1
|
Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials 2025; 319:123136. [PMID: 39978049 PMCID: PMC11893264 DOI: 10.1016/j.biomaterials.2025.123136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/04/2025] [Accepted: 01/23/2025] [Indexed: 02/22/2025]
Abstract
Surface topography or curvature plays a crucial role in regulating cell behavior, influencing processes such as adhesion, proliferation, and gene expression. Recent advancements in nano- and micro-fabrication techniques have enabled the development of biomimetic systems that mimic native extracellular matrix (ECM) structures, providing new insights into cell-adhesion mechanisms, mechanotransduction, and cell-environment interactions. This review examines the diverse applications of engineered topographies across multiple domains, including antibacterial surfaces, immunomodulatory devices, tissue engineering scaffolds, and cancer therapies. It highlights how nanoscale features like nanopillars and nanospikes exhibit bactericidal properties, while many microscale patterns can direct stem cell differentiation and modulate immune cell responses. Furthermore, we discuss the interdisciplinary use of topography for combined applications, such as the simultaneous regulation of immune and tissue cells in 2D and 3D environments. Despite significant advances, key knowledge gaps remain, particularly regarding the effects of topographical cues on multicellular interactions and dynamic 3D contexts. This review summarizes current fabrication methods, explores specific and interdisciplinary applications, and proposes future research directions to enhance the design and utility of topographically patterned biomaterials in clinical and experimental settings.
Collapse
Affiliation(s)
| | - Changheon Kim
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ajay P Chavda
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Adrian Li
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacob Robins
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jouha Min
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA; Weil Institute for Critical Care Research and Innovation, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
2
|
Yang K, Zhang J, Zhang C, Guan J, Ling S, Shao Z. Hierarchical design of silkworm silk for functional composites. Chem Soc Rev 2025; 54:4973-5020. [PMID: 40237181 DOI: 10.1039/d4cs00776j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Silk-reinforced composites (SRCs) manifest the unique properties of silkworm silk fibers, offering enhanced mechanical strength, biocompatibility, and biodegradability. These composites present an eco-friendly alternative to conventional synthetic materials, with applications expanding beyond biomedical engineering, flexible electronics, and environmental filtration. This review explores the diverse forms of silkworm silk fibers including fabrics, long fibers, and nanofibrils, for functional composites. It highlights advancements in composite design and processing techniques that allow precise engineering of mechanical and functional performance. Despite substantial progress, challenges remain in making optimally functionalized SRCs with multi-faceted performance and understanding the mechanics for reverse-design of SRCs. Future research should focus on the unique sustainable, biodegradable and biocompatible advantages and embrace advanced processing technology, as well as artificial intelligence-assisted material design to exploit the full potential of SRCs. This review on SRCs will offer a foundation for future advancements in multifunctional and high-performance silk-based composites.
Collapse
Affiliation(s)
- Kang Yang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.
| | - Jingwu Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Chen Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Maanshan, 243002, P. R. China
| | - Juan Guan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China.
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China.
| |
Collapse
|
3
|
Shams F, Jamshidian M, Shaygani H, Maleki S, Soltani M, Shamloo A. A study on the cellular adhesion properties of a hybrid scaffold for vascular tissue engineering through molecular dynamics simulation. Sci Rep 2025; 15:16433. [PMID: 40355635 PMCID: PMC12069603 DOI: 10.1038/s41598-025-01545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 05/07/2025] [Indexed: 05/14/2025] Open
Abstract
Utilizing biocompatible hybrid scaffolds that promote cell adhesion and proliferation is critically significant in the field of tissue engineering. In order to achieve this goal, the composition of polymers in the sample should be adjusted accordingly In this research, molecular dynamics simulations are utilized to investigate how the composition of blends influences the protein adsorption properties of hybrid scaffolds. Scaffolds considered here consist of Bombyx mori silk fibroin (B. mori SF) and thermoplastic polyurethane (TPU) intended for application in vascular grafts. Three different compositions are investigated in this study: One sample with 70% TPU by volume (SF:TPU-3/7), the second sample with 50% TPU (SF:TPU-1/1) and the last sample with 30% TPU (SF:TPU-7/3). The interaction between the polymeric scaffold surfaces and fibronectin and laminin, two major proteins found in vascular tissues, is studied using molecular dynamics simulations. The biocompatibility of each sample is examined based on calculated adhesion energy and final protein conformation. Furthermore, MTT cell viability, cell adhesion, and live/dead assays are performed to validate the simulation results. Third-passage human umbilical vein cell (HUVEC) is utilized in this study. The simulations revealed that B. mori SF (SF) content in the blend needs to be balanced with TPU to enhance the protein adsorption strength. The experimental results exhibited a correlation with the simulations and were verified with cell adhesion and staining assays. The SF:TPU-1/1 had the highest cell viability followed by SF:TPU-7/3 and SF:TPU-3/7 with [Formula: see text], [Formula: see text], and [Formula: see text], respectively, demonstrating the accuracy of the simulations and the possibility of predicting the biocompatibility of biomaterials through simulations.
Collapse
Affiliation(s)
- Faeze Shams
- Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
- Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Mostafa Jamshidian
- Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Hossein Shaygani
- Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
- Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Sasan Maleki
- Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Mohamadreza Soltani
- Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran
- Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, 11365-11155, Iran
| | - Amir Shamloo
- Nano-Bioengineering laboratory, Department of Mechanical Engineering, Sharif University of Technology, Tehran, 11365-11155, Iran.
- Stem Cell and Regenerative Medicine Center, Sharif University of Technology, Tehran, 11365-11155, Iran.
| |
Collapse
|
4
|
Su H, Qiu Y, Luo J, Liu F, Yang J, Sui X, Zhang Y, Zhang Y, Zhou X. A high-radial strength, flex-resistant PLLA cuff tube for microvascular anastomosis. Int J Biol Macromol 2025; 312:144048. [PMID: 40348229 DOI: 10.1016/j.ijbiomac.2025.144048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/18/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Vascular anastomosis is the cornerstone in microsurgery. To assist complicated microvascular anastomosis with diameters <0.6 mm, nonsuture cuff technique was developed. However, cuff tube made from polyamide is not degradable, and their long-term retention in the body may cause stiffness in blood vessels at the anastomotic site. Thus, development of a biodegradable cuff tube would greatly enhance surgical operability and biosafety. In this study, biocompatible poly-L-lactic acid (PLLA) was chosen as the raw material to prepare cuff tube for nonsuture cuff technique. A customized 'C' shaped nozzle was adopted during the melting extruding process, and then was subjected to a water-cooling bath to maintain the round shape and inner diameter of 582 μm ± 20 μm. Its crystallization behavior was controlled through the cooling procedure to achieve the expected mechanical properties and operability. Its good hemocompatibility and genotoxicity were validated by various in vitro assays. Consequently, a PLLA cuff tube with a radial tensile strength of 12 MPa and an elastic modulus of 1685 MPa was prepared and used to assist establishing a rat orthotopic hindlimb transplantation model, which indicated that our PLLA cuff tube was suitable for microvascular anastomosis in organ or tissue repair.
Collapse
Affiliation(s)
- Hui Su
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yucheng Qiu
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jing Luo
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Fei Liu
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaofeng Sui
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yue Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yumei Zhang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xianyu Zhou
- Department of Plastic and Reconstructive Surgery, the Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
5
|
Scholpp S, Hoffmann L, Schätzlein E, Gries T, Emonts C, Blaeser A. Interlacing biology and engineering: An introduction to textiles and their application in tissue engineering. Mater Today Bio 2025; 31:101617. [PMID: 40124339 PMCID: PMC11926717 DOI: 10.1016/j.mtbio.2025.101617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/25/2025] Open
Abstract
Tissue engineering (TE) aims to provide personalized solutions for tissue loss caused by trauma, tumors, or congenital defects. While traditional methods like autologous and homologous tissue transplants face challenges such as donor shortages and risk of donor site morbidity, TE provides a viable alternative using scaffolds, cells, and biologically active molecules. Textiles represent a promising scaffold option for both in-vitro and in-situ TE applications. Textile engineering is a broad field and can be divided into fiber-based textiles and yarn-based textiles. In fiber-based textiles the textile fabric is produced in the same step as the fibers (e.g. non-wovens, electrospun mats and 3D-printed). For yarn-based textiles, yarns are produced from fibers or filaments first and then, a textile fabric is produced (e.g. woven, weft-knitted, warp-knitted and braided fabrics). The selection of textile scaffold technology depends on the target tissue, mechanical requirements, and fabrication methods, with each approach offering distinct advantages. Braided scaffolds, with their high tensile strength, are ideal for load-bearing tissues like tendons and ligaments, while their ability to form stable hollow lumens makes them suitable for vascular applications. Weaving, weft-, and warp-knitting provide tunable structural properties, with warp-knitting offering the greatest design flexibility. Spacer fabrics enable complex 3D architecture, benefiting applications such as skin grafts and multilayered tissues. Electrospinning, though highly effective in mimicking the ECM, is structurally limited. The complex interactions between materials, fiber properties, and textile technologies allows for scaffolds with a wide range of morphological and mechanical characteristics (e.g., tensile strength of woven textiles ranging from 0.64 to 180.4 N/mm2). With in-depth knowledge, textiles can be tailored to obtain specific mechanical properties as accurately as possible and aid the formation of functional tissue. However, as textile structures inherently differ from biological tissues, careful optimization is required to enhance cell behavior, mechanical performance, and clinical applicability. This review is intended for TE experts interested in using textiles as scaffolds and provides a detailed analysis of the available options, their characteristics and known applications. For this, first the major fiber formation methods are introduced, then subsequent used automated textile technologies are presented, highlighting their strengths and limitations. Finally, we analyze how these textile and fiber structures are utilized in TE, organized by the use of textiles in TE across major organ systems, including the nervous, skin, cardiovascular, respiratory, urinary, digestive, and musculoskeletal systems.
Collapse
Affiliation(s)
- S. Scholpp
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - L.A. Hoffmann
- Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - E. Schätzlein
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - T. Gries
- Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - C. Emonts
- Institut für Textiltechnik, RWTH Aachen University, Aachen, Germany
| | - A. Blaeser
- Institute for BioMedical Printing Technology, Technical University of Darmstadt, Darmstadt, Germany
- Centre for Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
6
|
Zhang C, Wang C, Cha R, Meng Q, Hu Z, Sun Y, Li Z, Xiao M, Zhang Y, Jiang X. Rapid Preparation of Collagen/Red Blood Cell Membrane Tubes for Stenosis-Free Vascular Regeneration. ACS NANO 2025; 19:3293-3311. [PMID: 39806273 DOI: 10.1021/acsnano.4c11919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects. Here, we rapidly prepared an electrospinning film-collagen/red blood cell membrane-genipin hydrogel tube (ES-C/Rm-G-ht, ID = 2 mm) by the combination of the cross-linking of genipin, plastic compression, electrospinning, and rolling without a biological adhesive, which had a shorter preparation time of less than 17 h compared to the existing ECM-based SDVGs (preparation time of 4-18 weeks). ES-C/Rm-G-ht exhibited a layered honeycomb-like structure and demonstrated the ECM-like functions to promote the proliferation and migration of endothelial cells, and prevent thrombus and inflammation. Furthermore, ES-C/Rm-G-ht, possessing sufficient mechanical strength, showed high patency, rapid endothelialization (95%), good regeneration of smooth muscle cell layers and ECM, and effective antistenosis capability after implantation in the rabbit's carotid artery for 31 days. This work provides a straightforward, cost-effective, and promising strategy to prepare SDVGs with ECM-like structure and function, which is an ideal alternative for vascular grafts and autologous vessels in the current clinic.
Collapse
Affiliation(s)
- Chunliang Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China
- The Ninth Medical Center of PLA General Hospital, No. 9 Anxiang Beili, Chaoyang District, Beijing 100101, PR China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Chunyuan Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing 100037, PR China
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China
| | - Qinghua Meng
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China
| | - Zhan Hu
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing 100037, PR China
| | - Yang Sun
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing 100037, PR China
| | - Zulan Li
- The Ninth Medical Center of PLA General Hospital, No. 9 Anxiang Beili, Chaoyang District, Beijing 100101, PR China
| | - Min Xiao
- The Ninth Medical Center of PLA General Hospital, No. 9 Anxiang Beili, Chaoyang District, Beijing 100101, PR China
| | - Yan Zhang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing 100037, PR China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
7
|
Liu S, Yan J, Gao M, Yang H. Research progress in the regulation of endothelial cells and smooth muscle cells using a micro-nanostructure. Biomed Eng Online 2025; 24:6. [PMID: 39849451 PMCID: PMC11760742 DOI: 10.1186/s12938-025-01337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025] Open
Abstract
Recently, the incidence rate and mortality of various acute or chronic vascular occlusive diseases have increased yearly. As one of the most effective measures to treat them, vascular stents have been widely studied by researchers, and presently, the most commonly used is a drug-eluting stent, which reduces the process of rapid endothelialization because the drug is not selective. Fortunately, with the discovery and exploration of micro-nanostructures that can regulate cells selectively, reducing the incidence of "intravascular restenosis" and achieving rapid endothelialization simultaneously are possible through a special structure that cannot only improve endothelial cells (ECs), but also inhibit smooth muscle cells (SMCs). Therefore, this paper mainly introduces the preparation methods of micro-nanostructures used in the past, as well as the detection methods of EC and SMC. Then, the various functions of different dimensional structures for different cells are summarized and analyzed. Finally, the application of micro-nanostructure in future stent materials is summarized and proposed.
Collapse
Affiliation(s)
- Songhao Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- School of Energy and Electrical Engineering, Qinghai University, Xining, 810016, Qinghai, China
| | - Juan Yan
- Department of Pharmacy, Medical College of Qinghai University, Xining, 810016, China
| | - Mengyu Gao
- School of Energy and Electrical Engineering, Qinghai University, Xining, 810016, Qinghai, China
| | - Hongxia Yang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
8
|
Krammer J, Pichlmaier M, Stana J, Hagl C, Peterss S, Grab M, Grefen L. Multi-layered electrospun grafts for surgical repair: Biomimicking physiological ascending aortic compliance. J Appl Biomater Funct Mater 2025; 23:22808000251316728. [PMID: 39921458 DOI: 10.1177/22808000251316728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2025] Open
Abstract
Commercially available Dacron (woven polyester) grafts are used for routine open surgical repair of thoracic aortic aneurysms. Despite durable and biocompatible, these grafts do not reproduce the natural mechanical properties of the aorta. Therefore, the aim of this project was to develop an innovative graft that additionally exhibits physiological aortic compliance. To achieve this result, multi-layered tubular aortic grafts were created by electrospinning of a thermoplastic polyurethane. To reduce permeability, a gelatin-coating was added. Three groups (G1-3; n = 5) with varying layer designs were evaluated regarding the main mechanical properties of vascular grafts such as suture retention strength, permeability and static and dynamic compliance. G3, which combined electrospinning with a stable silicone-coated inlay was chosen for the fabrication of medical grade thermoplastic polyurethane grafts (Gm; n = 6). Dynamic compliance values of 19.68 ± 11.5%/100 mmHg (50-90 mmHg), 15.18 ± 8.7%/100 mmHg (80-120 mmHg) and 14.56 ± 7.4%/100 mmHg (110-150 mmHg) were achieved. The compliance was higher than for Dacron and ePTFE grafts and comparable to the normal sized ascending aorta of around 16%/100 mmHg in a healthy human and porcine aortic compliance of 14.3%/100 mmHg. Static compliance was successfully tested up to 350 mmHg. No significant changes in graft diameter or delaminations of the graft layers were detected after compliance testing. Therefore, by combining electrospinning with a durable inlay, both elasticity and recoverability are obtained, resulting in a promising alternative to the gold-standard in open-surgical treatment of thoracic aortic pathologies.
Collapse
Affiliation(s)
- Julia Krammer
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Jan Stana
- Division of Vascular Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Sven Peterss
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Grab
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Chair of Medical Materials and Implants, Technical University, Munich, Germany
| | - Linda Grefen
- Department of Cardiac Surgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
9
|
Pulvirenti A, Boccia AC, Constantin C, Surcel M, Munteanu A, Peteu VE, Neagu M. Single-Component Starch-Based Hydrogels for Therapeutic Delivery. Molecules 2024; 29:5463. [PMID: 39598852 PMCID: PMC11597573 DOI: 10.3390/molecules29225463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Hydrogels are interesting materials as delivery systems of various therapeutic agents, mainly due to the water-swollen network and the localized and sustained drug release. Herein, single-component starch-based hydrogels with enhanced degradation rates were produced by applying a facile synthesis and proposed for a novel delivery system of therapeutic molecules. Starch was oxidized with sodium periodate in water and mild conditions to generate aldehyde derivatives that, after a freeze-thaw procedure, were allowed to compact and stable hydrogels. Oxidized starch was also cross-linked with asparagine through a Schiff base reaction to link the active molecule directly to the polysaccharide structure. The materials were structurally and morphologically characterized, and the ability to adsorb and release over time an active molecule was proven by qNMR spectroscopy. The cytotoxicity was evaluated on CAL-27 cell line (oral squamous cell carcinoma). Results indicated that synthesized hydrogels lead to a "frozen proliferative" state on cells due to the swelling capability in the cell medium. This behavior was confirmed by flow cytometry data indicating the hydrogels induced less "early apoptosis" and more "late apoptosis" in the cells, compared to the untreated control. Since the proposed materials are able to control the cell proliferation, they could open a new scenario within the field of precise therapeutic applications.
Collapse
Affiliation(s)
- Alfio Pulvirenti
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) “Giulio Natta”, C.N.R., Via Alfonso Corti 12, 20133 Milano, Italy;
| | - Antonella Caterina Boccia
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) “Giulio Natta”, C.N.R., Via Alfonso Corti 12, 20133 Milano, Italy;
| | - Carolina Constantin
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
- Colentina Clinical Hospital, 19-21, Sos Stefan Cel Mare, 020125 Bucharest, Romania
| | - Mihaela Surcel
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
| | - Adriana Munteanu
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
| | - Victor-Eduard Peteu
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
- Doctoral School, Politechnica University of Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania
| | - Monica Neagu
- “Victor Babes” National Institute of Pathology, 99-101 Splaiul Independenței, 050096 Bucharest, Romania; (C.C.); (M.S.); (A.M.); (V.-E.P.); (M.N.)
| |
Collapse
|
10
|
Jiao J, Zhao X, Li L, Zhu T, Chen X, Ding Q, Chen Z, Xu P, Shi Y, Shao J. The promotion of vascular reconstruction by hierarchical structures in biodegradable small-diameter vascular scaffolds. BIOMATERIALS ADVANCES 2024; 162:213926. [PMID: 38917650 DOI: 10.1016/j.bioadv.2024.213926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Tissue engineering of small-diameter vessels remains challenging due to the inadequate ability to promote endothelialization and infiltration of smooth muscle cells (SMCs). Ideal vascular graft is expected to provide the ability to support endothelial monolayer formation and SMCs infiltration. To achieve this, vascular scaffolds with both orientation and dimension hierarchies were prepared, including hierarchically random vascular scaffold (RVS) and aligned vascular scaffold (AVS), by utilizing degradable poly(ε-caprolactone)-co-poly(ethylene glycol) (PCE) and the blend of PCE/gelatin (PCEG) as raw materials. In addition to the orientation hierarchy, dimension hierarchy with small pores in the inner layer and large pores in the outer layer was also constructed in both RVS and AVS to further investigate the promotion of vascular reconstruction by hierarchical structures in vascular scaffolds. The results show that the AVS with an orientation hierarchy that consists with the natural vascular structure had better mechanical properties and promotion effect on the proliferation of vascular cells than RVS, and also exhibited excellent contact guidance effects on cells. While the dimension hierarchy in both RVS and AVS was favorable to the rapid infiltration of SMCs in a short culture time in vitro. Besides, the results of subcutaneous implantation further demonstrate that AVS achieved a fully infiltrated outer layer with wavy elastic fibers-mimic strips formation by day 14, ascribing to hierarchies of aligned orientation and porous dimension. The results further indicate that the scaffolds with both orientation and dimension hierarchical structures have great potential in the application of promoting the vascular reconstruction.
Collapse
Affiliation(s)
- Jingjing Jiao
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xin Zhao
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Long Li
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Tao Zhu
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Qiuyue Ding
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Zhu Chen
- Guiyang Hospital of Stomatology, Guiyang, Guizhou 550002, China
| | - Peng Xu
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yan Shi
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jiaojing Shao
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
11
|
Asciak L, Domingo-Roca R, Dow JR, Brodie R, Paterson N, Riches PE, Shu W, McCormick C. Exploiting light-based 3D-printing for the fabrication of mechanically enhanced, patient-specific aortic grafts. J Mech Behav Biomed Mater 2024; 154:106531. [PMID: 38588633 DOI: 10.1016/j.jmbbm.2024.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
Despite polyester vascular grafts being routinely used in life-saving aortic aneurysm surgeries, they are less compliant than the healthy, native human aorta. This mismatch in mechanical behaviour has been associated with disruption of haemodynamics contributing to several long-term cardiovascular complications. Moreover, current fabrication approaches mean that opportunities to personalise grafts to the individual anatomical features are limited. Various modifications to graft design have been investigated to overcome such limitations; yet optimal graft functionality remains to be achieved. This study reports on the development and characterisation of an alternative vascular graft material. An alginate:PEGDA (AL:PE) interpenetrating polymer network (IPN) hydrogel has been produced with uniaxial tensile tests revealing similar strength and stiffness (0.39 ± 0.05 MPa and 1.61 ± 0.19 MPa, respectively) to the human aorta. Moreover, AL:PE tubular conduits of similar geometrical dimensions to segments of the aorta were produced, either via conventional moulding methods or stereolithography (SLA) 3D-printing. While both fabrication methods successfully demonstrated AL:PE hydrogel production, SLA 3D-printing was more easily adaptable to the fabrication of complex structures without the need of specific moulds or further post-processing. Additionally, most 3D-printed AL:PE hydrogel tubular conduits sustained, without failure, compression up to 50% their outer diameter and returned to their original shape upon load removal, thereby exhibiting promising behaviour that could withstand pulsatile pressure in vivo. Overall, these results suggest that this AL:PE IPN hydrogel formulation in combination with 3D-printing, has great potential for accelerating progress towards personalised and mechanically-matched aortic grafts.
Collapse
Affiliation(s)
- Lisa Asciak
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Roger Domingo-Roca
- Department of Electronic and Electric Engineering, University of Strathclyde, Glasgow, UK
| | - Jamie R Dow
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK; Research and Development, Terumo Aortic Ltd., Inchinnan, Glasgow, UK
| | - Robbie Brodie
- Research and Development, Terumo Aortic Ltd., Inchinnan, Glasgow, UK
| | - Niall Paterson
- Research and Development, Terumo Aortic Ltd., Inchinnan, Glasgow, UK
| | - Philip E Riches
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | | |
Collapse
|
12
|
Li G, Bao L, Hu G, Chen L, Zhou X, Hong FF. Development and performance evaluation of a novel elastic bacterial nanocellulose/polyurethane small caliber artificial blood vessels. Int J Biol Macromol 2024; 268:131685. [PMID: 38641268 DOI: 10.1016/j.ijbiomac.2024.131685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/05/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
There is an increasing demand for small-diameter blood vessels. Currently, there is no clinically available small-diameter artificial vessel. Bacterial nanocellulose (BNC) has vast potential for applications in artificial blood vessels due to its good biocompatibility. At the same time, medical polyurethane (PU) is a highly elastic polymer material widely used in artificial blood vessels. This study reports a composite small-diameter BNC/PU conduit using a non-solvent-induced phase separation method with the highly hydrophilic BNC tube as the skeleton and the hydrophobic polycarbonate PU as the filling material. The results revealed that the compliance and mechanical matching of BNC/PU tubes were higher than BNC tubes; the axial/radial mechanical strength, burst pressure, and suture strength were significantly improved; the blood compatibility and cell compatibility were also excellent. The molecular and subcutaneous embedding tests showed that the composite tubes had lighter inflammatory reactions. The results of the animal substitution experiments showed that the BNC/PU tubes kept blood flow unobstructed without tissue proliferation after implantation in rats for 9 months. Thus, the BNC/PU small-diameter vascular prosthesis had the potential for long-term patency and acted as an ideal material for small-diameter vessels.
Collapse
Affiliation(s)
- Geli Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China
| | - Luhan Bao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China
| | - Gaoquan Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China
| | - Lin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China
| | - Xingping Zhou
- College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Feng F Hong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; College of Biological Science and Medical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China; Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology, China Textile Engineering Society, China.
| |
Collapse
|
13
|
Kamaraj M, Moghimi N, Chen J, Morales R, Chen S, Khademhosseini A, John JV. New dimensions of electrospun nanofiber material designs for biotechnological uses. Trends Biotechnol 2024; 42:631-647. [PMID: 38158307 PMCID: PMC11065627 DOI: 10.1016/j.tibtech.2023.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024]
Abstract
Electrospinning technology has garnered wide attention over the past few decades in various biomedical applications including drug delivery, cell therapy, and tissue engineering. This technology can create nanofibers with tunable fiber diameters and functionalities. However, the 2D membrane nature of the nanofibers, as well as the rigidity and low porosity of electrospun fibers, lower their efficacy in tissue repair and regeneration. Recently, new avenues have been explored to resolve the challenges associated with 2D electrospun nanofiber membranes. This review discusses recent trends in creating different electrospun nanofiber microstructures from 2D nanofiber membranes by using various post-processing methods, as well as their biotechnological applications.
Collapse
Affiliation(s)
- Meenakshi Kamaraj
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Nafiseh Moghimi
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Ramon Morales
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Shixuan Chen
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of the Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Johnson V John
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
14
|
Xiao Y, Jin X, Jia L, Li J, Zhang B, Geng X, Ye L, Zhang AY, Gu Y, Feng ZG. Long-term observation of polycaprolactone small-diameter vascular grafts with thickened outer layer and heparinized inner layer in rabbit carotid arteries. Biomed Mater 2024; 19:035018. [PMID: 38430567 DOI: 10.1088/1748-605x/ad2f6b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/01/2024] [Indexed: 03/04/2024]
Abstract
In our previous study, the pristine bilayer small-diameterin situtissue engineered vascular grafts (pTEVGs) were electrospun from a heparinized polycaprolactone (PCL45k) as an inner layer and a non-heparinized PCL80k as an outer layer in the thickness of about 131 μm and 202 μm, respectively. However, the hydrophilic enhancement of inner layer stemmed from the heparinization accelerated the degradation of grafts leading to the early formation of arterial aneurysms in a period of 3 months, severely hindering the perennial observation of the neo-tissue regeneration, host cell infiltration and graft remodeling in those implanted pTEVGs. Herein to address this drawback, the thickness of the outer layers was increased with PCL80k to around 268 μm, while the inner layer remained unchangeable. The thickened TEVGs named as tTEVGs were evaluated in six rabbits via a carotid artery interpositional model for a period of 9 months. All the animals kept alive and the grafts remained patent until explantation except for one whose one side of arterial blood vessels was occluded after an aneurysm occurred at 6 months. Although a significant degradation was observed in the implanted grafts at 9 month, the occurrence of aneurysms was obviously delayed compared to pTEVGs. The tissue stainings indicated that the endothelial cell remodeling was substantially completed by 3 months, while the regeneration of elastin and collagen remained smaller and unevenly distributed in comparison to autologous vessels. Additionally, the proliferation of macrophages and smooth muscle cells reached the maximum by 3 months. These tTEVGs possessing a heparinized inner layer and a thickened outer layer exhibited good patency and significantly delayed onset time of aneurysms.
Collapse
Affiliation(s)
- Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Xin Jin
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Liujun Jia
- Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jubo Li
- Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Baojie Zhang
- Beijing Key Laboratory of Pre-clinic Research and Evaluation for Cardiovascular Implant Materials, Fuwai Hospital National Cardiovascular Center, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Ai-Ying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital and Institute of Vascular Surgery, Capital Medical University, Beijing, People's Republic of China
| | - Zeng-Guo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
| |
Collapse
|
15
|
Mitropoulou A, Markatos DN, Dimopoulos A, Marazioti A, Mikelis CM, Mavrilas D. Development and Evaluation of Biodegradable Core-Shell Microfibrous and Nanofibrous Scaffolds for Tissue Engineering Applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:10. [PMID: 38285092 PMCID: PMC10824864 DOI: 10.1007/s10856-024-06777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/09/2024] [Indexed: 01/30/2024]
Abstract
Tissue engineering scaffolds as three-dimensional substrates may serve as ideal templates for tissue regeneration by simulating the structure of the extracellular matrix (ECM). Many biodegradable synthetic polymers, either hydrophobic, like Poly-ε-caprolactone (PCL), or hydrophilic, like Poly(Vinyl Alcohol) (PVA), are widely used as candidate bioactive materials for fabricating tissue engineering scaffolds. However, a combination of good cytocompatibility of hydrophilic polymers with good biomechanical performance of hydrophobic polymers could be beneficial for the in vivo performance of the scaffolds. In this study, we aimed to fabricate biodegradable fibrous scaffolds by combining the properties of hydrophobic PCL with those of hydrophilic PVA and evaluate their properties in comparison with pristine PCL scaffolds. Therefore, single-layered PCL scaffolds, sequential tri-layered (PVA/PCL/PVA), and core-shell (PVA as shell and PCL as core) composite scaffolds were developed utilizing the electrospinning technique. The material structural and biomechanical properties of the electrospun scaffolds, before and after their hydrolytic degradation over a seven-month period following storage in phosphate-buffered saline (PBS) at 37 °C, were comprehensively compared. In addition, human embryonic kidney cells (HEK-293) were cultured on the scaffolds to investigate potential cell attachment, infiltration, and proliferation. The results demonstrated the long-term efficacy of core-shell biodegradable fibrous scaffolds in comparison to single-layers PCL and tri-layers PVA/PCL/PVA, not only due to its superior morphological characteristics and mechanical properties, but also due to its ability to promote homogeneous cell distribution and proliferation, without any external chemical or physical stimuli.
Collapse
Affiliation(s)
- Athina Mitropoulou
- Department of Mechanical Engineering and Aeronautics, Laboratory of Biomechanics and Biomedical Engineering, University of Patras, Patras, GR, Greece.
| | - Dionysios N Markatos
- Department of Mechanical Engineering and Aeronautics, Laboratory of Technology and Strength of Materials, University of Patras, Patras, GR, Greece
| | - Andreas Dimopoulos
- Prometheus Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Antonia Marazioti
- Department of Physiotherapy, Laboratory of Basic Sciences, University of Peloponnese, Sparta, GR, Greece
| | | | - Dimosthenis Mavrilas
- Department of Mechanical Engineering and Aeronautics, Laboratory of Biomechanics and Biomedical Engineering, University of Patras, Patras, GR, Greece
| |
Collapse
|
16
|
Almasi-Jaf A, Shamloo A, Shaygani H, Seifi S. Fabrication of heparinized bi-layered vascular graft with PCL/PU/gelatin co-electrospun and chitosan/silk fibroin/gelatin freeze-dried hydrogel for improved endothelialization and enhanced mechanical properties. Int J Biol Macromol 2023; 253:126807. [PMID: 37689302 DOI: 10.1016/j.ijbiomac.2023.126807] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Fabricating a biocompatible small-diameter vascular graft (< 6 mm) with mechanical properties similar to the natural vein and adding good anti-thrombogenic, endothelialization, and hyperplasia properties remains a challenge. To this end, we fabricated a heparinized bilayer graft to address this problem. The proposed bilayer sample consisted of a heparinized polycaprolactone (PCL), polyurethane (PU), and gelatin (G) co-electrospun inner layer and chitosan, gelatin, and silk fibroin freeze-dried hydrogel crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) outer layer. The samples exhibited great ultimate stress, Young's module, and suture retention of 4.16±0.25MPa, 8.24±2.59MPa and 4.83±0.31N, respectively. The heparin release assay indicated a sustained release profile of around 70% after 4weeks, which can be attributed to the excellent control via emulsion. Furthermore, the heparinized samples demonstrated good anti-thrombogenic properties investigated in the platelet adhesion assay. For the outer layer, the hydrogel crosslinked with non-toxic materials was prepared through the freeze-drying method to achieve high porosity (64.63%), suitable for smooth muscle cell activity. Moreover, inner and outer layers showed high cell viability toward endothelial (78.96%) and smooth muscle cells (57.77%), respectively. Overall, the proposed heparinized graft exhibited excellent potential for vascular graft regeneration.
Collapse
Affiliation(s)
- Aram Almasi-Jaf
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Amir Shamloo
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Hossein Shaygani
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| | - Saeed Seifi
- School of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran
| |
Collapse
|
17
|
Wan B, Liu N, Zhang Z, Fang X, Ding Y, Xiang H, He Y, Liu M, Lin X, Tang J, Li Y, Tang B, Zhou G. Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels. Carbohydr Polym 2023; 314:120929. [PMID: 37173010 DOI: 10.1016/j.carbpol.2023.120929] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023]
Abstract
High conductive and transparent hydrogels with adhesion function are ideal candidates for soft electronic devices. However, it remains a challenge to design appropriate conductive nanofillers to endow hydrogels with all these characteristics. The 2D MXene sheets are promising conductive nanofillers for hydrogels due to excellent electricity and water-dispersibility. However, MXene is quite susceptible to oxidation. In this study, polydopamine (PDA) was employed to protect the MXene from oxidation and meanwhile endow hydrogels with adhesion. However, PDA coated MXene (PDA@MXene) were easily flocculated from dispersion. 1D cellulose nanocrystals (CNCs) were employed as steric stabilizers to prevent the agglomeration of MXene during the self-polymerization of dopamine. The obtained PDA coated CNC-MXene (PCM) sheets display outstanding water-dispersible and anti-oxidation stability and are promising conductive nanofillers for hydrogels. During the fabrication of polyacrylamide hydrogels, the PCM sheets were partially degraded into PCM nanoflakes with smaller size, leading to transparent PCM-PAM hydrogels. The PCM-PAM hydrogels can self-adhere to skin, and possess high transmittance of 75 % at 660 nm, superior electric conductivity of 4.7 S/m with MXene content as low as 0.1 % and excellent sensitivity. This study will facilitate the development of MXene based stable, water-dispersible conductive nanofillers and multi-functional hydrogels.
Collapse
Affiliation(s)
- Bolin Wan
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Nana Liu
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Xiong Fang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yugao Ding
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Haosheng Xiang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China.
| | - Xiaoming Lin
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Juntao Tang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yingzhan Li
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Biao Tang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.
| | - Guofu Zhou
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
18
|
Zhang C, Cha R, Wang C, Chen X, Li Z, Xie Q, Jia L, Sun Y, Hu Z, Zhang L, Zhou F, Zhang Y, Jiang X. Red blood cell membrane-functionalized Nanofibrous tubes for small-diameter vascular grafts. Biomaterials 2023; 297:122124. [PMID: 37087981 DOI: 10.1016/j.biomaterials.2023.122124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 04/25/2023]
Abstract
The off-the-shelf small-diameter vascular grafts (SDVGs) have inferior clinical efficacy. Red blood cell membrane (Rm) has easy availability and multiple bioactive components (such as phospholipids, proteins, and glycoproteins), which can improve the clinic's availability and patency of SDVGs. Here we developed a facile approach to preparing an Rm-functionalized poly-ε-caprolactone/poly-d-lysine (Rm@PCL/PDL) tube by co-incubation and single-step rolling. The integrity, stability, and bioactivity of Rm on Rm@PCL/PDL were evaluated. The revascularization of Rm@PCL/PDL tubes was studied by implantation in the carotid artery of rabbits. Rm@PCL/PDL can be quickly prepared and showed excellent bioactivity with good hemocompatibility and great anti-inflammatory. Rm@PCL/PDL tubes as the substitute for the carotid artery of rabbits had good patency and quick remodeling within 21 days. Rm, as a "self" biomaterial with high biosafety, provides a new and facile approach to developing personalized or universal SDVGs for the clinic, which is of great significance in cardiovascular regenerative medicine and organ chip.
Collapse
Affiliation(s)
- Chunliang Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing, 100190, PR China
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing, 100190, PR China.
| | - Chunyuan Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Xingming Chen
- PLA Strategic Support Force Characteristic Medical Center, No. 9 Anxiang Beili, Chaoyang District, Beijing, 100101, PR China
| | - Zulan Li
- PLA Strategic Support Force Characteristic Medical Center, No. 9 Anxiang Beili, Chaoyang District, Beijing, 100101, PR China
| | - Qian Xie
- Division of Nephrology, Peking University Third Hospital, No. 49 Huayuan Road North, Haidian District, Beijing, 100191, PR China
| | - Liujun Jia
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Yang Sun
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Zhan Hu
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China
| | - Lin Zhang
- Department of Adult Cardiac Surgery, Faculty of Cardiovascular Disease, The Sixth Medical Center of the General Hospital of the People's Liberation Army of China, No. 28 Fuxing Road, Haidian District, Beijing, 100853, PR China.
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing, 100083, PR China.
| | - Yan Zhang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, PR China.
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong, 518055, PR China.
| |
Collapse
|
19
|
Łopianiak I, Rzempołuch W, Civelek M, Cicha I, Ciach T, Butruk-Raszeja BA. Multilayered blow-spun vascular prostheses with luminal surfaces in Nano/Micro range: the influence on endothelial cell and platelet adhesion. J Biol Eng 2023; 17:20. [PMID: 36915145 PMCID: PMC10012602 DOI: 10.1186/s13036-023-00337-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/05/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND In this study, two types of polyurethane-based cylindrical multilayered grafts with internal diameters ≤ 6 mm were produced by the solution blow spinning (SBS) method. The main aim was to create layered-wall prostheses differing in their luminal surface morphology. Changing the SBS process parameters, i.e. working distance, rotational speed, volume, and concentration of the polymer solution allowed to obtain structures with the required morphologies. The first type of prostheses, termed Nano, possessed nanofibrous luminal surface, and the second type, Micro, presented morphologically diverse luminal surface, with both solid and microfibrous areas. RESULTS The results of mechanical tests confirmed that designed prostheses had high flexibility (Young's modulus value of about 2.5 MPa) and good tensile strength (maximum axial load value of about 60 N), which meet the requirements for vascular prostheses. The influence of the luminal surface morphology on platelet adhesion and the attachment of endothelial cells was investigated. Both surfaces did not cause hemolysis in contact with blood, the percentage of platelet-occupied area for Nano and Micro surfaces was comparable to reference polytetrafluoroethylene (PTFE) surface. However, the change in morphology of surface-adhered platelets between Nano and Micro surfaces was visible, which might suggest differences in their activation level. Endothelial coverage after 1, 3, and 7 days of culture on flat samples (2D model) was higher on Nano prostheses as compared with Micro scaffolds. However, this effect was not seen in 3D culture, where cylindrical prostheses were colonized using magnetic seeding method. CONCLUSIONS We conclude the produced scaffolds meet the material and mechanical requirements for vascular prostheses. However, changing the morphology without changing the chemical modification of the luminal surface is not sufficient to achieve the appropriate effectiveness of endothelialization in the 3D model.
Collapse
Affiliation(s)
- Iwona Łopianiak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland.,Doctoral School of Warsaw University of Technology, Warsaw University of Technology, Pl. Politechniki 1, 00-661, Warsaw, Poland
| | - Wiktoria Rzempołuch
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - Mehtap Civelek
- Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT-Department, Universitätsklinikum, Erlangen, Germany
| | - Iwona Cicha
- Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, ENT-Department, Universitätsklinikum, Erlangen, Germany
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland.,Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822, Warsaw, Poland
| | - Beata A Butruk-Raszeja
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland.
| |
Collapse
|
20
|
Li S, Yang L, Zhao Z, Wang J, Lv H, Yang X. Fabrication of mechanical skeleton of small-diameter vascular grafts via rolling on water surface. Biomed Mater 2023; 18. [PMID: 36731137 DOI: 10.1088/1748-605x/acb89a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/01/2023] [Indexed: 02/04/2023]
Abstract
Mimicking the multilayered structure of blood vessels and constructing a porous inner surface are two effective approaches to achieve mechanical matching and rapid endothelialization to reduce occlusion in small-diameter vascular grafts. However, the fabrication processes are complex and time consuming, thus complicating the fabrication of personalized vascular grafts. A simple and versatile strategy is proposed to prepare the skeleton of vascular grafts by rolling self-adhesive polymer films. These polymer films are directly fabricated by dropping a polymer solution on a water surface. For the tubes, the length and wall thickness are controlled by the rolling number and position of each film, whereas the structure and properties are tailored by regulating the solution composition. Double-layer vascular grafts (DLVGs) with microporous inner layers and impermeable outer layers are constructed; a microporous layer is formed by introducing a hydrophilic polymer into a polyurethane (PU) solution. DLVGs exhibit a J-shaped stress-strain deformation profile and compliance comparable to that of coronary arteries, sufficient suture retention strength and burst pressure, suitable hemocompatibility, significant adhesion, and proliferation of human umbilical vein endothelial cells. Freshly prepared PU tubes exhibit good cytocompatibility. Thus, this strategy demonstrates potential for rapid construction of small-diameter vascular grafts for individual customization.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Lei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Zijian Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jie Wang
- Huangpu Institute of Advanced Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Hongying Lv
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China
- Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| |
Collapse
|
21
|
The mechanical behavior of silk-fibroin reinforced alginate hydrogel biocomposites - Toward functional tissue biomimetics. J Mech Behav Biomed Mater 2023; 138:105598. [PMID: 36455380 DOI: 10.1016/j.jmbbm.2022.105598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Soft tissues are constructed as fiber-reinforced composites consisting of structural mechanisms and unique mechanical behavior. Biomimetics of their mechanical behavior is currently a significant bioengineering challenge, emphasizing the need to replicate structural and mechanical mechanisms into novel biocomposite designs. Here we present a novel silk-based biocomposite laminate constructed from long natural silk and fibroin fibers embedded in an alginate hydrogel matrix. Controlling the mechanical features of these laminates were studied for different fiber volume fractions (VF) and orientations using unidirectional tensile tests. Three material systems were investigated having different fiber orientations: longitudinal (0°), transverse (90°), and cross-plied (0/90°). The general behavior of the biocomposite laminates was anisotropic hyperelastic with large deformations. Longitudinal fibroin laminates have shown a tensile modulus of 178.55 ± 14.46 MPa and tensile strength of 18.47 ± 2.01 MPa for 0.48 VF. With similar VF, cross-plied fibroin laminates demonstrated structural shielding ability, having a tensile modulus and tensile strength of 101.73 ± 8.04 MPa and 8.29 ± 1.63 MPa for only a third of the VF directed in the stretching direction. The stress-strain behavior was in a similar range to highly stiff native human soft tissues such as ligament and meniscus. These findings demonstrate the potential of the fibroin fiber-reinforced biocomposites to mimic the mechanics of tissues with a quantitatively controlled amount of fibers and designed spatial arrangement. This can lead to new solutions for the repair and replacement of damaged functional and highly stiff soft tissues.
Collapse
|
22
|
Dewi IR, Rujiralai T, Putson C, Cheewasedtham W. A novel double metal-dithizone functionalized polyurethane electrospun nanofiber and film for colorimetric determination of hexavalent chromium. RSC Adv 2023; 13:2852-2859. [PMID: 36756414 PMCID: PMC9846713 DOI: 10.1039/d2ra07636e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/08/2023] [Indexed: 01/19/2023] Open
Abstract
This work proposes a highly specific method of Cr6+ determination based on the double reactions of two metals, Co2+ with dithizone to form a (DTZ)-Co2+ complex, and the replacement of Co2+ in the formed complex with Cr6+. The fast degradation of DTZ in solution in wet analysis was overcome by preparing dithizone functionalized polyurethane nanofibers that were electrospun into a membrane (DTZ/PU-NF) and a microwell plate film (DTZ/PU-MPF). For comparison, the performance of diphenylcarbazide (DPC), a currently used complexing agent for Cr6+, was also investigated. Colour changes were detected as red-green-blue values. The DTZ/PU-NF was smooth, with an average diameter of 384.09 nm and no bead appeared. A dense network structure was formed. The best formulation of DTZ, PU and Co2+ was also applied as a microwell plate film. In the presence of Cr6+, the colour of DTZ-Co2+ changed from red to magenta. Among the three studied methods, the colorimetric DTZ-Co2+/PU-NF presented the best results. Its linearity range was 0.001-1.0 mg L-1, with a regression equation of Cr6+ = -0.189 + (0.0056 × red) + (0.0086 × green) - (0.0129 × blue), R 2 of 0.990. The limit of detection was 0.001 mg L-1 and the precision was 1.7%. The applicability of DTZ/PU-NF was validated for Cr6+ in vegetable oils with recoveries of 89.5-116.8%. The sensitivity of DTZ/PU-NF was ten times higher than that of DTZ/PU-MPF. The methods based on DTZ-Co2+/PU-NF and DTZ-Co2+/PU-MPF proved to be highly selective, rapid, user-friendly, simple and reliable.
Collapse
Affiliation(s)
- Indiah Ratna Dewi
- Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University Pattani 94000 Thailand
| | - Thitima Rujiralai
- Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University Pattani 94000 Thailand
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Chatchai Putson
- Division of Physical Science, Faculty of Science, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
- Center of Excellence in Nanotechnology for Energy (CENE) Hat Yai Songkhla 90112 Thailand
| | - Wilairat Cheewasedtham
- Analytical Chemistry and Environment Research Unit, Division of Science, Faculty of Science and Technology, Prince of Songkla University Pattani 94000 Thailand
| |
Collapse
|
23
|
Han L, Wang Y, Wu L, Wu Z, He Y, Mao H, Gu Z. Effects of Chemical Composition on the Shape Memory Property of Poly(dl-lactide- co-trimethylene carbonate) as Self-Morphing Small-Diameter Vascular Scaffolds. ACS Biomater Sci Eng 2023; 9:520-530. [PMID: 36459430 DOI: 10.1021/acsbiomaterials.2c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Smart materials have great potential in many biomedical applications, in which biodegradable shape memory polymers (SMPs) can be used as surgical sutures, implants, and stents. Poly(dl-lactide-co-trimethylene carbonate) (PDLLTC) represents one of the promising SMPs and is widely used in biomedical applications. However, the relationship between its shape memory property and chemical structure has not been fully studied and needs further elaboration. In this work, PDLLTC copolymers in different compositions have been synthesized, and their shape memory properties have been investigated. It has been found that the shape memory property is related to the chemical composition and polymeric chain segments. The copolymer with a DLLA/TMC ratio of 75:25 (PDLLTC7525) has been demonstrated with great shape fixation and recovery ratio at human body temperature. Furthermore, PDLLTC7525-based self-morphing small-diameter vascular scaffolds adhered with inner electrospun aligned gelatin/hyaluronic acid (Gel/HA) nanofibers have been constructed, as a merit of its shape memory property. The scaffolds have been demonstrated to facilitate the proliferation and adhesion of endothelial cells on the inner layer. Therefore, PDLLTC with tailorable shape memory properties represents a promising candidate for the development of SMPs, as well as for small-diameter vascular scaffolds construction.
Collapse
Affiliation(s)
- Lu Han
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing211816, P. R. China
| | - Yuqi Wang
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing211816, P. R. China
| | - Lihuang Wu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing211816, P. R. China
| | - Zixiang Wu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing211816, P. R. China
| | - Yiyan He
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing211816, P. R. China.,NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing210000, P. R. China
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing211816, P. R. China.,NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing210000, P. R. China
| | - Zhongwei Gu
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Suqian Advanced Materials Industry Technology Innovation Center, Nanjing Tech University, Nanjing211816, P. R. China.,NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing210000, P. R. China
| |
Collapse
|
24
|
Rajendran AK, Hwang NS. Silk and silk fibroin in tissue engineering. NATURAL BIOPOLYMERS IN DRUG DELIVERY AND TISSUE ENGINEERING 2023:627-661. [DOI: 10.1016/b978-0-323-98827-8.00001-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
25
|
Chen T, Guo X, Huang Y, Hao W, Deng S, Xu G, Bao J, Xiong Q, Yang W. Bletilla Striata polysaccharide - Waterborne polyurethane hydrogel as a wound dressing. JOURNAL OF BIOMATERIALS SCIENCE, POLYMER EDITION 2022:1-14. [DOI: 10.1080/09205063.2022.2157673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tianyu Chen
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Xiaoyan Guo
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Yiping Huang
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Wentao Hao
- Anhui Key Laboratory of advanced catalytic materials and reaction engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China, 230009
| | - Sunyan Deng
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Gewen Xu
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Junjie Bao
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Qiansheng Xiong
- College of Chemistry and Chemical Engineering, Anhui University, Hefei, China, 230601
| | - Wen Yang
- Anhui Key Laboratory of advanced catalytic materials and reaction engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China, 230009
| |
Collapse
|
26
|
Mohd Razali NA, Lin WC. Accelerating the excisional wound closure by using the patterned microstructural nanofibrous mats/gentamicin-loaded hydrogel composite scaffold. Mater Today Bio 2022; 16:100347. [PMID: 35813981 PMCID: PMC9263994 DOI: 10.1016/j.mtbio.2022.100347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023] Open
Abstract
Ideal artificial tissue scaffolds should provide an in vitro microenvironment comparable to native human skin tissue to direct cell functions, regulate tissue homeostasis, and promote tissue regeneration. A sandwich-like composite scaffold consisting of a hydrogel layer and two aligned nanofibre layers was fabricated and applied as a wound-healing dressing. Gentamicin was preloaded into the hydrogel middle layer and naturally released for antibacterial activity during the healing period. Nanofibrous layers embedded on the top and bottom surfaces of the hydrogel improved the tensile strength fivefold (1560 kPa and 465% strain) while serving as a diffusion barrier to reduce the gentamicin initial burst release (30%–15%). Inspired by the extracellular matrix (ECM), the surface of nanofibre top layer was patterned with triangular microarrays using micro-moulding approach to reflect the multidimensional structure of ECM. Biocompatibility of the scaffold is proven from cytotoxicity and haemolysis studies. Fibroblast cells revealed a highly elongated and consistent alignment modulated by the micropatterned fibrous layer and directed their migration towards the wound area. Excisional wounds treated with the scaffold promoted 97.49% wound closure with low inflammation and rapid re-epithelialization and angiogenesis. This scaffold, with its tailored functionality capable of accelerating wound healing, has high potential in tissue engineering applications.
Collapse
|
27
|
Fabrication and characterization of three-layer nanofibrous yarn (PA6/PU/PA6). Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03835-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Zia AW, Liu R, Wu X. Structural design and mechanical performance of composite vascular grafts. Biodes Manuf 2022. [DOI: 10.1007/s42242-022-00201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThis study reviews the state of the art in structural design and the corresponding mechanical behaviours of composite vascular grafts. We critically analyse surface and matrix designs composed of layered, embedded, and hybrid structures along the radial and longitudinal directions; materials and manufacturing techniques, such as tissue engineering and the use of textiles or their combinations; and the corresponding mechanical behaviours of composite vascular grafts in terms of their physical–mechanical properties, especially their stress–strain relationships and elastic recovery. The role of computational studies is discussed with respect to optimizing the geometrics designs and the corresponding mechanical behaviours to satisfy specialized applications, such as those for the aorta and its subparts. Natural and synthetic endothelial materials yield improvements in the mechanical and biological compliance of composite graft surfaces with host arteries. Moreover, the diameter, wall thickness, stiffness, compliance, tensile strength, elasticity, and burst strength of the graft matrix are determined depending on the application and the patient. For composite vascular grafts, hybrid architectures are recommended featuring multiple layers, dimensions, and materials to achieve the desired optimal flexibility and function for complying with user-specific requirements. Rapidly emerging artificial intelligence and big data techniques for diagnostics and the three-dimensional (3D) manufacturing of vascular grafts will likely yield highly compliant, subject-specific, long-lasting, and economical vascular grafts in the near-future.
Graphic abstract
Collapse
|
29
|
Zizhou R, Wang X, Houshyar S. Review of Polymeric Biomimetic Small-Diameter Vascular Grafts to Tackle Intimal Hyperplasia. ACS OMEGA 2022; 7:22125-22148. [PMID: 35811906 PMCID: PMC9260943 DOI: 10.1021/acsomega.2c01740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Small-diameter artificial vascular grafts (SDAVG) are used to bypass blood flow in arterial occlusive diseases such as coronary heart or peripheral arterial disease. However, SDAVGs are plagued by restenosis after a short while due to thrombosis and the thickening of the neointimal wall known as intimal hyperplasia (IH). The specific causes of IH have not yet been deduced; however, thrombosis formation due to bioincompatibility as well as a mismatch between the biomechanical properties of the SDAVG and the native artery has been attributed to its initiation. The main challenges that have been faced in fabricating SDAVGs are facilitating rapid re-endothelialization of the luminal surface of the SDAVG and replicating the complex viscoelastic behavior of the arteries. Recent strategies to combat IH formation have been mostly based on imitating the natural structure and function of the native artery (biomimicry). Thus, most recently, developed grafts contain a multilayered structure with a designated function for each layer. This paper reviews the current polymeric, biomimetic SDAVGs in preventing the formation of IH. The materials used in fabrication, challenges, and strategies employed to tackle IH are summarized and discussed, and we focus on the multilayered structure of current SDAVGs. Additionally, the future aspects in this area are pointed out for researchers to consider in their endeavor.
Collapse
Affiliation(s)
- Rumbidzai Zizhou
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Xin Wang
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Shadi Houshyar
- School
of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
30
|
Wang J, Wang H, Wang Y, Liu Z, Li Z, Li J, Chen Q, Meng Q, Shu WW, Wu J, Xiao C, Han F, Li B. Endothelialized microvessels fabricated by microfluidics facilitate osteogenic differentiation and promote bone repair. Acta Biomater 2022; 142:85-98. [PMID: 35114373 DOI: 10.1016/j.actbio.2022.01.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
In bone tissue engineering, vascularization is one of the critical factors that limit the effect of biomaterials for bone repair. While various approaches have been tried to build vascular networks in bone grafts, lack of endothelialization still constitutes a major technical hurdle. In this study, we have developed a facile technique to fabricate endothelialized biomimetic microvessels (BMVs) from alginate-collagen composite hydrogels within a single step using microfluidic technology. BMVs with different sizes could be readily prepared by adjusting the flow rate of microfluids. All BMVs supported perfusion and outward penetration of substances in the tube. Endothelial cells could adhere and proliferate on the inner wall of tubes. It was also found that the expression of CD31 and secretion of BMP-2 and PDGF-BB were higher in the rat umbilical vein endothelial cells (RUVECs) in BMVs than those cultured on hydrogel. When co-cultured with bone marrow mesenchymal stem cells (BMSCs), endothelialized BMVs promoted the osteogenic differentiation of BMSCs compared to those in acellular BMV group. In vivo, markedly enhanced new bone formation was achieved by endothelialized BMVs in a rat critical-sized calvarial defect model compared to those with non-endothelialized BMVs or without BMVs. Together, findings from both in vitro and in vivo studies have proven that endothelialized BMVs function to facilitate osteogenesis and promote bone regeneration, and therefore might present an effective strategy in bone tissue engineering. STATEMENT OF SIGNIFICANCE: In bone tissue engineering, limited vascularization is one of the critical factors that limit the effect of biomaterials for bone repair. In this study, we developed a facile technique to fabricate endothelialized biomimetic microvessels (BMVs) from alginate-collagen composite hydrogels within a single step using microfluidic technology. Both in vitro and in vivo studies have proven that endothelialized BMVs function to facilitate osteogenesis and promote bone regeneration, and therefore might present an effective strategy in bone tissue engineering.
Collapse
|
31
|
Fathi-Karkan S, Banimohamad-Shotorbani B, Saghati S, Rahbarghazi R, Davaran S. A critical review of fibrous polyurethane-based vascular tissue engineering scaffolds. J Biol Eng 2022; 16:6. [PMID: 35331305 PMCID: PMC8951709 DOI: 10.1186/s13036-022-00286-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Certain polymeric materials such as polyurethanes (PUs) are the most prevalent class of used biomaterials in regenerative medicine and have been widely explored as vascular substitutes in several animal models. It is thought that PU-based biomaterials possess suitable hemo-compatibility with comparable performance related to the normal blood vessels. Despite these advantages, the possibility of thrombus formation and restenosis limits their application as artificial functional vessels. In this regard, various surface modification approaches have been developed to enhance both hemo-compatibility and prolong patency. While critically reviewing the recent advances in vascular tissue engineering, mainly PU grafts, this paper summarizes the application of preferred cell sources to vascular regeneration, physicochemical properties, and some possible degradation mechanisms of PU to provide a more extensive perspective for future research.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Golgasht St, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. .,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soodabeh Davaran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
32
|
Antunes M, Bonani W, Reis RL, Migliaresi C, Ferreira H, Motta A, Neves NM. Development of alginate-based hydrogels for blood vessel engineering. BIOMATERIALS ADVANCES 2022; 134:112588. [PMID: 35525739 DOI: 10.1016/j.msec.2021.112588] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/09/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
Vascular diseases are among the primary causes of death worldwide. In serious conditions, replacement of the damaged vessel is required. Autologous grafts are preferred, but their limited availability and difficulty of the harvesting procedures favour synthetic alternatives' use. However, as synthetic grafts may present significant drawbacks, tissue engineering-based solutions are proposed. Herein, tubular hydrogels of alginate combined with collagen type I and/or silk fibroin were prepared by ionotropic gelation using gelatin hydrogel sacrificial moulds loaded with calcium ions (Ca2+). The time of exposure of alginate solutions to Ca2+-loaded gelatin was used to control the wall thickness of the hydrogels (0.47 ± 0.10 mm-1.41 ± 0.21 mm). A second crosslinking step with barium chloride prevented their degradation for a 14 day period and improved mechanical properties by two-fold. Protein leaching tests showed that collagen type I, unlike silk fibroin, was strongly incorporated in the hydrogels. The presence of silk fibroin in the alginate matrix, containing or not collagen, did not significantly improve hydrogels' properties. Conversely, hydrogels enriched only with collagen were able to better support EA.hy926 and MRC-5 cells' growth and characteristic phenotype. These results suggest that a two-step crosslinking procedure combined with the use of collagen type I allow for producing freestanding vascular substitutes with tuneable properties in terms of size, shape and wall thickness.
Collapse
Affiliation(s)
- Margarida Antunes
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Walter Bonani
- Department of Industrial Engineering, University of Trento, via Sommarive, 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, via delle Regole 101, 38123 Mattarello, Trento, Italy
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Claudio Migliaresi
- Department of Industrial Engineering, University of Trento, via Sommarive, 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, via delle Regole 101, 38123 Mattarello, Trento, Italy
| | - Helena Ferreira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Antonella Motta
- Department of Industrial Engineering, University of Trento, via Sommarive, 9, 38123 Trento, Italy; BIOtech Research Centre, University of Trento, via delle Regole 101, 38123 Mattarello, Trento, Italy
| | - Nuno M Neves
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
33
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
34
|
Montoya Y, Cardenas J, Bustamante J, Valencia R. Effect of sequential electrospinning and co-electrospinning on morphological and fluid mechanical wall properties of polycaprolactone and bovine gelatin scaffolds, for potential use in small diameter vascular grafts. Biomater Res 2021; 25:38. [PMID: 34801087 PMCID: PMC8605505 DOI: 10.1186/s40824-021-00240-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Nowadays, the engineering vascular grafts with a diameter less than 6 mm by means of electrospinning, is an attracted alternative technique to create different three-dimensional microenvironments with appropriate physicochemical properties to promote the nutrient transport and to enable the bioactivity, dynamic growth and differentiation of cells. Although the performance of a well-designed porous wall is key for these functional requirements maintaining the mechanical function, yet predicting the flow rate and cellular transport are still not widely understood and many questions remain open about new configurations of wall can be used for modifying the conventional electrospun samples. The aim of the present study was to evaluate the effect of fabrication techniques on scaffolds composed of bovine gelatin and polycaprolactone (PCL) developed by sequential electrospinning and co-electrospinning, on the morphology and fluid-mechanical properties of the porous wall. METHODOLOGY For this purpose, small diameter tubular structures were manufactured and experimental tests were performed to characterize the crystallinity, morphology, wettability, permeability, degradability, and mechanical properties. Some samples were cross-linked with Glutaraldehyde (GA) to improve the stability of the gelatin fiber. In addition, it was analyzed how the characteristics of the scaffold favored the levels of cell adhesion and proliferation in an in vitro model of 3T3 fibroblasts in incubation periods of 24, 48 and 72 h. RESULTS It was found that in terms of the morphology of tubular scaffolds, the co-electrospun samples had a better alignment with higher values of fiber diameters and apparent pore area than the sequential samples. The static permeability was more significant in the sequential scaffolds and the hydrophilic was higher in the co-electrospun samples. Therefore, the gelatin mass losses were less in the co-electrospun samples, which promote cellular functions. In terms of mechanical properties, no significant differences were observed for different types of samples. CONCLUSION This research concluded that the tubular scaffolds generated by sequential and co-electrospinning with modification in the microarchitecture could be used as a vascular graft, as they have better permeability and wettability, interconnected pores, and a circumferential tensile strength similar to native vessel compared to the commercial graft analyzed.
Collapse
Affiliation(s)
- Yuliet Montoya
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
- Comité de Trabajo de Bioingeniería Cardiovascular, Sociedad Colombiana de Cardiología y Cirugía Cardiovascular, Bogotá, Colombia
| | - José Cardenas
- Grupo de Automática y Diseño A+D, Universidad Pontificia Bolivariana, Medellín, Colombia
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - John Bustamante
- Grupo de Dinámica Cardiovascular, Centro de Bioingeniería, Universidad Pontificia Bolivariana, Medellín, Colombia
- Comité de Trabajo de Bioingeniería Cardiovascular, Sociedad Colombiana de Cardiología y Cirugía Cardiovascular, Bogotá, Colombia
| | - Raúl Valencia
- Grupo de Automática y Diseño A+D, Universidad Pontificia Bolivariana, Medellín, Colombia.
| |
Collapse
|
35
|
Yousefi-Ahmadipour A, Asadi F, Pirsadeghi A, Nazeri N, Vahidi R, Abazari MF, Afgar A, Mirzaei-Parsa MJ. Current Status of Stem Cell Therapy and Nanofibrous Scaffolds in Cardiovascular Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Gupta P, Mandal BB. Silk biomaterials for vascular tissue engineering applications. Acta Biomater 2021; 134:79-106. [PMID: 34384912 DOI: 10.1016/j.actbio.2021.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Vascular tissue engineering is a rapidly growing field of regenerative medicine, which strives to find innovative solutions for vascular reconstruction. Considering the limited success of synthetic grafts, research impetus in the field is now shifted towards finding biologically active vascular substitutes bestowing in situ growth potential. In this regard, silk biomaterials have shown remarkable potential owing to their favorable inherent biological and mechanical properties. This review provides a comprehensive overview of the progressive development of silk-based small diameter (<6 mm) tissue-engineered vascular grafts (TEVGs), emphasizing their pre-clinical implications. Herein, we first discuss the molecular structure of various mulberry and non-mulberry silkworm silk and identify their favorable properties at the onset of vascular regeneration. The emergence of various state-of-the-art fabrication methodologies for the advancement of silk TEVGs is rationally appraised in terms of their in vivo performance considering the following parameters: ease of handling, long-term patency, resistance to acute thrombosis, stenosis and aneurysm formation, immune reaction, neo-tissue formation, and overall remodeling. Finally, we provide an update on the pre-clinical status of silk-based TEVGs, followed by current challenges and future prospects. STATEMENT OF SIGNIFICANCE: Limited availability of healthy autologous blood vessels to replace their diseased counterpart is concerning and demands other artificial substitutes. Currently available synthetic grafts are not suitable for small diameter blood vessels owing to frequent blockage. Tissue-engineered biological grafts tend to integrate well with the native tissue via remodeling and have lately witnessed remarkable success. Silk fibroin is a natural biomaterial, which has long been used as medical sutures. This review aims to identify several favorable properties of silk enabling vascular regeneration. Furthermore, various methodologies to fabricate tubular grafts are discussed and highlight their performance in animal models. An overview of our understanding to rationally improve the biological activity fostering the clinical success of silk-based grafts is finally discussed.
Collapse
|
37
|
Zhang C, Xie Q, Cha R, Ding L, Jia L, Mou L, Cheng S, Wang N, Li Z, Sun Y, Cui C, Zhang Y, Zhang Y, Zhou F, Jiang X. Anticoagulant Hydrogel Tubes with Poly(ɛ-Caprolactone) Sheaths for Small-Diameter Vascular Grafts. Adv Healthc Mater 2021; 10:e2100839. [PMID: 34218526 DOI: 10.1002/adhm.202100839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Indexed: 12/17/2022]
Abstract
Small-diameter vascular grafts (inner diameter < 6 mm) are useful in treating cardiovascular diseases. The off-the-shelf small-diameter vascular grafts for clinical applications remain a great limitation owing to their thrombogenicity or intimal hyperplasia. Herein, bilayer anticoagulant hydrogel tubes with poly(ε-caprolactone) (PCL) sheaths are prepared by freeze-thawing and electrospinning, which contain nanofibrillated cellulose (NFC)/poly(vinyl alcohol) (PVA)-heparin/poly-L-lysine nanoparticles tube as an inner layer and PCL sheath as an outer layer. The structure, anticoagulant property, and biocompatibility of the inner layer are studied. The effects of thickness of the outer layer on perfusion performance and mechanical property of hydrogel tubes with PCL sheaths (PCL-NFC/PVA-NPs tubes) are investigated. The effect of compliance of PCL-NFC/PVA-NPs tubes on their blood flow is studied by numerical simulation. The tissue compatibility and the patency of PCL-NFC/PVA-NPs tubes are evaluated by implantation in subcutaneous tissue of rats and carotid artery of rabbits. PCL-NFC/PVA-NPs tubes have prominent anticoagulation, sufficient burst pressure and good compliance similar to native arteries. PCL-NFC/PVA-NPs tubes facilitate infiltration of host cells and achieve active proliferation of recruited cells, which will be a promising candidate for small-diameter vascular grafts.
Collapse
Affiliation(s)
- Chunliang Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences (Beijing) No. 29 Xueyuan Road, Haidian District Beijing 100083 P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
| | - Qian Xie
- Division of Nephrology Peking University Third Hospital No. 49 Huayuan Road North, Haidian District Beijing 100191 P. R. China
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
| | - Li Ding
- Department of Cardiac Surgery Fuwai Hospital State Key Laboratory of Cardiovascular Disease National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College No. 167 Beilishi Road, Xicheng District Beijing 100037 P. R. China
| | - Liujun Jia
- Animal Experimental Center Fuwai Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Research and Evaluation for Cardiovascular Implant Materials No. 167 Beilishi Road, Xicheng District Beijing 100037 P. R. China
| | - Lei Mou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
| | - Shiyu Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
| | - Nuoxin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
| | - Zulan Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety CAS Center for Excellence in Nanoscience National Center for NanoScience and Technology No. 11 Zhongguancun Beiyitiao, Haidian District Beijing 100190 P. R. China
| | - Yang Sun
- Department of Pathology Fuwai Hospital State Key Laboratory of Cardiovascular Disease National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College No. 167 Beilishi Road, Xicheng District Beijing 100037 P. R. China
| | - Chuanjue Cui
- Department of Cardiac Surgery Fuwai Hospital State Key Laboratory of Cardiovascular Disease National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College No. 167 Beilishi Road, Xicheng District Beijing 100037 P. R. China
| | - Yu Zhang
- Department of Cardiology Beijing Anzhen Hospital Capital Medical University No. 2 Anzhen Road, Chaoyang District Beijing 100029 P. R. China
| | - Yan Zhang
- Department of Cardiac Surgery Fuwai Hospital State Key Laboratory of Cardiovascular Disease National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College No. 167 Beilishi Road, Xicheng District Beijing 100037 P. R. China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences (Beijing) No. 29 Xueyuan Road, Haidian District Beijing 100083 P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Road, Nanshan District Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
38
|
Cheng C, Peng X, Qi H, Wang X, Yu X, Wang Y, Yu X. A promising potential candidate for vascular replacement materials with anti-inflammatory action, good hemocompatibility and endotheliocyte-cytocompatibility: phytic acid-fixed amniotic membrane. Biomed Mater 2021; 16. [PMID: 34492639 DOI: 10.1088/1748-605x/ac246d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022]
Abstract
Due to its excellent biocompatibility and anti-inflammatory activity, amniotic membrane (AM) has attracted much attention from scholars. However, its clinical application in vascular reconstruction was limited for poor processability, rapid biodegradation, and insufficient hemocompatibility. A naturally extracted substance with good cytocompatibility, phytic acid (PA), which can quickly form strong and stable hydrogen bonds on the tissue surface, was used to crosslink decellularized AM (DAM) to prepare a novel vascular replacement material. The results showed that PA-fixed AM had excellent mechanical strength and resistance to enzymatic degradation as well as appropriate surface hydrophilicity. Among all samples, 2% PA-fixed specimen showed excellent human umbilical vein endothelial cells (HUVECs)-cytocompatibility and hemocompatibility. It could also stimulate the secretion of vascular endothelial growth factor and endothelin-1 from seeded HUVECs, indicating that PA might promote neovascularization after implantation of PA-fixed specimens. Also, 2% PA-fixed specimen could inhibit the secretion of tumor necrosis factor-αfrom co-cultured macrophages, thus might reduce the inflammatory response after sample implantation. Finally, the results ofex vivoblood test andin vivoexperiments confirmed our deduction that PA might promote neovascularization after implantation. All the results indicated that prepared PA-fixed DAM could be considered as a promising small-diameter vascular replacement material.
Collapse
Affiliation(s)
- Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, People's Republic of China
| | - Hao Qi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xu Wang
- Chengdu University of TCM, College of Acupuncture and Massage College, No. 37, Twelve Bridge Road, Chengdu, Sichuan Province 610075, People's Republic of China
| | - Xiaoshuang Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yuhang Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
39
|
Jiang C, Wang K, Liu Y, Zhang C, Wang B. Application of textile technology in tissue engineering: A review. Acta Biomater 2021; 128:60-76. [PMID: 33962070 DOI: 10.1016/j.actbio.2021.04.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
One of the key elements in tissue engineering is to design and fabricate scaffolds with tissue-like properties. Among various scaffold fabrication methods, textile technology has shown its unique advantages in mimicking human tissues' properties such as hierarchical, anisotropic, and strain-stiffening properties. As essential components in textile technology, textile patterns affect the porosity, architecture, and mechanical properties of textile-based scaffolds. However, the potential of various textile patterns has not been fully explored when fabricating textile-based scaffolds, and the effect of different textile patterns on scaffold properties has not been thoroughly investigated. This review summarizes textile technology development and highlights its application in tissue engineering to facilitate the broader application of textile technology, especially various textile patterns in tissue engineering. The potential of using different textile methods such as weaving, knitting, and braiding to mimic properties of human tissues is discussed, and the effect of process parameters in these methods on fabric properties is summarized. Finally, perspectives on future directions for explorations are presented. STATEMENT OF SIGNIFICANCE: Recently, biomedical engineers have applied textile technology to fabricate scaffolds for tissue engineering applications. Various textile methods, especially weaving, knitting, and braiding, enables engineers to customize the physical, mechanical, and biological properties of scaffolds. However, most textile-based scaffolds only use simple textile patterns, and the effect of different textile patterns on scaffold properties has not been thoroughly investigated. In this review, we cover for the first time the effect of process parameters in different textile methods on fabric properties, exploring the potential of using different textile methods to mimic properties of human tissues. Previous advances in textile technology are presented, and future directions for explorations are presented, hoping to facilitate new breakthroughs of textile-based tissue engineering.
Collapse
Affiliation(s)
- Chen Jiang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States; Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Kan Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Yi Liu
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30318, United States
| | - Chuck Zhang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States; H. Milton Stewart School of Industrial and System Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Ben Wang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States; Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA 30332, United States; H. Milton Stewart School of Industrial and System Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
40
|
Huang L, Guo S, Jiang Y, Shen Q, Li L, Shi Y, Xie H, Tian J. A preliminary study on polycaprolactone and gelatin-based bilayered tubular scaffolds with hierarchical pore size constructed from nano and microfibers for vascular tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1791-1809. [PMID: 34082651 DOI: 10.1080/09205063.2021.1938857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Due to the insufficient endothelialization and the poor colonization of smooth muscle cells (SMCs), small-diameter vascular tissue engineering is still challenging. An ideal vascular graft is expected to effectively support the formation of endothelial monolayer and the colonization of SMCs. In this study, we proposed a bilayered scaffold with hierarchical pore size constructed from nano and microfibers by electrospinning PCL-PEG-PCL (PCE) and a blend of PCE and gelatin (PCEG) sequentially. The structural features of nano and microfibers were tuned by the concentration of PCE and the proportion of PCE/gelatin in electrospun solution respectively. The results demonstrated the best nanofiber morphology and relatively high mechanical properties were achieved in 18% PCE (w/v) (PCE18) and PCE and gelatin with a weight ratio of 7:3 (P7G3) at a concentration of 18% (w/v) electrospun membranes. The in vitro co-culturing studies of cells and membranes indicated all the PCE membranes supported the proliferation and spreading of endothelial cells and the further endothelialization of the membranous surface, while PCEG membranes facilitated the migration inward of SMCs. Taking the porosity and mechanical properties into consideration, PCE18 and P7G3 were chosen to construct the inner and outer layers of the bilayered scaffold with hierarchical pore size respectively. The circumferential ring test demonstrated that the bilayered scaffold has good mechanical property both in dry and wet state. After cells were co-cultured with this bilayered scaffold for 7 days, the results manifested a continuous endothelial monolayer has formed on the luminal surface and the SMCs have started to colonized from outer layers, indicating the vast potential of this bilayered scaffold in vascular remodeling and regeneration.
Collapse
Affiliation(s)
- Lin Huang
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, China
| | - Shanzhu Guo
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, China
| | - Yue Jiang
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, China
| | - Quan Shen
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, China
| | - Long Li
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, China
| | - Yan Shi
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, China
| | - Haibo Xie
- College of Materials and Metallurgy, Guizhou University, Guiyang, Guizhou, China
| | - Jialiang Tian
- Medical College, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
41
|
Zhuang Y, Zhang C, Cheng M, Huang J, Liu Q, Yuan G, Lin K, Yu H. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact Mater 2021; 6:1791-1809. [PMID: 33336112 PMCID: PMC7721596 DOI: 10.1016/j.bioactmat.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular diseases are the most prevalent cause of ischemic necrosis of tissue and organ, which even result in dysfunction and death. Vascular regeneration or artificial vascular graft, as the conventional treatment modality, has received keen attentions. However, small-diameter (diameter < 4 mm) vascular grafts have a high risk of thrombosis and intimal hyperplasia (IH), which makes long-term lumen patency challengeable. Endothelial cells (ECs) form the inner endothelium layer, and are crucial for anti-coagulation and thrombogenesis. Thus, promoting in situ endothelialization in vascular graft remodeling takes top priority, which requires recruitment of endothelia progenitor cells (EPCs), migration, adhesion, proliferation and activation of EPCs and ECs. Chemotaxis aimed at ligands on EPC surface can be utilized for EPC homing, while nanofibrous structure, biocompatible surface and cell-capturing molecules on graft surface can be applied for cell adhesion. Moreover, cell orientation can be regulated by topography of scaffold, and cell bioactivity can be modulated by growth factors and therapeutic genes. Additionally, surface modification can also reduce thrombogenesis, and some drug release can inhibit IH. Considering the influence of macrophages on ECs and smooth muscle cells (SMCs), scaffolds loaded with drugs that can promote M2 polarization are alternative strategies. In conclusion, the advanced strategies for enhanced long-term lumen patency of vascular grafts are summarized in this review. Strategies for recruitment of EPCs, adhesion, proliferation and activation of EPCs and ECs, anti-thrombogenesis, anti-IH, and immunomodulation are discussed. Ideal vascular grafts with appropriate surface modification, loading and fabrication strategies are required in further studies.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Chenglong Zhang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengjia Cheng
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Jinyang Huang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| |
Collapse
|
42
|
Wan Y, Yang S, Peng M, Gama M, Yang Z, Deng X, Zhou J, Ouyang C, Luo H. Controllable synthesis of biomimetic nano/submicro-fibrous tubes for potential small-diameter vascular grafts. J Mater Chem B 2021; 8:5694-5706. [PMID: 32510089 DOI: 10.1039/d0tb01002b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mimicking the morphological structure of native blood vessels is critical for the development of vascular grafts. Herein, small-diameter composite vascular grafts that integrate the nanofibrous bacterial cellulose (BC) and submicrofibrous cellulose acetate (CA) were fabricated via a combined electrospinning and step-by-step in situ biosynthesis. Scanning electron microscopy (SEM) observation shows the nano/submicro-fibrous morphology and well-interconnected porous structure of the BC/CA grafts. It is found that the BC/CA graft with a suitable BC content demonstrates lower potential of thrombus formation and enhanced endothelialization as compared to the BC and CA counterparts. Western blotting and RT-qPCR results suggest that the BC/CA-2 graft promotes endothelialization by improving expressions of genes vWF-1 and CD31 and protein CD31. The in vivo tests demonstrate much lower inflammatory response to the BC/CA graft. These results suggest that the BC/CA graft shows a great potential as an artificial graft for rapid formation of an endothelial cell monolayer.
Collapse
Affiliation(s)
- Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China. and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shanshan Yang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.
| | - Mengxia Peng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.
| | - Miguel Gama
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, P 4715-057 Braga, Portugal
| | - Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.
| | - Xiaoyan Deng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China. and Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jianye Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Chenxi Ouyang
- Department of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China. and School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
43
|
Li J, Xiao M, Wang Y, Yang J, Liu W. Robust and Antiswelling Hollow Hydrogel Tube with Antibacterial and Antithrombotic Ability for Emergency Vascular Replacement. ACS APPLIED BIO MATERIALS 2021; 4:3598-3607. [PMID: 35014445 DOI: 10.1021/acsabm.1c00096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Infection and thrombosis are the two major complications in almost any indwelling intravascular catheters, leading to adverse consequences. Here, we report a robust and antiswelling hollow hydrogel tube that is prepared by copolymerizing a hydrogen-bonding (H-bonding) monomer and a zinc methacrylate (ZMA) monomer in the absence of any chemical cross-linker. The strong H-bonding interactions from the side chain of N-acryloylsemicarbazide (NASC) endow the hydrogel with high mechanical strength and swelling stability. Introduction of ZMA affords a superhydrophilic surface, and the release of a zinc ion (Zn2+) from the hydrogel can kill nearly 100% both of Staphylococcus aureus and Escherichia coli, indicating its excellent antibacterial ability. Importantly, the P(NASC-co-ZMA) hydrogel exhibits better antithrombosis ability due to the resistant adhesion of fibrinogen protein and platelets, as well binding calcium ions (Ca2+) from the blood. The hydrogel tube is used to connect the ex vivo arteriovenous shunt circuit or implanted into the left carotid artery in the rabbit model, showing a better patency rate. All of these results suggest that this hydrogel tube may mitigate infection and thrombosis complications, thus holding potential as an artificial blood vessel for emergency vascular replacement.
Collapse
Affiliation(s)
- Jia Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Meng Xiao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yanjie Wang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jianhai Yang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
44
|
Rahmati M, Mills DK, Urbanska AM, Saeb MR, Venugopal JR, Ramakrishna S, Mozafari M. Electrospinning for tissue engineering applications. PROGRESS IN MATERIALS SCIENCE 2021; 117:100721. [DOI: 10.1016/j.pmatsci.2020.100721] [Citation(s) in RCA: 323] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
45
|
Electrospinning of small diameter vascular grafts with preferential fiber directions and comparison of their mechanical behavior with native rat aortas. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112085. [PMID: 33947575 DOI: 10.1016/j.msec.2021.112085] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022]
Abstract
Conventional electrospun small diameter vascular grafts have a random fiber orientation. In order to achieve mechanical characteristics similar to a native blood vessel, a controllable fiber orientation is of interest. In this study the electrospinning jet was directly controlled by means of an auxiliary, changeable electrostatic field, so that the fibers could be deposited in adjustable orientations. Prostheses with circumferentially, axially, fenestrated and randomly aligned fibers were electrospun on Ø2mm mandrels out of a thermoplastic polyurethane (PUR) and a polylactid acid (PLLA). The impact of the materials and the various preferential fiber orientations on the resulting biomechanics was investigated and compared with that of the native rat aorta in quasistatic and dynamic hoop tensile tests. The test protocol included 3000 dynamic loading cycles in the physiological blood pressure range and ended with a quasistatic tensile test. Any orientation of the fibers in a particular direction resulted in a significant reduction in scaffold porosity for both materials. The standard randomly oriented PUR grafts showed the highest compliance of 29.7 ± 5.5 [%/100 mmHg] and were thus closest to the compliance of the rat aortas, which was 37.2 ± 6.5 [%/100 mmHg]. The maximum tensile force was increased at least 6 times compared to randomly spun grafts by orienting the fibers in the circumferential direction. During the 3000 loading cycles, creeping of the native rat aorta was below 1% whereas the electrospun grafts showed creeping up to 2.4 ± 1.2%. Although the preferred fiber orientations were only partially visible in the scanning electron micrographs, the mechanical effects were evident. The investigations suggest a multi-layer wall structure of the vascular prosthesis, since none of the preferred fiber directions and the materials used could imitate the typical j-shaped mechanical characteristics of the rat aorta.
Collapse
|
46
|
Chen X, Yao Y, Liu S, Hu Q. An integrated strategy for designing and fabricating triple-layer vascular graft with oriented microgrooves to promote endothelialization. J Biomater Appl 2021; 36:297-310. [PMID: 33709831 DOI: 10.1177/08853282211001006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Compared with native blood vessels and existing vascular grafts, design and manufacture of vascular grafts with a three-dimensional topological structure is a key to induce cells and tissue growth, which remains an essential issue in both tissue engineering and regenerative medicine. This study sought to develop a novel triple-layer vascular graft (TLVG) with oriented microgrooves to investigate the mechanical property and endothelialization. The TLVGs were composed of electrospun Poly-ε-caprolactone (PCL)/thermoplastic polyurethane (TPU) as the inner layer, albumen/sodium alginate (SA) hydrogel as the middle layer, and electrospun PCL/TPU as the outer layer. In detail, a cylindrical sacrificial template was designed and printed using polyvinyl alcohol (PVA), served as the electrospinning receiving platform to form the oriented microgrooves in the inner layer of TLVGs. The highly elastic albumen/SA hydrogel and PCL/TPU nanofibers were able to simulate the elastin in blood vessels. In addition, the introduction of the albumen/SA hydrogel layer not only solves the leakage problem of a porous vascular graft but also improves the wettability of the scaffolds. The physicochemical properties and biological characteristics of TLVGs were evaluated by tensile testing, Surface wettability test, Fourier transform-infrared spectroscopy (FTIR) measurement, Live-Dead cell staining assay, and CCK-8 assay. Especially, the oriented microgrooves on the inner surface of the TLVGs can promote human umbilical vein endothelial cells (HUVECs) directed growth and migration in favor of endothelialization. All results showed that the fabricated TLVGs with excellent physicochemical properties and biocompatibility has great potential in clinic application.
Collapse
Affiliation(s)
- Xiao Chen
- School of Mechatronics and Automation, Rapid Manufacturing Center, Shanghai University, Shanghai, China
| | - Yuan Yao
- School of Mechatronics and Automation, Rapid Manufacturing Center, Shanghai University, Shanghai, China
| | - Suihong Liu
- School of Mechatronics and Automation, Rapid Manufacturing Center, Shanghai University, Shanghai, China
| | - Qingxi Hu
- School of Mechatronics and Automation, Rapid Manufacturing Center, Shanghai University, Shanghai, China
| |
Collapse
|
47
|
Zhang Q, He S, Zhu X, Luo H, Gama M, Peng M, Deng X, Wan Y. Heparinization and hybridization of electrospun tubular graft for improved endothelialization and anticoagulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111861. [PMID: 33641887 DOI: 10.1016/j.msec.2020.111861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/05/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Constructing biomimetic structure and immobilizing antithrombus factors are two effective methods to ensure rapid endothelialization and long-term anticoagulation for small-diameter vascular grafts. However, few literatures are available regarding simultaneous implementation of these two strategies. Herein, a nano-micro-fibrous biomimetic graft with a heparin coating was prepared via a step-by-step in situ biosynthesis method to improve potential endothelialization and anticoagulation. The 4-mm-diameter tubular graft consists of electrospun cellulose acetate (CA) microfibers and entangled bacterial nanocellulose (BNC) nanofibers with heparin coating on dual fibers. The hybridized and heparinized graft possesses suitable pore structure that facilitates endothelia cells adhesion and proliferation but prevents infiltration of fibrous tissue and blood leakage. In addition, it shows higher mechanical properties than those of bare CA and hybridized CA/BNC grafts, which match well with native blood vessels. Moreover, this dually modified graft exhibits improved blood compatibility and endothelialization over the counterparts without hybridization or heparinization according to the testing results of platelet adhesion, cell morphology, and protein expression of von Willebrand Factor. This novel graft with dual modifications shows promising as a new small-diameter vascular graft. This study provides a guidance for promoting endothelialization and blood compatibility by dual modifications of biomimetic structure and immobilized bioactive molecules.
Collapse
Affiliation(s)
- Quanchao Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Shan He
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Xiangbo Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Miguel Gama
- Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, P 4715-057 Braga, Portugal
| | - Mengxia Peng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Xiaoyan Deng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
48
|
Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC, Jun HW. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev 2021; 170:142-199. [PMID: 33428994 PMCID: PMC7981266 DOI: 10.1016/j.addr.2021.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in arteries, leading to narrowing and thrombosis. It affects the heart, brain, and peripheral vessels and is the leading cause of mortality in the United States. Researchers have strived to design nanomaterials of various functions, ranging from non-invasive imaging contrast agents, targeted therapeutic delivery systems to multifunctional nanoagents able to target, diagnose, and treat atherosclerosis. Therefore, this review aims to summarize recent progress (2017-now) in the development of nanomaterials and their applications to improve atherosclerosis diagnosis and therapy during the preclinical and clinical stages of the disease.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Sean Martin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Brigitta C Brott
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
49
|
Dimopoulos A, Markatos DN, Mitropoulou A, Panagiotopoulos I, Koletsis E, Mavrilas D. A novel polymeric fibrous microstructured biodegradable small-caliber tubular scaffold for cardiovascular tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:21. [PMID: 33649939 PMCID: PMC7921057 DOI: 10.1007/s10856-021-06490-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Increasing morbidity of cardiovascular diseases in modern society has made it crucial to develop artificial small-caliber cardiovascular grafts for surgical intervention of diseased natural arteries, as alternatives to the gold standard autologous implants. Synthetic small-caliber grafts are still not in use due to increased risk of restenosis, lack of lumen re-endothelialization and mechanical mismatch, leading sometimes either to graft failure or to unsuccessful remodeling and pathology of the distal parts of the anastomosed healthy vascular tissues. In this work, we aimed to synthesize small-caliber polymeric (polycaprolactone) tissue-engineered vascular scaffolds that mimic the structure and biomechanics of natural vessels. Electrospinning was implemented to prepare microstructured polymeric membranes with controlled axis-parallel fiber alignment. Consequently, we designed small-caliber multilayer anisotropic biodegradable nanofibrous tubular scaffolds, giving attention to their radial compliance. Polycaprolactone scaffold morphology and mechanical properties were assessed, quantified, and compared with those of native vessels and commercial synthetic grafts. Results showed a highly hydrophobic scaffold material with a three-layered tubular morphology, 4-mm internal diameter/0.25 ± 0.09-mm thickness, consisting of predominantly axially aligned thin (1.156 ± 0.447 μm), homogeneous and continuous microfibers, with adequate (17.702 ± 5.369 μm) pore size, potentially able to promote cell infiltration in vivo. In vitro accelerated degradation showed a 5% mass loss within 17-25 weeks. Mechanical anisotropy was attained as a result, almost one order of magnitude difference of the elastic modulus (18 ± 3 MPa axially/1 ± 0.3 MPa circumferentially), like that of natural arterial walls. Furthermore, a desirable radial compliance (5.04 ± 0.82%, within the physiological pressure range) as well as cyclic stability of the tubular scaffold was achieved. Finally, cytotoxicity evaluation of the polymeric scaffolds revealed that the materials were nontoxic and did not release substances harmful to living cells (over 80% cell viability achieved).
Collapse
Affiliation(s)
- Andreas Dimopoulos
- Department of Mechanical Engineering and Aeronautics, Laboratory of Biomechanics and Biomedical Engineering, University of Patras, Patras, GR, Greece
| | - Dionysios N Markatos
- Department of Mechanical Engineering and Aeronautics, Laboratory of Biomechanics and Biomedical Engineering, University of Patras, Patras, GR, Greece
| | - Athina Mitropoulou
- Department of Mechanical Engineering and Aeronautics, Laboratory of Biomechanics and Biomedical Engineering, University of Patras, Patras, GR, Greece
| | - Ioannis Panagiotopoulos
- University Hospital, Cardiothoracic Surgery Clinic, University of Patras, Patras, GR, Greece
| | - Efstratios Koletsis
- University Hospital, Cardiothoracic Surgery Clinic, University of Patras, Patras, GR, Greece
| | - Dimosthenis Mavrilas
- Department of Mechanical Engineering and Aeronautics, Laboratory of Biomechanics and Biomedical Engineering, University of Patras, Patras, GR, Greece.
| |
Collapse
|
50
|
Lee H, Jang TS, Han G, Kim HW, Jung HD. Freeform 3D printing of vascularized tissues: Challenges and strategies. J Tissue Eng 2021; 12:20417314211057236. [PMID: 34868539 PMCID: PMC8638074 DOI: 10.1177/20417314211057236] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/17/2021] [Indexed: 11/26/2022] Open
Abstract
In recent years, freeform three-dimensional (3D) printing has led to significant advances in the fabrication of artificial tissues with vascularized structures. This technique utilizes a supporting matrix that holds the extruded printing ink and ensures shape maintenance of the printed 3D constructs within the prescribed spatial precision. Since the printing nozzle can be translated omnidirectionally within the supporting matrix, freeform 3D printing is potentially applicable for the fabrication of complex 3D objects, incorporating curved, and irregular shaped vascular networks. To optimize freeform 3D printing quality and performance, the rheological properties of the printing ink and supporting matrix, and the material matching between them are of paramount importance. In this review, we shall compare conventional 3D printing and freeform 3D printing technologies for the fabrication of vascular constructs, and critically discuss their working principles and their advantages and disadvantages. We also provide the detailed material information of emerging printing inks and supporting matrices in recent freeform 3D printing studies. The accompanying challenges are further discussed, aiming to guide freeform 3D printing by the effective design and selection of the most appropriate materials/processes for the development of full-scale functional vascularized artificial tissues.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Biomedical and Chemical
Engineering (BMCE), The Catholic University of Korea, Bucheon, Republic of
Korea
- Department of Biotechnology, The
Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Tae-Sik Jang
- Department of Materials Science and
Engineering, Chosun University, Gwangju, Republic of Korea
| | - Ginam Han
- Department of Biomedical and Chemical
Engineering (BMCE), The Catholic University of Korea, Bucheon, Republic of
Korea
- Department of Biotechnology, The
Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration
Engineering (ITREN), Dankook University, Cheonan, Chungcheongnam-do, Republic of
Korea
- Department of Biomaterials Science,
College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do, Republic of
Korea
- Department of Nanobiomedical Science
& BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook
University, Cheonan, Chungcheongnam-do, Republic of Korea
- Cell & Matter Institute, Dankook
University, Cheonan, Chungcheongnam-do, Republic of Korea
- Department of Regenerative Dental
Medicine, College of Dentistry, Dankook University, Cheonan, Chungcheongnam-do,
Republic of Korea
| | - Hyun-Do Jung
- Department of Biomedical and Chemical
Engineering (BMCE), The Catholic University of Korea, Bucheon, Republic of
Korea
- Department of Biotechnology, The
Catholic University of Korea, Bucheon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|