1
|
Çapan İ, Al M, Gümüş M, Açik L, Aydin B, Çelik AB, Gülüm L, Sert Y, Yenilmez EN, Koca İ, Tutar Y. Design, Synthesis, and Evaluation of Benzimidazole-Carbazole Hybrids Targeting Heat Shock Proteins-Mediated Apoptosis in Breast and Colon Cancer Cells. Drug Dev Res 2025; 86:e70092. [PMID: 40344426 DOI: 10.1002/ddr.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/18/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
Heat shock proteins (HSPs), particularly HSP70 and HSP90, are pivotal molecular chaperones implicated in cancer progression and resistance mechanisms. Dual inhibition of these chaperones represents a promising therapeutic approach. Here, we report the design and synthesis of a novel series of benzimidazole-carbazole hybrids aimed at targeting HSP70/90. Leveraging the kinase inhibitory properties of benzimidazole and the DNA interfering and apoptotic potential of carbazole, these hybrids were evaluated for their anticancer activity against breast (MCF-7) and colon (HCT-116) cancer cell lines. The most active compounds demonstrated submicromolar IC50 values and induced apoptosis through mitochondrial dysfunction and cytoskeletal disruption, confirmed via flow cytometry and fluorescence microscopy. Molecular docking revealed high binding affinities to HSP70 (PDB: 1S3X) and HSP90 (PDB: 1YC4), correlating with experimental outcomes. Furthermore, DNA interaction studies confirmed the compounds' ability to induce structural destabilization and fragmentation, providing insight into their mechanism of action. These findings highlight the potential of benzimidazole-carbazole hybrids as promising HSP inhibitors for overcoming cancer resistance.
Collapse
Affiliation(s)
- İrfan Çapan
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Gazi University, Ankara, Turkey
- Sente Kimya Research and Development Inc, Ankara, Turkey
| | - Mervenur Al
- Department of Basic Medical Sciences, Division of Medicinal Biochemistry, University of Health Sciences, Istanbul, Turkey
| | - Mehmet Gümüş
- Akdağmadeni Health College, Yozgat Bozok University, Yozgat, Turkey
| | - Leyla Açik
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Betül Aydin
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Ayşe Büşranur Çelik
- Division of Molecular Biology and Genetics, Faculty of Hamidiye Institute of Health Sciences, University of Health Sciences, İstanbul, Turkey
| | - Levent Gülüm
- Department of Crop and Animal Production, Mudurnu Süreyya Astarcı Vocational School, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Yusuf Sert
- Sorgun Vocational School, Yozgat Bozok University, Yozgat, Turkey
| | - Ezgi Nurdan Yenilmez
- Vocational School of Health Services, Division of Medical Techniques and Services, Demiroglu Science University, Istanbul, Turkey
| | - İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Yusuf Tutar
- Department of Basic Medical Sciences, Division of Biochemistry, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| |
Collapse
|
2
|
Tofani LB, Luiz MT, Paes Dutra JA, Abriata JP, Chorilli M. Three-dimensional culture models: emerging platforms for screening the antitumoral efficacy of nanomedicines. Nanomedicine (Lond) 2023; 18:633-647. [PMID: 37183804 DOI: 10.2217/nnm-2022-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Nanomedicines have been investigated for delivering drugs to tumors due to their ability to accumulate in the tumor tissues. 2D in vitro cell culture has been used to investigate the antitumoral potential of nanomedicines. However, a 2D model cannot adequately mimic the in vivo tissue conditions because of the lack of cell-cell interaction, a gradient of nutrients and the expression of genes. To overcome this limitation, 3D cell culture models have emerged as promising platforms that better replicate the complexity of native tumors. For this purpose, different techniques can be used to produce 3D models, including scaffold-free, scaffold-based and microfluidic-based models. This review addresses the principles, advantages and limitations of these culture methods for evaluating the antitumoral efficacy of nanomedicines.
Collapse
Affiliation(s)
- Larissa Bueno Tofani
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Jessyca Aparecida Paes Dutra
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| |
Collapse
|
3
|
Synthesis and characterization of novel combretastatin analogues of 1,1-diaryl vinyl sulfones, with antiproliferative potential via in-silico and in-vitro studies. Sci Rep 2022; 12:1901. [PMID: 35115623 PMCID: PMC8814031 DOI: 10.1038/s41598-022-05958-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/14/2022] [Indexed: 11/08/2022] Open
Abstract
Novel 1,1-diaryl vinyl-sulfones analogues of combretastatin CA-4 were synthesized via Suzuki-Miyaura coupling method and screened for in-vitro antiproliferative activity against four human cancer cell lines: MDA-MB 231(breast cancer), HeLa (cervical cancer), A549 (lung cancer), and IMR-32 (neuroblast cancer), along with a normal cell line HEK-293 (human embryonic kidney cell) by employing 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The compounds synthesised had better cytotoxicity against the A549 and IMR-32 cell lines compared to HeLa and MDA-MB-231 cell lines. The synthesized compounds also showed significant activity on MDA-MB-231 cancer cell line with IC50 of 9.85-23.94 µM, and on HeLa cancer cell line with IC50 of 8.39-11.70 µM relative to doxorubicin having IC50 values 0.89 and 1.68 µM respectively for MDA-MB-231 and HeLa cell lines. All the synthesized compounds were not toxic to the growth of normal cells, HEK-293. They appear to have a higher binding affinity for the target protein, tubulin, PDB ID = 5LYJ (beta chain), relative to the reference compounds, CA4 (- 7.1 kcal/mol) and doxorubicin (- 7.2 kcal/mol) except for 4E, 4M, 4N and 4O. The high binding affinity for beta-tubulin did not translate into enhanced cytotoxicity but the compounds (4G, 4I, 4J, 4M, 4N, and 4R, all having halogen substituents) that have a higher cell permeability (as predicted in-silico) demonstrated an optimum cytotoxicity against the tested cell lines in an almost uniform manner for all tested cell lines. The in-silico study provided insight into the role that cell permeability plays in enhancing the cytotoxicity of this class of compounds and as potential antiproliferative agents.
Collapse
|
4
|
Dhanwal V, Katoch A, Nayak D, Chakraborty S, Gupta R, Kumar A, Gupta PN, Singh N, Kaur N, Goswami A. Benzimidazole-Based Organic–Inorganic Gold Nanohybrids Suppress Invasiveness of Cancer Cells by Modulating EMT Signaling Cascade. ACS APPLIED BIO MATERIALS 2021; 4:470-482. [DOI: 10.1021/acsabm.0c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vandna Dhanwal
- Centre for Nanoscience & Nanotechnology (U.I.E.A.S.T), Panjab University, Chandigarh 160014, India
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Archana Katoch
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, Ohio 43210, United States
| | - Souneek Chakraborty
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Rahul Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Prem N. Gupta
- Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology, Ropar, Roopnagar, Punjab 140001, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Anindya Goswami
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
5
|
Sharma V, Sharma AK, Punj V, Priya P. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer. Semin Cancer Biol 2019; 59:133-146. [PMID: 31408722 DOI: 10.1016/j.semcancer.2019.08.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/18/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer is the major cause of deaths in women worldwide. Detection and treatment of breast cancer at earlier stages of the disease has shown encouraging results. Modern genomic technologies facilitated several therapeutic options however the diagnosis of the disease at an advanced stage claim more deaths. Therefore more research directed towards genomics and proteomics into this area may lead to novel biomarkers thereby enhancing the survival rates in breast cancer patients. Phosphoinositide-3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway was shown to be hyperactivated in most of the breast carcinomas resulting in excessive growth, proliferation, and tumor development. Development of nanotechnology has provided many interesting avenues to target the PI3K/Akt/mTOR pathway both at the pre-clinical and clinical stages. Therefore, the current review summarizes the underlying mechanism and the importance of targeting PI3K/Akt/mTOR pathway, novel biomarkers and use of nanotechnological interventions in breast cancer.
Collapse
Affiliation(s)
- VarRuchi Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Anil K Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| | - Vasu Punj
- Department of Medicine, Keck School of Medicine, University of Southern California, LA USA
| | - Panneerselvam Priya
- Department of Electrical and Electronics Engineering, Thiruvalluvar College of Engineering and Technology, Vandavasi, 604505, Tamil Nadu, India
| |
Collapse
|