1
|
Sarkar R, Chatterjee R, Dutta S, Kumar S, Kumar S, Goswami C, Goswami L, Pal S, Bandyopadhyay A. Cytocompatible Hyperbranched Polyesters Capable of Altering the Ca 2+ Signaling in Neuronal Cells In Vitro. ACS APPLIED BIO MATERIALS 2024; 7:6682-6695. [PMID: 39388599 DOI: 10.1021/acsabm.4c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Synthetic hyperbranched polyesters with potential therapeutic properties were synthesized using the bifunctional polyethylene glycol or PEG with different molecular weights, ca., 4000, 6000, and 20,000 g/mol, and the trifunctional trans-aconitic acid or TAA. During polycondensation, a fixed amount of PEG was allowed to react with varying amounts of TAA (1:1 and 1:3) to control the branching extents. It was found that the synthetic polyesters had a considerable yield and were highly water soluble. Spectroscopic data (Fourier transform infrared and 1H NMR) confirmed the polyester formation; the branching percentages were determined from 1H NMR spectroscopy which varied from 73% to 22% among the synthesized samples. As the molecular weight of PEG was increased, the branching percentage drastically dropped. All polyesters were found to be negatively charged due to the ionization of unreacted -COOH in the branched ends at the working pH (7.4). Both the hydrodynamic size and intrinsic viscosity were found to reduce as the branching extent increased. Among the sets of polyesters, the one with the highest branching percentage (73%) showed the core-shell morphology (evident from field emission scanning electron microscopy and transmission electron microscopy studies). It also exhibited the highest efficiency toward Ca2+ influx in neuronal cells due to the unique morphology and the negatively charged surface. Nevertheless, this particular grade of polyester along with all the other grades was cytocompatible and induced reactive oxygen species generation. Since the maximally branched grade was highly efficient in altering the Ca2+ signaling through stronger influx, it may well be tested for treating neuronal disorders in vivo in future.
Collapse
Affiliation(s)
- Reetika Sarkar
- Department of Polymer Science and Technology, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Rahul Chatterjee
- Department of Polymer Science and Technology, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Sonai Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Satish Kumar
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda 752050, Odisha, India
| | - Shamit Kumar
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda 752050, Odisha, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research Bhubaneswar, P.O. Jatni, Khurda 752050, Odisha, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Luna Goswami
- School of Biotechnology and School of Chemical Technology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Sagar Pal
- Department of Chemistry, Indian Institute of Technology (ISM) Dhanbad 826004, Jharkhand, India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
2
|
Wang X, Wang YQ, Wu DC. Facile Fabrication of Hyperbranched Polyacetal Quaternary Ammonium with pH-Responsive curcumin Release for Synergistic Antibacterial Activity. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2884-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
3
|
Sengupta S, Singh A, Dutta K, Sahu RP, Kumar S, Goswami C, Chawla S, Goswami L, Bandyopadhyay A. Branched/Hyperbranched Copolyesters from Poly(vinyl alcohol) and Citric Acid as Delivery Agents and Tissue Regeneration Scaffolds. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Srijoni Sengupta
- Department of Polymer Science & Technology University of Calcutta 92, A.P.C. Road Kolkata 700009 India
| | - Abhishek Singh
- KIIT School of Biotechnology Kalinga Institute of Industrial Technology KIIT Road, Patia Bhubaneswar Odisha 751024 India
| | - Koushik Dutta
- Department of Polymer Science & Technology University of Calcutta 92, A.P.C. Road Kolkata 700009 India
| | - Ram Prasad Sahu
- School of Biological Science National Institute of Science Education and Research P.O. Jatni, Khurda Bhubaneswar Odisha 752050 India
| | - Satish Kumar
- KIIT School of Biotechnology Kalinga Institute of Industrial Technology KIIT Road, Patia Bhubaneswar Odisha 751024 India
| | - Chandan Goswami
- School of Biological Science National Institute of Science Education and Research P.O. Jatni, Khurda Bhubaneswar Odisha 752050 India
| | - Saurabh Chawla
- School of Biological Science National Institute of Science Education and Research P.O. Jatni, Khurda Bhubaneswar Odisha 752050 India
| | - Luna Goswami
- Department of Chemical Technology Kalinga Institute of Industrial Technology KIIT Road, Patia Bhubaneswar Odisha 751024 India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science & Technology University of Calcutta 92, A.P.C. Road Kolkata 700009 India
| |
Collapse
|
4
|
Xiong W, Lan Q, Liang X, Zhao J, Huang H, Zhan Y, Qin Z, Jiang X, Zheng L. Cartilage-targeting poly(ethylene glycol) (PEG)-formononetin (FMN) nanodrug for the treatment of osteoarthritis. J Nanobiotechnology 2021; 19:197. [PMID: 34217311 PMCID: PMC8254262 DOI: 10.1186/s12951-021-00945-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Intra-articular (IA) injection is an efficient treatment for osteoarthritis, which will minimize systemic side effects. However, the joint experiences rapid clearance of therapeutics after intra-articular injection. Delivering system modified through active targeting strategies to facilitate localization within specific joint tissues such as cartilage is hopeful to increase the therapeutic effects. In this study, we designed a nanoscaled amphiphilic and cartilage-targeting polymer-drug delivery system by using formononetin (FMN)-poly(ethylene glycol) (PEG) (denoted as PCFMN), which was prepared by PEGylation of FMN followed by coupling with cartilage-targeting peptide (CollBP). Our results showed that PCFMN was approximately regular spherical with an average diameter about 218 nm. The in vitro test using IL-1β stimulated chondrocytes indicated that PCFMN was biocompatible and upregulated anabolic genes while simultaneously downregulated catabolic genes of the articular cartilage. The therapeutic effects in vivo indicated that PCFMN could effectively attenuate the progression of OA as evidenced by immunohistochemical staining and histological analysis. In addition, PCFMN showed higher intention time in joints and better anti-inflammatory effects than FMN, indicating the efficacy of cartilage targeting nanodrug on OA. This study may provide a reference for clinical OA therapy.
Collapse
Affiliation(s)
- Wei Xiong
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Qiumei Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaonan Liang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Hanji Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Yanting Zhan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| | - Xianfang Jiang
- Department of Oral Radiology, Guangxi Medical University College of Stomatology, Nanning, 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
5
|
Long J, Etxeberria AE, Nand AV, Bunt CR, Ray S, Seyfoddin A. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109873. [DOI: 10.1016/j.msec.2019.109873] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 01/24/2023]
|