1
|
Seebunrueng K, Tamuang S, Jarujamrus P, Saengsuwan S, Patdhanagul N, Areerob Y, Sansuk S, Srijaranai S. Eco-friendly thermosensitive magnetic-molecularly-imprinted polymer adsorbent in dispersive solid-phase microextraction for gas chromatographic determination of organophosphorus pesticides in fruit samples. Food Chem 2024; 430:137069. [PMID: 37562262 DOI: 10.1016/j.foodchem.2023.137069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
A thermosensitive magnetic-molecularly-imprinted polymer (TMMIP) was successfully prepared in an aqueous medium. The TMMIP was applied as an effective adsorbent in dispersive solid-phase microextraction for the selective enrichment of five organophosphorus pesticides (OPPs; diazinon, fenitrothion, fenthion, parathion-ethyl, and ethion) before analysis by gas chromatography. The polymerization was performed using mixed-valence iron hydroxide nanoparticles as the magnetic support, N-isopropyl acrylamide as the thermosensitive monomer, ethion as the template, and methacrylic acid as the functional monomer. The adsorption and desorption mechanisms of OPPs depend on their interactions with the adsorbents and solution temperature. Our methodology provides good linearity (0.50-2000 µgL-1), with a correlation determination of R2 > 0.9980, low limit of detection (0.25-0.50 µgL-1), low limit of quantitation (0.50-1.50 μg L-1), and high precision (%RSD < 7%). The developed method demonstrates excellent applicability for accurately and efficiently determining OPP residuals in fruit and vegetable samples with good recoveries (93-117%).
Collapse
Affiliation(s)
- Ketsarin Seebunrueng
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.
| | - Suparb Tamuang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand; Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sayant Saengsuwan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Nopbhasinthu Patdhanagul
- General Science Department, Faculty of Science and Engineering, Kasetsart University, Sakon Nakhon 47000, Thailand
| | - Yonrapach Areerob
- Department of Industrial Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Sira Sansuk
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supalax Srijaranai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Lamaoui A, Mani V, Durmus C, Salama KN, Amine A. Molecularly imprinted polymers: A closer look at the template removal and analyte binding. Biosens Bioelectron 2023; 243:115774. [PMID: 39492184 DOI: 10.1016/j.bios.2023.115774] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Molecularly imprinted polymers (MIPs), which first appeared over half a century ago, are now attracting considerable attention as artificial receptors, particularly for sensing. MIPs, especially applied to biomedical analysis in biofluids, contribute significantly to patient diagnosis at the point of care, thereby allowing health monitoring. Despite the importance given to MIPs, removal of templates and binding of analytes have received little attention and are currently the least focused steps in MIP development. This critical review is dedicated to a comprehensive analysis and discussion of cutting-edge concepts and methodologies in the removal and binding steps pertaining to various types of analytes, including ions, molecules, epitopes, proteins, viruses, and bacteria. The central objective of this review is to comprehensively examine and discuss a range of removal methods, including soxhlet extraction, immersion, microwave-assisted technique, ultrasonication, electrochemical approach, and proteolytic digestion, among others. Additionally, we will explore various binding methods, such as soaking, drop-casting, and batch sorption, to provide a comprehensive overview of the subject. Furthermore, the current challenges and perspectives in removal and binding are highlighted. Our review, at the interface of chemistry and sensors, will offer a wide range of opportunities for researchers whose interests include MIPs, (bio)sensors, analytical chemistry, and diagnostics.
Collapse
Affiliation(s)
- Abderrahman Lamaoui
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco
| | - Veerappan Mani
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ceren Durmus
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aziz Amine
- Laboratoire Génie des Procedés & Environnement, Faculté des Sciences et Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia, Morocco.
| |
Collapse
|
3
|
Baohe Li, Jiang L, Wang Y, Li C, Yu D, Wang N. Construction and Properties of New-Type Photo-Responsive Molecular Imprinting Materials. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Flavor and Rapid Prediction of Red Wine by the Chemometrics Algorithm Based on Multidimensional Spectral Data. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1418022. [PMID: 35965764 PMCID: PMC9371810 DOI: 10.1155/2022/1418022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
Since its birth, red wine has been loved by people of all walks of life. The taste of red wine has changed and the pursuit of quality has always been the most sought-after goal by sommeliers, winemakers, and the public. However, due to the rich taste of red wine, any link is willing to produce different flavors. At present, there is no quantitative control study on the flavor of red wine. The purpose of this paper is to analyze the flavor of red wine through the chemometric algorithm and establish a reasonable model to predict the flavor of red wine. Aiming at the research of red wine flavor, this paper designs a red wine flavor extraction experiment and extracts the substances that produce an aroma and flavor in red wine to the greatest extent through strict selection of extraction head and reaction time. For the rapid analysis of red wine flavor, this paper quantitatively describes the chemical category, volatilization time, molecular weight, etc., of flavor substances by analyzing the multidimensional spectral data of red wine, so that flavor substances can be quickly located. The experimental results of this paper prove that, for different red wines, the algorithm in this paper can accurately identify the flavor substances in red wine. Also, for red wine multidimensional spectral data, the algorithm in this paper can improve the accuracy by 30% and save the running time by 30%. This shows that the research in this paper can analyze and quickly predict the flavor of red wine.
Collapse
|
5
|
Yang W, Shen J, Zhu S, Si H, Song F, Zhang W, Ding H, Huang W. Preparation and Characterisation of Photoresponsive Molecularly Imprinted Polymer Based on 5-[(4-(methacryloyloxy) phenyl) diazenyl] isophthalic acid for the Determination of Sulfamethazine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Si Y, Jiang F, Qiang L, Teng X, Gong C, Tang Q. A visible-light-responsive molecularly imprinted polyurethane for specific detection of dibenzothiophene in gasoline. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1254-1260. [PMID: 35266457 DOI: 10.1039/d1ay02128a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dibenzothiophene and its derivatives in gasoline and diesel would release sulfur oxides during combustion, and this is harmful to human health and the environment. This paper reports a method based on a visible-light-responsive molecularly imprinted polyurethane (VMIPU) to monitor trace dibenzothiophene in gasoline. The VMIPU was prepared by a polyaddition reaction using N,N-bis-(2-hydroxyethyl)-4-phenylazoaniline as the functional monomer, dibenzothiophene as the template molecule, diphenylmethane diisocyanate as the crosslinker and castor oil as the chain extender. The VMIPU showed good visible-light-response and specific adsorption for dibenzothiophene. The trans → cis photoisomerization rate constant of azobenzene chromophores in the VMIPU shows a linear relationship with the dibenzothiophene concentration in the range of 0-20 μmol L-1. This was used to estimate trace dibenzothiophene in spiked gasoline with recoveries of 95.7-101.0% and relative standard deviations of 7.0-12.7%.
Collapse
Affiliation(s)
- Yamin Si
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| | - Feng Jiang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| | - Liang Qiang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| | - Xiaotong Teng
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| | - Chengbin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China.
| |
Collapse
|
7
|
Wang H, Bisoyi H, Zhang X, Hassan F, Li Q. Visible Light-Driven Molecular Switches and Motors: Recent Developments and Applications. Chemistry 2021; 28:e202103906. [PMID: 34964995 DOI: 10.1002/chem.202103906] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Indexed: 11/09/2022]
Abstract
Inspired by human vision, a diverse range of light-driven molecular switches and motors has been developed for fundamental understanding and application in material science and biology. Recently, the design and synthesis of visible light-driven molecular switches and motors have been actively pursued. This emerging trend is partly motivated to avoid the harmful effects of ultraviolet light, which was necessary to drive the classical molecular switches and motors at least in one direction, impeding their employment in biomedical and photopharmacology applications. Moreover, visible light-driven molecular switches and motors are demonstrated to enable benign optical materials for advanced photonic devices. Therefore, during the past several years, visible light-driven molecular switches based on azobenzene derivatives, diarylethenes, 1,2-dicyanodithienylethenes, hemithioindigo derivatives, iminothioindoxyls, donor-acceptor Stenhouse adducts, and overcrowded alkene based molecular motors have been judiciously designed, synthesized, and used in the development of functional materials and systems for a wide range of applications. In this Review, we present the recent developments toward the design of visible light-driven molecular switches and motors, with their applications in the fabrication of functional materials and systems in material science, bioscience, pharmacology, etc . The visible light-driven molecular switches and motors realized so far undoubtedly widen the scope of these interesting compounds for technological and biological applications. We hope this Review article could provide additional impetus and inspire further research interests for future exploration of visible light-driven advanced materials, systems, and devices.
Collapse
Affiliation(s)
- Hao Wang
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Hari Bisoyi
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Xinfang Zhang
- Kent State University, Advanced Materials and Liquid Crystal Institue, UNITED STATES
| | - Fathy Hassan
- Kent State University, Advanced Materials and Liquid Crystal Institute, UNITED STATES
| | - Quan Li
- Kent State University, Liquid Crystal Institute and Chemical Physics Interdiscinplary Program, 3273 Crown Pointe Drive, 44224, Stow, UNITED STATES
| |
Collapse
|
8
|
Sajini T, Mathew B. A brief overview of molecularly imprinted polymers: Highlighting computational design, nano and photo-responsive imprinting. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
9
|
Huang W, Si H, Zhang L, Yin X, Ji Z, Ni X, Xu W. Photoresponsive molecularly imprinted polymers based on 4-[(4-methacryloyloxy)phenylazo] benzenesulfonic acid for the determination of sulfamethazine. J Sep Sci 2021; 44:2536-2544. [PMID: 33929080 DOI: 10.1002/jssc.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
Core-shell structured photoresponsive molecularly imprinted polymers were developed for the determination of sulfamethazine in milk samples. The photoresponsive imprinted polymers were prepared with polymethyl methacrylate containing a mass of ester groups as core, sulfamethazine as template molecules, self-synthesized water-soluble 4-[(4-methacryloyloxy)phenylazo] benzenesulfonic acid as a photoresponsive monomer, and ethylene dimethacrylate as cross-linker. Interestingly, the imprinted polymer can specifically adsorb sulfamethazine under dark and 440 nm irradiation, and release it at 365 nm. A series of adsorption experiments showed that the maximum adsorption capacity reached 12.5 mg⋅g-1 , and the adsorption equilibrium was achieved within 80 min. Moreover, the imprinted polymers display excellent reusability, with almost no performance loss after four times photo-controlled adsorption-release cycles, and the imprinted polymers have excellent selectively for sulfamethazine (imprinting factor = 3.01). In the end, the imprinted polymers realized effective separation and enrichment of sulfamethazine in milk, with a recovery rate of over 97.5%. The material can be used as a solid-phase extractant in the process of enrichment and separation for the quantitative detection of sulfamethazine in milk samples.
Collapse
Affiliation(s)
- Weihong Huang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Haojie Si
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Liming Zhang
- Zhenjiang Agricultural Products Quality Inspection and Testing Center, Zhenjiang, P. R. China
| | - Xifeng Yin
- Zhenjiang Agricultural Products Quality Inspection and Testing Center, Zhenjiang, P. R. China
| | - Zehua Ji
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| | - Xiaoni Ni
- Zhenjiang Food and Drug Supervision and Inspection Center, Zhenjiang, P. R. China
| | - Wanzhen Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, P. R. China
| |
Collapse
|
10
|
Villa CC, Sánchez LT, Valencia GA, Ahmed S, Gutiérrez TJ. Molecularly imprinted polymers for food applications: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Chen MJ, Yang HL, Si YM, Tang Q, Chow CF, Gong CB. Photoresponsive Surface Molecularly Imprinted Polymers for the Detection of Profenofos in Tomato and Mangosteen. Front Chem 2020; 8:583036. [PMID: 33195073 PMCID: PMC7581910 DOI: 10.3389/fchem.2020.583036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/31/2020] [Indexed: 11/24/2022] Open
Abstract
As a moderately toxic organophosphorus pesticide, profenofos (PFF) is widely used in agricultural practice, resulting in the accumulation of a high amount of PFF in agricultural products and the environment. This will inevitably damage our health. Therefore, it is important to establish a convenient and sensitive method for the detection of PFF. This paper reports a photoresponsive surface-imprinted polymer based on poly(styrene-co-methyl acrylic acid) (PS-co-PMAA@PSMIPs) for the detection of PFF by using carboxyl-capped polystyrene microspheres (PS-co-PMAA), PFF, 4-((4-(methacryloyloxy)phenyl)diazenyl) benzoic acid, and triethanolamine trimethacrylate as the substrate, template, functional monomer, and cross-linker, respectively. PS-co-PMAA@PSMIP shows good photoresponsive properties in DMSO/H2O (3:1, v/v). Its photoisomerization rate constant exhibits a good linear relationship with PFF concentration in the range of 0~15 μmol/L. PS-co-PMAA@PSMIP was applied for the determination of PFF in spiked tomato and mangosteen with good recoveries ranging in 94.4-102.4%.
Collapse
Affiliation(s)
- Mei-jun Chen
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Hai-lin Yang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Ya-min Si
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| | - Cheuk-fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong
| | - Cheng-bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Gui R, Jin H. Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Liu X, Wang Y, Li L, Li R. Synthesis and characterization of azoxystrobin hydrophilic molecularly imprinted microspheres. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1607751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xinxin Liu
- College of resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yan Wang
- College of resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Ling Li
- College of resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Ranhong Li
- College of resources and Environment Science, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|