1
|
Ji Q, Liu X, Tang R, Yang J, Zeng Y, Aimaier R, Liu X, Kardumyan VV, Solovieva AB, Li Q, Huang RL. Bioengineered bilayered grafts for structural and functional posterior lamellar eyelid reconstruction. Biomaterials 2025; 321:123351. [PMID: 40273473 DOI: 10.1016/j.biomaterials.2025.123351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
Eyelid defects involving posterior lamella loss pose significant challenges in reconstructive surgery due to their functional-anatomical complexity. While our previous autologous auricular chondrocyte-derived tissue-engineered cartilage (TEC) grafts successfully maintained normal eyelid morphology, they lacked functional epithelium. This study develops bioengineered bilayered mucosa-cartilage (BMC) grafts through coculture of TEC with oral mucosal explants. The resulting BMC grafts demonstrated a stratified epithelium with barrier integrity and MUC1-producing capacity and a cartilage layer with surgical-grade tensile modulus (1.68 MPa). Upon transplantation into rabbit tarsoconjunctival defects, BMC grafts surpassed both untreated controls and TEC grafts. All grafts demonstrated integration by 2 weeks post-implantation, with transient inflammatory infiltration resolving by 8 weeks. BMC and TEC grafts better preserved eyelid morphology and blinking function than controls throughout the 8-week study. Crucially, BMC-reconstructed eyelids developed continuous stratified epithelia with 5.8-layer MUC1-secreting epithelial cells as early as 2 weeks, progressing to MUC5AC+ goblet cell-rich epithelia by 8 weeks post-implantation. In contrast, TEC counterparts formed thinner epithelia with a lower density of goblet cells. These results confirm the structural integrity and secretory functions of BMC grafts, advancing clinical translation of functional eyelid substitutes.
Collapse
Affiliation(s)
- Qiumei Ji
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Xingran Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Ruize Tang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Yan Zeng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Xiangqi Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Valeriya V Kardumyan
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Kosygin St. 4, 119991, Moscow, Russia.
| | - Anna B Solovieva
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, Kosygin St. 4, 119991, Moscow, Russia.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, 200011, Shanghai, China; Shanghai Institute for Plastic and Reconstructive Surgery, 1908 Gaoke Road, 200125, Shanghai, China.
| |
Collapse
|
2
|
Wu KY, Kearn N, Truong D, Choulakian MY, Tran SD. Advances in Regenerative Medicine, Cell Therapy, and 3D Bioprinting for Corneal, Oculoplastic, and Orbital Surgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40131704 DOI: 10.1007/5584_2025_855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Advances in regenerative medicine, cell therapy, and 3D bioprinting are reshaping the landscape of ocular surgery, offering innovative approaches to address complex conditions affecting the cornea, ocular adnexal structures, and the orbit. These technologies hold the potential to enhance treatment precision, improve functional outcomes, and address limitations in traditional surgical and therapeutic interventions.The cornea, as the eye's primary refractive and protective barrier, is particularly well-suited for regenerative approaches due to its avascular and immune-privileged nature. Cell-based therapies, including limbal stem cell transplantation as well as stromal keratocyte and corneal endothelial cell regeneration, are being investigated for their potential to restore corneal clarity and function in conditions such as limbal stem cell deficiency, keratoconus, and endothelial dysfunction. Simultaneously, 3D bioprinting technologies are enabling the development of biomimetic corneal constructs, potentially addressing the global shortage of donor tissues and facilitating personalized surgical solutions.In oculoplastic and orbital surgery, regenerative strategies and cell therapies are emerging as possible alternatives to conventional approaches for conditions such as eyelid defects, meibomian gland dysfunction, and Graves' orbitopathy. Stem cell-based therapies and bioengineered scaffolds are showing potential in restoring lacrimal glands' function as well as reconstructing complex ocular adnexal and orbital structures. Moreover, 3D-printed orbital implants and scaffolds offer innovative solutions for repairing traumatic, post-tumor resection, and congenital defects, with the potential for improved biocompatibility and precision.Molecular and gene-based therapies, including exosome delivery systems, nanoparticle-based interventions, and gene-editing techniques, are expanding the therapeutic arsenal for ophthalmic disorders. These approaches aim to enhance the efficacy of regenerative treatments by addressing underlying pathophysiological mechanisms of diseases. This chapter provides an overview of these advancements and the challenges of translating laboratory discoveries into effective therapies in clinical practice.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Natalie Kearn
- Department of Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Doanh Truong
- College of Arts & Science, Case Western Reserve University, Cleveland, OH, USA
| | - Mazen Y Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Lee H, Park YH, Kang HJ, Lee H. Three-Dimensional Bioprinting of Tarsal Plates with Adipose-Derived Mesenchymal Stem Cells: Evaluation of Meibomian Gland Reconstruction in a Rat Model. Biomedicines 2024; 12:2567. [PMID: 39595133 PMCID: PMC11591950 DOI: 10.3390/biomedicines12112567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/17/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The aim of this study was to develop 3D-bioprinted scaffolds embedded with human adipose-derived stem cells (hADSCs) to reconstruct the tarsal plate in a rat model. Methods: Scaffolds were printed using a 3D bioprinter with a bioink composed of atelocollagen and alginate. hADSCs (5 × 105 cells/mL) were embedded within the bioink. A total of 30 male Sprague Dawley (SD) rats (300 g) were divided into three groups: group 1 (normal control, n = 10), group 2 (3D-bioprinted scaffolds, n = 10), and group 3 (3D-bioprinted scaffolds with hADSCs, n = 10). Four weeks after surgery, a histopathological analysis was performed using hematoxylin and eosin (H&E) staining, Masson's trichrome (MT) staining, and immunofluorescence staining. Gene expression of SREBP-1, PPAR-γ, FADS-2, and FAS was assessed via real-time polymerase chain reaction (PCR). Results: No abnormalities were observed in the operated eyelids of any of the 30 rats. The histopathological analysis revealed lipid-secreting cells resembling meibocytes in both group 2 and group 3, with more pronounced meibocyte-like cells in group 3. Immunofluorescence staining for phalloidin expression showed a significant increase in group 3. Additionally, the RNA expression of SREBP-1, PPAR-γ, FADS-2, and FAS, all related to lipid metabolism, was elevated in group 3. Conclusions: The 3D-printed scaffolds combined with hADSCs were effective for tarsal plate reconstruction, with the hADSCs notably contributing to the generation of cells associated with lipid metabolism.
Collapse
Affiliation(s)
- Hyunkyu Lee
- Department of Ophthalmology, Korea University College of Medicine, Anam Hospital, Seoul 02841, Republic of Korea;
| | - Yoon Hee Park
- Medical Science Research Center, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea;
| | - Hyo Jin Kang
- Department of Biomedical Laboratory Science, Honam University, Gwangju 62399, Republic of Korea
| | - Hwa Lee
- Department of Ophthalmology, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea
| |
Collapse
|
4
|
Wu KY, Fujioka JK, Goodyear E, Tran SD. Polymers and Biomaterials for Posterior Lamella of the Eyelid and the Lacrimal System. Polymers (Basel) 2024; 16:352. [PMID: 38337241 PMCID: PMC10857064 DOI: 10.3390/polym16030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The application of biopolymers in the reconstruction of the posterior lamella of the eyelid and the lacrimal system marks a significant fusion of biomaterial science with clinical advancements. This review assimilates research spanning 2015 to 2023 to provide a detailed examination of the role of biopolymers in reconstructing the posterior lamella of the eyelid and the lacrimal system. It covers the anatomy and pathophysiology of eyelid structures, the challenges of reconstruction, and the nuances of surgical intervention. This article progresses to evaluate the current gold standards, alternative options, and the desirable properties of biopolymers used in these intricate procedures. It underscores the advancements in the field, from decellularized grafts and acellular matrices to innovative natural and synthetic polymers, and explores their applications in lacrimal gland tissue engineering, including the promise of 3D bioprinting technologies. This review highlights the importance of multidisciplinary collaboration between material scientists and clinicians in enhancing surgical outcomes and patient quality of life, emphasizing that such cooperation is pivotal for translating benchtop research into bedside applications. This collaborative effort is vital for restoring aesthetics and functionality for patients afflicted with disfiguring eyelid diseases, ultimately aiming to bridge the gap between innovative materials and their clinical translation.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrook, QC J1G 2E8, Canada;
| | - Jamie K. Fujioka
- Faculty of Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Emilie Goodyear
- Department of Ophthalmology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
- Centre Hospitalier de l’Université de Montréal (CHUM), Montreal, QC H2X 0A9, Canada
- Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
5
|
Yan Y, Ji Q, Fu R, Liu C, Yang J, Yin X, Li Q, Huang R. Biomaterials and tissue engineering strategies for posterior lamellar eyelid reconstruction: Replacement or regeneration? Bioeng Transl Med 2023. [DOI: 10.1002/btm2.10497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Affiliation(s)
- Yuxin Yan
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qiumei Ji
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Rao Fu
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chuanqi Liu
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jing Yang
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiya Yin
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
- Department of Plastic and Burn Surgery West China Hospital, Sichuan University Chengdu China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ru‐Lin Huang
- Department of Plastic and Reconstructive Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
6
|
Zhang D, Zheng H, Geng K, Shen J, Feng X, Xu P, Duan Y, Li Y, Wu R, Gou Z, Gao C. Large fuzzy biodegradable polyester microspheres with dopamine deposition enhance cell adhesion and bone regeneration in vivo. Biomaterials 2021; 272:120783. [PMID: 33812215 DOI: 10.1016/j.biomaterials.2021.120783] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/06/2021] [Accepted: 03/21/2021] [Indexed: 12/28/2022]
Abstract
The biodegradable polymer microparticles with different surface morphology and chemical compositions may influence significantly the behaviors of cells, and thereby further the performance of tissue regeneration in vivo. In this study, multi-stage hierarchical textures of poly(D,L-lactic-co-glycolide) (PLGA)/PLGA-b-PEG (poly(ethylene glycol)) microspheres with a diameter as large as 50-100 μm are fabricated based on interfacial instability of an emulsion. The obtained fuzzy structures on the microspheres are sensitive to annealing, which are changed gradually to a smooth one after treatment at 37 °C for 6 d or 80 °C for 1 h. The surface microstructures that are chemically dominated by PEG can be stabilized against annealing by dopamine deposition. By the combination use of annealing and dopamine deposition, a series of microspheres with robust surface topologies are facilely prepared. The fuzzy microstructures and dopamine deposition show a synergetic role to enhance cell-material interaction, leading to a larger number of adherent bone marrow-derived mesenchymal stem cells (BMSCs), A549 and MC 3T3 cells. The fuzzy microspheres with dopamine deposition can significantly promote bone regeneration 12 w post surgery in vivo, as revealed by micro-CT, histological, western blotting and RT-PCR analyses.
Collapse
Affiliation(s)
- Deteng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Honghao Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Keyu Geng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianhua Shen
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peifang Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Yiyuan Duan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310003, China
| | - Ronghuan Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310003, China
| | - Zhongru Gou
- Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Feng X, Zhou T, Xu P, Ye J, Gou Z, Gao C. Enhanced regeneration of osteochondral defects by using an aggrecanase-1 responsively degradable and N-cadherin mimetic peptide-conjugated hydrogel loaded with BMSCs. Biomater Sci 2020; 8:2212-2226. [PMID: 32119015 DOI: 10.1039/d0bm00068j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Due to the poor self-repair capabilities of articular cartilage, chondral or osteochondral injuries are difficult to be recovered. In this study, an N-cadherin mimetic peptide sequence HAVDIGGGC (HAV) was conjugated to direct cell-cell interactions, and an aggrecanase-1 cleavable peptide sequence CRDTEGE-ARGSVIDRC (ACpep) was used to crosslink hyperbranched PEG-based multi-acrylate polymer (HBPEG) with cysteamine-modified chondroitin sulfate (Cys-CS), obtaining an aggrecanase-1 responsively degradable and HAV-conjugated hydrogel ((HAV-HBPEG)-CS-ACpep). A HBPEG-CS-ACpep hydrogel without the HAV motif was also prepared. The two hydrogels exhibited similar equilibrium swelling ratios, elastic moduli and pore sizes after lyophilization, indicating the negligible influence of conjugated HAV on the crosslinking networks and mechanical properties of the hydrogels. After being degraded in PBS, aggrecanase-1 (ADAMTS4) and trypsin, the HBPEG-CS-ACpep hydrogel exhibited significantly decreased elastic moduli with a much lower value when incubated in enzyme solutions. The two hydrogels could maintain the viability of encapsulated bone marrow-derived mesenchymal stem cells (BMSCs), and the (HAV-HBPEG)-CS-ACpep hydrogel better promoted the cell-cell interactions. After being implanted into osteochondral defects in rabbits for 18 weeks, the two cell-laden hydrogel groups achieved better repair effects than the blank control group. Moreover, hyaline cartilage was formed in the (HAV-HBPEG)-CS-ACpep/BMSCs hydrogel group, while a hybrid of hyaline cartilage and fibrocartilage was found in the HBPEG-CS-ACpep/BMSCs hydrogel group.
Collapse
Affiliation(s)
- Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Tong Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Peifang Xu
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, PR China
| | - Juan Ye
- Department of Ophthalmology, the Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, PR China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, PR China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
8
|
Han Y, Lian M, Sun B, Jia B, Wu Q, Qiao Z, Dai K. Preparation of high precision multilayer scaffolds based on Melt Electro-Writing to repair cartilage injury. Theranostics 2020; 10:10214-10230. [PMID: 32929344 PMCID: PMC7481411 DOI: 10.7150/thno.47909] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Rationale: Articular cartilage injury is quite common. However, post-injury cartilage repair is challenging and often requires medical intervention, which can be aided by 3D printed tissue engineering scaffolds. Specifically, the high accuracy of Melt Electro-Writing (MEW) technology facilitates the printing of scaffolds that imitate the structure and composition of natural cartilage to promote repair. Methods: MEW and Inkjet printing technology was employed to manufacture a composite scaffold that was then implanted into a cartilage injury site through microfracture surgery. While printing polycaprolactone (PCL) or PCL/hydroxyapatite (HA) scaffolds, cytokine-containing microspheres were sprayed alternately to form multiple layers containing transforming growth factor-β1 and bone morphogenetic protein-7 (surface layer), insulin-like growth factor-1 (middle layer), and HA (deep layer). Results: The composite biological scaffold was conducive to adhesion, proliferation, and differentiation of mesenchymal stem cells recruited from the bone marrow and blood. Meanwhile, the environmental differences between the scaffold's layers contributed to the regional heterogeneity of chondrocytes and secreted proteins to promote functional cartilage regeneration. The biological effect of the composite scaffold was validated both in vitro and in vivo. Conclusion: A cartilage repair scaffold was established with high precision as well as promising mechanical and biological properties. This scaffold can promote the repair of cartilage injury by using, and inducing the differentiation and expression of, autologous bone marrow mesenchymal stem cells.
Collapse
|
9
|
Feng X, Xu P, Shen T, Zhang Y, Ye J, Gao C. Age-Related Regeneration of Osteochondral and Tibial Defects by a Fibrin-Based Construct in vivo. Front Bioeng Biotechnol 2020; 8:404. [PMID: 32432101 PMCID: PMC7214756 DOI: 10.3389/fbioe.2020.00404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/09/2020] [Indexed: 11/13/2022] Open
Abstract
Tissue-biomaterial interactions in different microenvironments influence significantly the repair and regeneration outcomes when a scaffold or construct is implanted. In order to elucidate this issue, a fibrin gel filled macroporous fibrin scaffold (fibrin-based scaffold) was fabricated by loading fibrinogen via a negative pressure method, following with thrombin crosslinking. The macroporous fibrin scaffold exhibited a porous structure with porosity of (88.1 ± 1.3)%, and achieved a modulus of 19.8 ± 0.4 kPa at a wet state after fibrin gel filling, providing a suitable microenvironment for bone marrow-derived mesenchymal stem cells (BMSCs). The in vitro cellular culture revealed that the fibrin-based scaffold could support the adhesion, spreading, and proliferation of BMSCs in appropriate cell encapsulation concentrations. The fibrin-based scaffolds were then combined with BMSCs and lipofectamine/plasmid deoxyribonucleic acid (DNA) encoding mouse-transforming growth factor β1 (pDNA-TGF-β1) complexes to obtain the fibrin-based constructs, which were implanted into osteochondral and tibial defects at young adult rabbits (3 months old) and aged adult rabbits (12 months old) to evaluate their respective repair effects. Partial repair of osteochondral defects and perfect restoration of tibial defects were realized at 18 weeks post-surgery for the young adult rabbits, whereas only partial repair of subchondral bone and tibial bone defects were found at the same time for the aged adult rabbits, confirming the adaptability of the fibrin-based constructs to the different tissue microenvironments by tissue-biomaterial interplays.
Collapse
Affiliation(s)
- Xue Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Peifang Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Tao Shen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Yihan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Juan Ye
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Chen L, Yan D, Wu N, Zhang W, Yan C, Yao Q, Zouboulis CC, Sun H, Fu Y. 3D-Printed Poly-Caprolactone Scaffolds Modified With Biomimetic Extracellular Matrices for Tarsal Plate Tissue Engineering. Front Bioeng Biotechnol 2020; 8:219. [PMID: 32269990 PMCID: PMC7109479 DOI: 10.3389/fbioe.2020.00219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/04/2020] [Indexed: 11/19/2022] Open
Abstract
Tarsal plate regeneration has always been a challenge in the treatment of eyelid defects. The commonly used clinical treatments such as hard palate mucosa grafts cannot achieve satisfactory repair effects. Tissue engineering has been considered as a promising technology. However, tarsal plate tissue engineering is difficult to achieve due to its complex structure and lipid secretion function. Three-dimensional (3D) printing technology has played a revolutionary role in tissue engineering because it can fabricate complex scaffolds through computer aided design (CAD). In this study, it was novel in applying 3D printing technology to the fabrication of tarsal plate scaffolds using poly-caprolactone (PCL). The decellularized matrix of adipose-derived mesenchymal stromal cells (DMA) was coated on the surface of the scaffold, and its biofunction was further studied. Immortalized human SZ95 sebocytes were seeded on the scaffolds so that neutral lipids were secreted for replacing meibocytes. In vitro experiments revealed excellent biocompatibility of DMA-PCL scaffolds with sebocytes. In vivo experiments revealed excellent sebocytes proliferation on the DMA-PCL scaffolds. Meanwhile, sebocytes seeded on the scaffolds secreted abundant neutral lipid in vitro and in vivo. In conclusion, a 3D-printed PCL scaffold modified with DMA was found to be a promising substitute for tarsal plate tissue engineering.
Collapse
Affiliation(s)
- Liangbo Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Dan Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Nianxuan Wu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Weijie Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Chenxi Yan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Qinke Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
11
|
Liu X, Shi H, Yu T, Zhou C. The roles of magnesium in the mineral metabolism of biological apatite for the treatment of arthritis inspired by the deer antler. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2018.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|