, and applied research in this area. An ever-expanding toolbox of nanoscale engineering and self-organization provides a chirality-based methodology for engineering of hierarchically organized ceramic materials. However, fundamental discoveries and technological translations of chiral nanoceramics have received substantially smaller attention than counterparts from metals and semiconductors. Findings in this research area are scattered over a variety of sources and subfields. Here, the diversity of chemistries, geometries, and properties found in chiral ceramic nanostructures are summarized. They represent a compelling materials platform for realization of chirality transfer through multiple scales that can result in new forms of ceramic materials. Multiscale chiral geometries and the structural versatility of nanoceramics are complemented by their high chiroptical activity, enantioselectivity, catalytic activity, and biocompatibility. Future development in this field is likely to encompass chiral synthesis, biomedical applications, and optical/electronic devices. The implementation of computationally designed chiral nanoceramics for biomimetic catalysts and quantum information devices may also be expected.
Collapse
Affiliation(s)
- Jinchen Fan
- Department of Chemical Engineering and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Nicholas A Kotov
- Department of Chemical Engineering and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
15
|
Chirality at the Nanoparticle Surface: Functionalization and Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10155357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chiral molecules, such as amino acids and carbohydrates, are the building blocks of nature. As a consequence, most natural supramolecular structures, such as enzymes and receptors, are able to distinguish among different orientations in space of functional groups, and enantiomers of chiral drugs usually have different pharmacokinetic properties and physiological effects. In this regard, the ability to recognize a single enantiomer from a racemic mixture is of paramount importance. Alternatively, the capacity to synthetize preferentially one enantiomer over another through a catalytic process can eliminate (or at least simplify) the subsequent isolation of only one enantiomer. The advent of nanotechnology has led to noteworthy improvements in many fields, from material science to nanomedicine. Similarly, nanoparticles functionalized with chiral molecules have been exploited in several fields. In this review, we report the recent advances of the use of chiral nanoparticles grouped in four major areas, i.e., enantioselective recognition, asymmetric catalysis, biosensing, and biomedicine.
Collapse
|
16
|
Radaic A, Martins-de-Souza D. The state of the art of nanopsychiatry for schizophrenia diagnostics and treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102222. [DOI: 10.1016/j.nano.2020.102222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|
17
|
Han Q, Wang C, Li Z, Wu J, Liu PK, Mo F, Fu Y. Multifunctional Zinc Oxide Promotes Electrochemiluminescence of Porphyrin Aggregates for Ultrasensitive Detection of Copper Ion. Anal Chem 2020; 92:3324-3331. [DOI: 10.1021/acs.analchem.9b05262] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Han
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Laboratory of Environment Change and Ecological Construction of Hebei Province, College of Resources and Environment Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Cun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Zhuozhe Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jingling Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ping kun Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fangjing Mo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
18
|
Zhou Z, Zhang F, Wang J, Zhang X, Xu W, Wu R, Liao L, Wang X, Wei J. L-cysteine modified ZnO: Small change while great progress. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109818. [DOI: 10.1016/j.msec.2019.109818] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/24/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
|
19
|
High sensitive determination of dopamine through catalytic oxidation and preconcentration over gold-multiwall carbon nanotubes composite modified electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109788. [DOI: 10.1016/j.msec.2019.109788] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 11/20/2022]
|
20
|
Tao Y, Kong Q, Tao Z, Duan J, Guan H, Chen G, Dong C. A nickel foam modified with electrodeposited cobalt and phosphor for amperometric determination of dopamine. Mikrochim Acta 2019; 186:602. [PMID: 31377866 DOI: 10.1007/s00604-019-3673-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/06/2019] [Indexed: 01/10/2023]
Abstract
Considering the importance of dopamine (DA) detection for neuroscience and disease diagnosis, herein, an electrochemical sensor for dopamine is described. It is based on the use of a Ni-Co-P nanostructure fabricated on nickel foam via electrode position from cobalt chloride and ammonium phosphate for 10 min. Time-dependent experiments show the transformation of Ni-Co-P nanoparticles to spheres. The resulting electrode display excellent electrochemical response to DA. Figures of merit include (a) a working potential of 0.55 V (vs. Ag/AgCl); (b) an electrochemical sensitivity of 5262 μA mM-1 cm-2; (c) a wide linear range (from 0.5 to 2350 μM), and (d) a 1 μM detection limit. The outstanding electrochemical performance is explained by the synergistic effects of large surface area, improved electron transfer, presence of free binders, and the presence of three active components (nickel, cobalt and phosphonium ion). Graphical abstract A Ni-Co-P nanostructure was electrodeposited on nickel foam to obtain an electrochemical sensor for amperometric determination of dopamine with outstanding performance.
Collapse
Affiliation(s)
- You Tao
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Quan Kong
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Zeming Tao
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Jixiang Duan
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
| | - Hongtao Guan
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China
- Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091, Kunming, People's Republic of China
| | - Gang Chen
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China.
- Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091, Kunming, People's Republic of China.
| | - Chengjun Dong
- School of Materials Science and Engineering, Yunnan University, 650091, Kunming, People's Republic of China.
- Yunnan Province Key Lab of Micro-Nano Materials and Technology, Yunnan University, 650091, Kunming, People's Republic of China.
| |
Collapse
|
21
|
Lian J, Liu P, Li X, Bian B, Zhang X, Liu Z, Zhang X, Fan G, Gao L, Liu Q. Multi-layer CeO2-wrapped Ag2S microspheres with enhanced peroxidase-like activity for sensitive detection of dopamine. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|