1
|
Chellathurai MS, Chung LY, Hilles AR, Sofian ZM, Singha S, Ghosal K, Mahmood S. Pharmaceutical chitosan hydrogels: A review on its design and applications. Int J Biol Macromol 2024; 280:135775. [PMID: 39307491 DOI: 10.1016/j.ijbiomac.2024.135775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/10/2024] [Accepted: 09/17/2024] [Indexed: 10/13/2024]
Abstract
Chitosan (CS) has become a focal point of extensive research in the pharmaceutical industry due to its remarkable biodegradability, biocompatibility and sustainability. Chitosan hydrogels (CS HGs) are characterized by their viscoelasticity, flexibility and softness. The polar surfaces exhibit properties that mitigate interfacial tension between the hydrogel and body fluids. The inherent compatibility of CS HGs with body tissues and fluids positions them as outstanding polymers for delivering therapeutic proteins, peptides, DNA, siRNA, and vaccines. Designed to release drugs through mechanisms such as swelling-based diffusion, bioerosion, and responsiveness to stimuli, CS HGs offer a versatile platform for drug delivery. CS HGs play pivotal roles in serving purposes such as prolonging the duration of preprogrammed drug delivery, enabling stimuli-responsive smart delivery to target sites, protecting encapsulated drugs within the mesh network from adverse environments, and facilitating mucoadhesion and penetration through cell membranes. This review comprehensively outlines various novel preparation methods of CS HGs, delving into the parameters influencing drug delivery system design, providing a rationale for CS HG utilization in drug delivery, and presenting diverse applications across the pharmaceutical landscape. In synthesizing these facets, the review seeks to contribute to a nuanced understanding of the multifaceted role that CS HGs play in advancing drug delivery methodologies.
Collapse
Affiliation(s)
- Melbha Starlin Chellathurai
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ayah R Hilles
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Souvik Singha
- Nanofabrication and Tissue Engineering Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Kajal Ghosal
- Nanofabrication and Tissue Engineering Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia; Universiti Malaya-Research Center for Biopharmaceuticals and Advanced Therapeutics (UBAT), Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Lei L, Achenbach S, Wells G, Zhang H, Zhang W. A Novel Device for Micro-Droplets Generation Based on the Stepwise Membrane Emulsification Principle. MICROMACHINES 2024; 15:1118. [PMID: 39337778 PMCID: PMC11433940 DOI: 10.3390/mi15091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024]
Abstract
This paper presents a novel design of the device to generate microspheres or micro-droplets based on the membrane emulsification principle. Specifically, the novelty of the device lies in a proposed two-layer or stepwise (by generalization) membrane structure. An important benefit of the stepwise membrane is that it can be fabricated with the low-cost material (SU-8) and using the conventional lithography technology along with a conventional image-based alignment technique. The experiment to examine the effectiveness of the proposed membrane was conducted, and the result shows that microspheres with the size of 2.3 μm and with the size uniformity of 0.8 μm can be achieved, which meets the requirements for most applications in industries. It is noted that the traditional membrane emulsification method can only produce microspheres of around 20 μm. The main contribution of this paper is thus the new design principle of membranes (i.e., stepwise structure), which can be made by the cost-effective fabrication technique, for high performance of droplets production.
Collapse
Affiliation(s)
- Lei Lei
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Sven Achenbach
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Garth Wells
- Synchrotron Laboratory for Micro and Nano Devices, Canadian Light Source Incorporated, Saskatoon, SK S7N 2V3, Canada
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 201620, China
| | - Wenjun Zhang
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
3
|
Ouyang C, Deng M, Tan X, Liu Z, Huang T, Yu S, Ge Z, Zhang Y, Ding Y, Chen H, Chu H, Chen J. Tailored design of NHS-SS-NHS cross-linked chitosan nano-hydrogels for enhanced anti-tumor efficacy by GSH-responsive drug release. Biomed Mater 2024; 19:045015. [PMID: 38772383 DOI: 10.1088/1748-605x/ad4e86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
The traditional chemotherapeutic agents' disadvantages such as high toxicity, untargeting and poor water solubility lead to disappointing chemotherapy effects, which restricts its clinical application. In this work, novel size-appropriate and glutathione (GSH)-responsive nano-hydrogels were successfully prepared via the active ester method between chitosan (containing -NH2) and cross-linker (containing NHS). Especially, the cross-linker was elaborately designed to possess a disulfide linkage (SS) as well as two terminal NHS groups, namely NHS-SS-NHS. These functionalities endowed chitosan-based cross-linked scaffolds with capabilities for drug loading and delivery, as well as a GSH-responsive mechanism for drug release. The prepared nano-hydrogels demonstrated excellent performance applicable morphology, excellent drug loading efficiency (∼22.5%), suitable size (∼100 nm) and long-term stability. The prepared nano-hydrogels released over 80% doxorubicin (DOX) after incubation in 10 mM GSH while a minimal DOX release less than 25% was tested in normal physiological buffer (pH = 7.4). The unloaded nano-hydrogels did not show any apparent cytotoxicity to A 549 cells. In contrast, DOX-loaded nano-hydrogels exhibited marked anti-tumor activity against A 549 cells, especially in high GSH environment. Finally, through fluorescent imaging and flow cytometry analysis, fluorescein isothiocyanate-labeled nano-hydrogels show obvious specific binding to the GSH high-expressing A549 cells and nonspecific binding to the GSH low-expressing A549 cells. Therefore, with this cross-linking approach, our present finding suggests that cross-linked chitosan nano-hydrogel drug carrier improves the anti-tumor effect of the A 549 cells and may serve as a potential injectable delivery carrier.
Collapse
Affiliation(s)
- Cuiling Ouyang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Minxin Deng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Xiaowei Tan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Ziyi Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Tuo Huang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Siyu Yu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Zan Ge
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Yafang Zhang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Yujun Ding
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Hezhang Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Hui Chu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| |
Collapse
|
4
|
Yang C, Yin D, Zhang H, Badea I, Yang SM, Zhang W. Cell Migration Assays and Their Application to Wound Healing Assays-A Critical Review. MICROMACHINES 2024; 15:720. [PMID: 38930690 PMCID: PMC11205366 DOI: 10.3390/mi15060720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
In recent years, cell migration assays (CMAs) have emerged as a tool to study the migration of cells along with their physiological responses under various stimuli, including both mechanical and bio-chemical properties. CMAs are a generic system in that they support various biological applications, such as wound healing assays. In this paper, we review the development of the CMA in the context of its application to wound healing assays. As such, the wound healing assay will be used to derive the requirements on CMAs. This paper will provide a comprehensive and critical review of the development of CMAs along with their application to wound healing assays. One salient feature of our methodology in this paper is the application of the so-called design thinking; namely we define the requirements of CMAs first and then take them as a benchmark for various developments of CMAs in the literature. The state-of-the-art CMAs are compared with this benchmark to derive the knowledge and technological gap with CMAs in the literature. We will also discuss future research directions for the CMA together with its application to wound healing assays.
Collapse
Affiliation(s)
- Chun Yang
- School of Mechanical Engineering, Donghua University, Shanghai 200051, China;
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| | - Di Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; (D.Y.); (H.Z.)
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; (D.Y.); (H.Z.)
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada;
| | - Shih-Mo Yang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Wenjun Zhang
- School of Mechanical Engineering, Donghua University, Shanghai 200051, China;
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
5
|
Bercea M, Lupu A. Recent Insights into Glucose-Responsive Concanavalin A-Based Smart Hydrogels for Controlled Insulin Delivery. Gels 2024; 10:260. [PMID: 38667679 PMCID: PMC11048858 DOI: 10.3390/gels10040260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Many efforts are continuously undertaken to develop glucose-sensitive biomaterials able of controlling glucose levels in the body and self-regulating insulin delivery. Hydrogels that swell or shrink as a function of the environmental free glucose content are suitable systems for monitoring blood glucose, delivering insulin doses adapted to the glucose concentration. In this context, the development of sensors based on reversible binding to glucose molecules represents a continuous challenge. Concanavalin A (Con A) is a bioactive protein isolated from sword bean plants (Canavalia ensiformis) and contains four sugar-binding sites. The high affinity for reversibly and specifically binding glucose and mannose makes Con A as a suitable natural receptor for the development of smart glucose-responsive materials. During the last few years, Con A was used to develop smart materials, such as hydrogels, microgels, nanoparticles and films, for producing glucose biosensors or drug delivery devices. This review is focused on Con A-based materials suitable in the diagnosis and therapeutics of diabetes. A brief outlook on glucose-derived theranostics of cancer is also presented.
Collapse
Affiliation(s)
- Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| | - Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
6
|
Ahmad A, Hassan A, Roy PG, Zhou S, Irfan A, Chaudhry AR, Kanwal F, Begum R, Farooqi ZH. Recent developments in chitosan based microgels and their hybrids. Int J Biol Macromol 2024; 260:129409. [PMID: 38224801 DOI: 10.1016/j.ijbiomac.2024.129409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Chitosan based microgels have gained great attention because of their chemical stability, biocompatibility, easy functionalization and potential uses in numerous fields. Production, properties, characterization and applications of chitosan based microgels have been systematically reviewed in this article. Some of these systems exhibit responsive behavior towards external stimuli like pH, light, temperature, glucose, etc. in terms of swelling/deswelling in an aqueous medium depending upon the functionalities present in the network which makes them a potential candidate for various applications in the fields of biomedicine, agriculture, catalysis, sensing and nanotechnology. Current research development and critical overview in this field accompanying by future possibilities is presented. The discussion is concluded with recommended possible future works for further progress in this field.
Collapse
Affiliation(s)
- Azhar Ahmad
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Ahmad Hassan
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Prashun Ghosh Roy
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Shuiqin Zhou
- Department of Chemistry of The College of Staten Island and Ph.D. Program in Chemistry of The Graduate Centre, The City University of New York, 2800 Victory Boulevard, Staten Island, NY 10314, United States
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia
| | - Farah Kanwal
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
7
|
Limenh LW. A review on oral novel delivery systems of insulin through the novel delivery system formulations: A review. SAGE Open Med 2024; 12:20503121231225319. [PMID: 38249950 PMCID: PMC10798068 DOI: 10.1177/20503121231225319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Parenteral administration of insulin remains the most common route of administration, causing local hypertrophy at the injection sites because of multiple daily injections. Because of this, there is an interest and effort in oral insulin administration that is convenient and mimics the physiology of endogenous insulin secreted in the liver. However, oral insulin encountered different challenges due to abundant enzyme degradation, the presence of a mucus layer, and the underlying intestinal epithelial membrane barrier in the gastrointestinal tract. This narrative review reviewed the literature dealing with novel oral insulin delivery approaches. Various pieces of literature were searched, filtered, and reviewed from different sources, and the information obtained was organized, formulated, and finalized. Oral insulin has been formulated and extensively studied in various novel delivery approaches, such as nanoparticles, microspheres, mucoadhesive patches, encapsulations, hydrogels, ionic liquids, liposomes, and complexation. The efficiency of these formulations demonstrated improved efficiency and potency compared to free oral insulin delivery, but none of them have greater or equivalent potency to subcutaneous insulin. Future studies regarding dose-dependent therapeutic efficacy and the development of new novel formulations to produce comparable oral insulin to subcutaneous insulin are warranted to further support the suitability of the current platform for oral insulin delivery.
Collapse
Affiliation(s)
- Liknaw Workie Limenh
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
8
|
Mansoor S, Adeyemi SA, Kondiah PPD, Choonara YE. A Closed Loop Stimuli-Responsive Concanavalin A-Loaded Chitosan-Pluronic Hydrogel for Glucose-Responsive Delivery of Short-Acting Insulin Prototyped in RIN-5F Pancreatic Cells. Biomedicines 2023; 11:2545. [PMID: 37760986 PMCID: PMC10526345 DOI: 10.3390/biomedicines11092545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The optimal treatment of diabetes (in particular, type 1 diabetes-T1D) remains a challenge. Closed-loop systems (implants/inserts) provide significant advantages for glucose responsivity and providing real-time sustained release of rapid-acting insulin. Concanavalin A (ConA), a glucose affinity agent, has been used to design closed-loop insulin delivery systems but not without significant risk of leakage of ConA from the matrices and poor mechanical strength of the hydrogels impacting longevity and control of insulin release. Therefore, this work focused on employing a thermoresponsive co-forming matrix between Pluronic F-127 (PL) and structurally robust chitosan (CHT) via EDC/NHS coupling (i.e., covalent linkage of -NH2 from CHT and ConA to the -COOH of PL). The system was characterized for its chemical structure stability and integrity (FTIR, XRD and TGA), injectability, rheological parameters and hydrogel morphology (Texture Analysis, Elastosens TM Bio2 and SEM). The prepared hydrogels demonstrated shear-thinning for injectability with a maximum force of 4.9 ± 8.3 N in a 26G needle with sol-gel transitioning from 25 to 38 °C. The apparent yield stress value of the hydrogel was determined to be 67.47 Pa. The insulin loading efficiency within the hydrogel matrix was calculated to be 46.8%. Insulin release studies revealed glucose responsiveness in simulated glycemic media (4 and 10 mg/mL) over 7 days (97%) (305 nm via fluorescence spectrophotometry). The MTT studies were performed over 72 h on RIN-5F pancreatic cells with viability results >80%. Results revealed that the thermoresponsive hydrogel is a promising alternative to current closed-loop insulin delivery systems.
Collapse
Affiliation(s)
| | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2093, South Africa; (S.M.); (S.A.A.); (P.P.D.K.)
| |
Collapse
|
9
|
Elian V, Popovici V, Ozon EA, Musuc AM, Fița AC, Rusu E, Radulian G, Lupuliasa D. Current Technologies for Managing Type 1 Diabetes Mellitus and Their Impact on Quality of Life-A Narrative Review. Life (Basel) 2023; 13:1663. [PMID: 37629520 PMCID: PMC10456000 DOI: 10.3390/life13081663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Type 1 diabetes mellitus is a chronic autoimmune disease that affects millions of people and generates high healthcare costs due to frequent complications when inappropriately managed. Our paper aimed to review the latest technologies used in T1DM management for better glycemic control and their impact on daily life for people with diabetes. Continuous glucose monitoring systems provide a better understanding of daily glycemic variations for children and adults and can be easily used. These systems diminish diabetes distress and improve diabetes control by decreasing hypoglycemia. Continuous subcutaneous insulin infusions have proven their benefits in selected patients. There is a tendency to use more complex systems, such as hybrid closed-loop systems that can modulate insulin infusion based on glycemic readings and artificial intelligence-based algorithms. It can help people manage the burdens associated with T1DM management, such as fear of hypoglycemia, exercising, and long-term complications. The future is promising and aims to develop more complex ways of automated control of glycemic levels to diminish the distress of individuals living with diabetes.
Collapse
Affiliation(s)
- Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050471 Bucharest, Romania; (V.E.); (E.R.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr. N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Emma-Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (A.C.F.); (D.L.)
| | - Adina Magdalena Musuc
- Romanian Academy, “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Ancuța Cătălina Fița
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (A.C.F.); (D.L.)
| | - Emilia Rusu
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050471 Bucharest, Romania; (V.E.); (E.R.); (G.R.)
- Department of Diabetes, N. Malaxa Clinical Hospital, 12 Vergului Street, 022441 Bucharest, Romania
| | - Gabriela Radulian
- Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050471 Bucharest, Romania; (V.E.); (E.R.); (G.R.)
- Department of Diabetes, Nutrition and Metabolic Diseases, “Prof. Dr. N. C. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 030167 Bucharest, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania; (A.C.F.); (D.L.)
| |
Collapse
|
10
|
潘 国, 张 吉, 梁 永, 郭 保. [Latest Findings on Stimuli-Responsive Hydrogel Wound Dressings Applied in Diabetic Chronic Wound Repair]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:726-730. [PMID: 37545064 PMCID: PMC10442632 DOI: 10.12182/20230760206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Indexed: 08/08/2023]
Abstract
Diabetic chronic wounds entail enormous psychological and economic burdens on diabetic patients. Traditional types of wound dressings lack diversity in their functions and do not have sufficient adaptability to the wound environment, which makes it difficult to meet the complicated needs arising during the healing process when they are used. Stimuli-responsive hydrogels respond specifically to the special environment of the wound area, for example, temperature, pH, glucose, etc., and achieve on-demand release by loading active substances, which effectively promotes diabetic wound healing. Herein, based on the research progress in stimulus-responsive wound dressings in recent years and the relevant work of our research team, we summarized and discussed hydrogel wound dressings responsive to temperature, pH, glucose, reactive oxygen species, enzymes, and multiple stimuli. Based on the special physiological environment of diabetic wounds, hydrogels with single or multiple stimuli-responsive properties can be designed so that they can release drugs on demand and improve the microenvironment of the wound, thus meeting the specific needs of different stages of wound healing. Although stimuli-responsive hydrogels currently show excellent therapeutic potential, there is still room for further development-cells or cytokines loaded in wound dressings usually act only at specific healing stages and the timing needs to be precisely controlled in order to avoid counterproductive effects on wound healing. In addition, the construction of sensor-therapeutic integrated devices for real-time monitoring of wound biochemical indicators so that drugs are release on demand and with precision to promote wound healing is also one of the topics that deserve more attention from researchers.
Collapse
Affiliation(s)
- 国莹 潘
- 西安交通大学前沿科学技术研究院 (西安 710049)Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - 吉傲笛 张
- 西安交通大学前沿科学技术研究院 (西安 710049)Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - 永平 梁
- 西安交通大学前沿科学技术研究院 (西安 710049)Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - 保林 郭
- 西安交通大学前沿科学技术研究院 (西安 710049)Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Tian B, Liu J. Smart stimuli-responsive chitosan hydrogel for drug delivery: A review. Int J Biol Macromol 2023; 235:123902. [PMID: 36871689 DOI: 10.1016/j.ijbiomac.2023.123902] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Smart stimuli-responsive materials can respond to different signals (pH, temperature, light, electricity, etc.), and they have become a hot research topic for drug delivery. As a polysaccharide polymer with excellent biocompatibility, chitosan can be obtained from diverse natural sources. Chitosan hydrogels with different stimuli-response capabilities are widely applied in the drug delivery field. This review highlights and discusses the research progress on chitosan hydrogels concerning their stimuli-responsive capabilities. The feature of various stimuli-responsive kinds of hydrogels is outlined, and their potential use of drug delivery is summarized. Furthermore, the questions and future development chances of stimuli-responsive chitosan hydrogels are analyzed by comparing the current published literature, and the directions for the intelligent development of chitosan hydrogels are discussed.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China; Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, Macau SAR, China.
| |
Collapse
|
12
|
Sachdeva P, M AR, Shukla R, Sahani A. A review on artificial pancreas and regenerative medicine used in the management of Type 1 diabetes mellitus. J Med Eng Technol 2022; 46:693-702. [PMID: 35801984 DOI: 10.1080/03091902.2022.2095049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus is one of the fastest-growing lifestyle disorders in the world. While numerous regimes have been developed to manage diabetes, there continue to be high numbers of diabetes-related deaths worldwide. The review gives a brief introduction to the pathology and aetiology of the disorder, different solutions developed over time with their advantages and disadvantages, and highlights the technological components and challenges of the latest technologies: artificial pancreas and regenerative medicine. The study is restricted to a set of high-quality publications from the last decade.
Collapse
Affiliation(s)
- Pallavi Sachdeva
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Ashrit R M
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Rahul Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Ashish Sahani
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| |
Collapse
|
13
|
Chong-Boon Ong, Mohamad Suffian Mohamad Annuar. Hydrogels Responsive Towards Important Biological-Based Stimuli. POLYMER SCIENCE SERIES B 2022. [DOI: 10.1134/s1560090422200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Zhang F, Pei X, Peng X, Gou D, Fan X, Zheng X, Song C, Zhou Y, Cui S. Dual crosslinking of folic acid-modified pectin nanoparticles for enhanced oral insulin delivery. BIOMATERIALS ADVANCES 2022; 135:212746. [PMID: 35929218 DOI: 10.1016/j.bioadv.2022.212746] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
Pectin-based drug delivery systems hold great potential for oral insulin delivery, since they possess excellent gelling property, good mucoadhesion and high stability in the gastrointestinal (GI) tract. However, lack of enterocyte targeting ability and premature drug release in the upper GI tract of the susceptible ionic-crosslinked pectin matrices are two major problems to be solved. To address these issues, we developed folic acid (FA)-modified pectin nanoparticles (INS/DFAN) as insulin delivery vehicles by a dual-crosslinking method using calcium ions and adipic dihydrazide (ADH) as crosslinkers. In vitro studies indicated insulin release behaviors of INS/DFAN depended on COOH/ADH molar ratio in the dual-crosslinking process. INS/DFAN effectively prevented premature insulin release in simulated GI fluids compared to ionic-crosslinked nanoparticles (INS/FAN). At an optimized COOH/ADH molar ratio, INS/DFAN with FA graft ratio of 18.2% exhibited a relatively small particle size, high encapsulation efficiency and excellent stability. Cellular uptake of INS/DFAN was FA graft ratio dependent when it was at/below 18.2%. Uptake mechanism and intestinal distribution studies demonstrated the enhanced insulin transepithelial transport by INS/DFAN via FA carrier-mediated transport pathway. In vivo studies revealed that orally-administered INS/DFAN produced a significant reduction in blood glucose levels and further improved insulin bioavailability in type I diabetic rats compared to INS/FAN. Taken together, the combination of dual crosslinking and FA modification is an effective strategy to develop pectin nano-vehicles for enhanced oral insulin delivery.
Collapse
Affiliation(s)
- Fenglei Zhang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuejing Pei
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaoxia Peng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Dongxia Gou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiao Fan
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xuefei Zheng
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Sisi Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
15
|
Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF. Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomater Sci Eng 2021; 7:4102-4127. [PMID: 34137581 PMCID: PMC8919265 DOI: 10.1021/acsbiomaterials.0c01784] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/02/2021] [Indexed: 12/24/2022]
Abstract
A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- M. Isabel Rial-Hermida
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| | - Ana Rey-Rico
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Barbara Blanco-Fernandez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of
Science and Technology, 08028 Barcelona, Spain
- CIBER
en Bioingeniería, Biomateriales y
Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Natalia Carballo-Pedrares
- Cell
Therapy and Regenerative Medicine
Unit, Centro de Investigacións Científicas Avanzadas
(CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Eimear M. Byrne
- Wellcome-Wolfson
Institute For Experimental Medicine, Queen’s
University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - João F. Mano
- Department
of Chemistry, CICECO−Aveiro Institute of Materials, University of Aveiro 3810-193 Aveiro, Portugal
| |
Collapse
|
16
|
Zhang J, Xu J, Lim J, Nolan JK, Lee H, Lee CH. Wearable Glucose Monitoring and Implantable Drug Delivery Systems for Diabetes Management. Adv Healthc Mater 2021; 10:e2100194. [PMID: 33930258 DOI: 10.1002/adhm.202100194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Indexed: 12/11/2022]
Abstract
The global cost of diabetes care exceeds $1 trillion each year with more than $327 billion being spent in the United States alone. Despite some of the advances in diabetes care including continuous glucose monitoring systems and insulin pumps, the technology associated with managing diabetes has largely remained unchanged over the past several decades. With the rise of wearable electronics and novel functional materials, the field is well-poised for the next generation of closed-loop diabetes care. Wearable glucose sensors implanted within diverse platforms including skin or on-tooth tattoos, skin-mounted patches, eyeglasses, contact lenses, fabrics, mouthguards, and pacifiers have enabled noninvasive, unobtrusive, and real-time analysis of glucose excursions in ambulatory care settings. These wearable glucose sensors can be integrated with implantable drug delivery systems, including an insulin pump, glucose responsive insulin release implant, and islets transplantation, to form self-regulating closed-loop systems. This review article encompasses the emerging trends and latest innovations of wearable glucose monitoring and implantable insulin delivery technologies for diabetes management with a focus on their advanced materials and construction. Perspectives on the current unmet challenges of these strategies are also discussed to motivate future technological development toward improved patient care in diabetes management.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jian Xu
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jongcheon Lim
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - James K. Nolan
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
- School of Mechanical Engineering School of Materials Engineering Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
17
|
Zhang Y, Huang Y. Rational Design of Smart Hydrogels for Biomedical Applications. Front Chem 2021; 8:615665. [PMID: 33614595 PMCID: PMC7889811 DOI: 10.3389/fchem.2020.615665] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Hydrogels are polymeric three-dimensional network structures with high water content. Due to their superior biocompatibility and low toxicity, hydrogels play a significant role in the biomedical fields. Hydrogels are categorized by the composition from natural polymers to synthetic polymers. To meet the complicated situation in the biomedical applications, suitable host–guest supramolecular interactions are rationally selected. This review will have an introduction of hydrogel classification based on the formulation molecules, and then a discussion over the rational design of the intelligent hydrogel to the environmental stimuli such as temperature, irradiation, pH, and targeted biomolecules. Further, the applications of rationally designed smart hydrogels in the biomedical field will be presented, such as tissue repair, drug delivery, and cancer therapy. Finally, the perspectives and the challenges of smart hydrogels will be outlined.
Collapse
Affiliation(s)
- Yanyu Zhang
- Institute of Analytical Technology and Smart Instruments, Xiamen Huaxia University, Xiamen, China.,Engineering Research Center of Fujian Province, Xiamen Huaxia University, Xiamen, China
| | - Yishun Huang
- Institute of Analytical Technology and Smart Instruments, Xiamen Huaxia University, Xiamen, China.,Engineering Research Center of Fujian Province, Xiamen Huaxia University, Xiamen, China
| |
Collapse
|
18
|
Aflori M. Smart Nanomaterials for Biomedical Applications-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:396. [PMID: 33557177 PMCID: PMC7913901 DOI: 10.3390/nano11020396] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022]
Abstract
Recent advances in nanotechnology have forced the obtaining of new materials with multiple functionalities. Due to their reduced dimensions, nanomaterials exhibit outstanding physio-chemical functionalities: increased absorption and reactivity, higher surface area, molar extinction coefficients, tunable plasmonic properties, quantum effects, and magnetic and photo properties. However, in the biomedical field, it is still difficult to use tools made of nanomaterials for better therapeutics due to their limitations (including non-biocompatible, poor photostabilities, low targeting capacity, rapid renal clearance, side effects on other organs, insufficient cellular uptake, and small blood retention), so other types with controlled abilities must be developed, called "smart" nanomaterials. In this context, the modern scientific community developed a kind of nanomaterial which undergoes large reversible changes in its physical, chemical, or biological properties as a consequence of small environmental variations. This systematic mini-review is intended to provide an overview of the newest research on nanosized materials responding to various stimuli, including their up-to-date application in the biomedical field.
Collapse
Affiliation(s)
- Magdalena Aflori
- Petru Poni Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
19
|
Fuchs S, Ernst AU, Wang LH, Shariati K, Wang X, Liu Q, Ma M. Hydrogels in Emerging Technologies for Type 1 Diabetes. Chem Rev 2020; 121:11458-11526. [DOI: 10.1021/acs.chemrev.0c01062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Stephanie Fuchs
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander U. Ernst
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Long-Hai Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Kaavian Shariati
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xi Wang
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qingsheng Liu
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Minglin Ma
- Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Corduas F, Mancuso E, Lamprou DA. Long-acting implantable devices for the prevention and personalised treatment of infectious, inflammatory and chronic diseases. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Romero M, Macchione MA, Mattea F, Strumia M. The role of polymers in analytical medical applications. A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Elshaarani T, Yu H, Wang L, Feng J, Li C, Zhou W, Khan A, Usman M, Amin BU, Khan R. Chitosan reinforced hydrogels with swelling-shrinking behaviors in response to glucose concentration. Int J Biol Macromol 2020; 161:109-121. [PMID: 32512091 DOI: 10.1016/j.ijbiomac.2020.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 10/24/2022]
Abstract
Different hydrogels of poly(acrylamide-co-3-acrylamido phenylboronic acid-co-chitosan grafted maleic acid) (P(AM-co-AAPBA-co-CSMA)s) were synthesized using poly(ethylene glycol) diacrylate (PEGDA) as a crosslinker to serve for glucose sensing and insulin delivery. The structure and morphology of the hydrogels, named as CSPBA were studied by FTIR and SEM, while the mechanical properties were tested using dynamic mechanical analysis (DMA) and universal testing machine. The prepared hydrogels shrinked at low glucose concentration due to the 2:1 boronate-glucose binding, and swelled at high glucose concentration because of 1:1 boronate-glucose complexation. Both binding mechanisms are useful for glucose sensing and insulin delivery. The integration of CSMA into hydrogels network not only enhanced the response to glucose at physiological pH, but also improved the mechanical properties and increased the encapsulation efficiency of the prepared hydrogels. These CSPBA may find potential as implantable hydrogels in applications were continuous glucose monitoring and controlled release is beneficial.
Collapse
Affiliation(s)
- Tarig Elshaarani
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China.
| | - Jingyi Feng
- The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, 310003, PR China
| | - Chengjiang Li
- The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, 310003, PR China
| | - Weibin Zhou
- The First Affiliated Hospital of Zhejiang University, College of Medicine, Zhejiang University, 310003, PR China
| | - Amin Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Muhammad Usman
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Bilal Ul Amin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Rizwan Khan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
23
|
Bahmanpour A, Ghaffari M, Milan PB, Moztarzadeh F, Mozafari M. Synthesis and characterization of thermosensitive hydrogel based on quaternized chitosan for intranasal delivery of insulin. Biotechnol Appl Biochem 2020; 68:247-256. [PMID: 32250466 DOI: 10.1002/bab.1917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
Nasal administration is a form of systemic administration in which drugs are insufflated through the nasal cavity. Steroids, nicotine replacement, antimigraine drugs, and peptide drugs are examples of the available systematically active drugs as nasal sprays. For diabetic patients who need to use insulin daily, the nasal pathway can be used as an alternative to subcutaneous injection. In this regard, intranasal insulin delivery as a user-friendly and systemic administration has recently attracted more attention. In this study, a novel formulation consists of chitosan, chitosan quaternary ammonium salt (HTCC), and gelatin (Gel) was proposed and examined as a feasible carrier for intranasal insulin administration. First, the optimization of the chitosan-HTCC hydrogel combination has done. Afterward, Gel with various amounts blended with the chitosan-HTCC optimized samples. In the next step, swelling rate, gelation time, degradation, adhesion, and other mechanical, chemical, and biological properties of the hydrogels were studied. Finally, insulin in clinical formulation and dosage was blended with optimized thermosensitive hydrogel and the release procedure of insulin was studied with electrochemiluminescence technique. The optimal formulation (consisted of 2 wt% chitosan, 1 wt% HTCC, and 0.5 wt% Gel) showed low gelation time, uniform pore structure, and the desirable swelling rate, which were resulted in the adequate encapsulation and prolonged release of insulin in 24 H. The optimal samples released 65% of the total amount of insulin in the first 24 H, which is favorable for this study.
Collapse
Affiliation(s)
- AmirHossein Bahmanpour
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Maryam Ghaffari
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Peiman B Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterial Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Mansoor S, Kondiah PPD, Choonara YE, Pillay V. Polymer-Based Nanoparticle Strategies for Insulin Delivery. Polymers (Basel) 2019; 11:E1380. [PMID: 31443473 PMCID: PMC6780129 DOI: 10.3390/polym11091380] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/05/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic illness estimated to have affected 451 million individuals to date, with this number expected to significantly rise in the coming years. There are two main classes of this disease, namely type 1 diabetes (T1D) and type 2 diabetes (T2D). Insulin therapy is pivotal in the management of diabetes, with diabetic individuals taking multiple daily insulin injections. However, the mode of administration has numerous drawbacks, resulting in poor patient compliance. In order to optimize insulin therapy, novel drug delivery systems (DDSes) have been suggested, and alternative routes of administration have been investigated. A novel aspect in the field of drug delivery was brought about by the coalescence of polymeric science and nanotechnology. In addition to polymeric nanoparticles (PNPs), insulin DDSes can incorporate the use of nanoplatforms/carriers. A combination of these systems can bring about novel formulations and lead to significant improvements in the drug delivery system (DDS) with regard to therapeutic efficacy, bioavailability, increased half-life, improved transport through physical and chemical barriers, and controlled drug delivery. This review will discuss how recent developments in polymer chemistry and nanotechnology have been employed in a multitude of platforms as well as in administration routes for the safe and efficient delivery of insulin for the treatment of DM.
Collapse
Affiliation(s)
- Shazia Mansoor
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Pierre P D Kondiah
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|