1
|
Gökmen GG, Mirsafi FS, Leißner T, Akan T, Mishra YK, Kışla D. Zinc oxide nanomaterials: Safeguarding food quality and sustainability. Compr Rev Food Sci Food Saf 2024; 23:e70051. [PMID: 39530622 DOI: 10.1111/1541-4337.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/17/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
In this era, where food safety and sustainability are paramount concerns, the utilization of zinc oxide (ZnO) nanoparticles (NPs) is a promising solution to enhance the safety, quality, and sustainability of food products. ZnO NPs in the food industry have evolved significantly over time, reflecting advancements in synthesizing methods, antimicrobial activities, and risk assessment considerations for human health and the environment. This comprehensive review delves into the historical trajectory, current applications, and prospects of ZnO NPs in food-related contexts. Synthesizing methods, ranging from solvothermal and solgel techniques to laser ablation and microfluidic reactors, have facilitated the production of ZnO NPs with tailored properties suited for diverse food applications. The remarkable antimicrobial activity of ZnO NPs against a wide spectrum of pathogens has garnered attention for their potential to enhance food safety and extend shelf-life. Furthermore, comprehensive risk assessment methodologies have been employed to evaluate the potential impacts of ZnO NPs on human health and the environment, regarding toxicity, migration, and ecological implications. By navigating the intricate interplay between synthesis methods, antimicrobial efficacy, inhibitory mechanisms, and risk assessment protocols, by elucidating the multifaceted role of ZnO NPs in shaping the past, present, and future of the food industry, this review offers valuable insights and promising avenues for researchers, policymakers, and industry stakeholders to enhance food safety, quality, and sustainability.
Collapse
Affiliation(s)
- Gökhan Gurur Gökmen
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Bornova, Turkey
| | - Fatemeh Sadat Mirsafi
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Till Leißner
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Tamer Akan
- Department of Physics, Faculty of Science, Eskisehir Osmangazi University, Eskisehir, Odunpazarı, Turkey
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Sønderborg, Denmark
| | - Duygu Kışla
- Department of Food Engineering, Faculty of Engineering, Ege University, Izmir, Bornova, Turkey
| |
Collapse
|
2
|
Vagena IA, Gatou MA, Theocharous G, Pantelis P, Gazouli M, Pippa N, Gorgoulis VG, Pavlatou EA, Lagopati N. Functionalized ZnO-Based Nanocomposites for Diverse Biological Applications: Current Trends and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:397. [PMID: 38470728 PMCID: PMC10933906 DOI: 10.3390/nano14050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The wide array of structures and characteristics found in ZnO-based nanostructures offers them a versatile range of uses. Over the past decade, significant attention has been drawn to the possible applications of these materials in the biomedical field, owing to their distinctive electronic, optical, catalytic, and antimicrobial attributes, alongside their exceptional biocompatibility and surface chemistry. With environmental degradation and an aging population contributing to escalating healthcare needs and costs, particularly in developing nations, there's a growing demand for more effective and affordable biomedical devices with innovative functionalities. This review delves into particular essential facets of different synthetic approaches (chemical and green) that contribute to the production of effective multifunctional nano-ZnO particles for biomedical applications. Outlining the conjugation of ZnO nanoparticles highlights the enhancement of biomedical capacity while lowering toxicity. Additionally, recent progress in the study of ZnO-based nano-biomaterials tailored for biomedical purposes is explored, including biosensing, bioimaging, tissue regeneration, drug delivery, as well as vaccines and immunotherapy. The final section focuses on nano-ZnO particles' toxicity mechanism with special emphasis to their neurotoxic potential, as well as the primary toxicity pathways, providing an overall review of the up-to-date development and future perspectives of nano-ZnO particles in the biomedicine field.
Collapse
Affiliation(s)
- Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Giorgos Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National Kapodistrian University of Athens (NKUA), 15771 Athens, Greece;
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Kalimuthu R, Meenachi Sellan K, Antony D, Rajaprakasam S, Chokkalingam V, Chidambaram P, Kanagarajan S. Nanopriming Action of Microwave-Assisted Biofunctionalized ZnO Nanoparticles to Enhance the Growth under Moisture Stress in Vigna radiata. ACS OMEGA 2023; 8:28143-28155. [PMID: 37576682 PMCID: PMC10413846 DOI: 10.1021/acsomega.3c01329] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
Bare and stabilized zinc oxide nanoparticles (ZnO NPs) were prepared by a microwave-assisted method and used as a priming agent to improve the morphological, physiological, and biochemical quality of Vigna radiata. The priming action was made under normal and moisture stress conditions. A microwave reactor of 850 watts power was used to heat 30 mL of a nanocolloidal solution at 140 °C for 20 min. The stable spherical ZnO NPs at 50.4 mV with 28.2 nm particle size were generated and capped with different biomolecules, cysteine and PVA, to get biostabilized ZnO NPs at 48.8 and 108.5 nm with ζ potentials of -56.2 and -52.0 mV, respectively, holding distinct morphology. The nanopriming effect was studied in V. radiata seeds for bare ZnO and capped ZnO NPs under normal and moisture stress environments. Cysteine-capped ZnO NPs at 250 ppm showed improved germination (90 and 76%), radicle growth (7.6 and 3.6 cm), seedling Vigor (3064 and 1816), dry matter production (145.06 and 96.92 mg/25 seedlings), and hydrolytic (α-amylase and protease) and antioxidant (peroxidase and superoxide dismutase) enzyme activity under normal and moisture stress conditions. The improved priming action of cysteine-capped ZnO NPs is due to increased cell elongation and cell division in the radicle. The uptake and translocation of ZnO NPs in the V. radiata root are evidenced by the presence of an 11.4 ppm zinc level, which was also supported by EDAX and FITC labeling results.
Collapse
Affiliation(s)
- Raja Kalimuthu
- Anbil
Dharmalingam Agricultural College & Research Institute, TNAU, Trichy 620027, Tamil Nadu, India
| | | | - Dhivya Antony
- Department
of Chemistry, Dhanalakshmi Srinivasan Arts
and Science (co-education) College (Affiliated to University of Madras), Mamallapuram, Chennai 603104, Tamil
Nadu, India
| | - Sudhagar Rajaprakasam
- Plant
Breeding and Genetics, Tamil Nadu Agricultural
University, TNAU, Coimbatore 641 003, India
| | - Vanniarajan Chokkalingam
- Anbil
Dharmalingam Agricultural College & Research Institute, TNAU, Trichy 620027, Tamil Nadu, India
| | - Prabu Chidambaram
- Department
of Environmental Science, Tamil Nadu Agricultural
University, Coimbatore 641 003, India
| | - Selvaraju Kanagarajan
- Department
of Plant Breeding, Swedish University of
Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| |
Collapse
|
4
|
Size-dependent antibacterial of carbon dots by selective absorption and differential oxidative stress of bacteria. J Colloid Interface Sci 2023; 634:44-53. [PMID: 36528970 DOI: 10.1016/j.jcis.2022.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Carbon dots (CDs), as one kind of zero-dimensional carbon-based nanomaterials, show great potential in combating emerging infectious diseases and antimicrobial infections. CDs with outstanding optical properties and benign biocompatibility have been reported as excellent antibacterial agents. However, few reports were focused on the relationship between the CDs' size and their antibacterial activity. Herein, the desired CDs (VCDs) were fabricated by a one-step electrochemical oxidation method using l-ascorbic acid as raw material, and four types of VCDs with different sizes were obtained by adjusting the reaction times. The effectiveness of antibacterial activity demonstrates the VCDs display size-dependent antibacterial activity, where the VCDs-2 (average size: 2.92 nm) exhibit superior antibacterial activity to others, attributing to the synergy of the absorption capacity of bacteria to VCDs and the ROS stimulated by VCDs. The VCDs-2 could more easily penetrate bacterial cells, stimulate the production of ROS, damage the cell walls of E. coli, and inhibit the growth and reproduction of bacteria. This work helps to understand the effect of CDs' size on antibacterial properties, and provides a direction for the design of novel antimicrobials with drug resistance.
Collapse
|
5
|
Kokila GN, Mallikarjunaswamy C, Ranganatha VL. A review on synthesis and applications of versatile nanomaterials. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- G. N. Kokila
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | - C. Mallikarjunaswamy
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, India
| | | |
Collapse
|
6
|
Dutta G, Sugumaran A. Bioengineered zinc oxide nanoparticles: Chemical, green, biological fabrication methods and its potential biomedical applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Ag-loaded and Pd-loaded ZnO nanofiber membranes: preparation via electrospinning and application in photocatalytic antibacterial and dye degradation. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Kumar A, Choudhary A, Kaur H, Mehta S, Husen A. Metal-based nanoparticles, sensors, and their multifaceted application in food packaging. J Nanobiotechnology 2021; 19:256. [PMID: 34446005 PMCID: PMC8393480 DOI: 10.1186/s12951-021-00996-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/13/2021] [Indexed: 02/04/2023] Open
Abstract
Due to the global rise of the human population, one of the top-most challenges for poor and developing nations is to use the food produces safely and sustainably. In this regard, the storage of surplus food (and derived products) without loss of freshness, nutrient stability, shelf life, and their parallel efficient utilization will surely boost the food production sector. One of the best technologies that have emerged within the last twenty years with applications in the packaging of food and industrial materials is the use of green mode-based synthesized nanoparticles (NPs). These NPs are stable, advantageous as well as eco-friendly. Over the several years, numerous publications have confirmed that these NPs exert antibacterial, antioxidant, and antifungal activity against a plethora of pathogens. The storage in metal-based NPs (M-NPs) does not hamper the food properties and packaging efficiency. Additionally, these M-NPs help in the improvement of properties including freshness indicators, mechanical properties, antibacterial and water vapor permeability during food packaging. As a result, the nano-technological application facilitates a simple, alternate, interactive as well as reliable technology. It even provides positive feedback to food industries and packaging markets. Taken together, the current review paper is an attempt to highlight the M-NPs for prominent applications of antimicrobial properties, nanosensors, and food packaging of food items. Additionally, some comparative reports associated with M-NPs mechanism of action, risks, toxicity, and overall future perspectives have also been made.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004 India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Azamal Husen
- Wolaita Sodo University, P.O. Box: 138, Wolaita, Ethiopia
| |
Collapse
|
9
|
Alharthi MN, Ismail I, Bellucci S, Khdary NH, Abdel Salam M. Biosynthesis Microwave-Assisted of Zinc Oxide Nanoparticles with Ziziphus jujuba Leaves Extract: Characterization and Photocatalytic Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1682. [PMID: 34206802 PMCID: PMC8307762 DOI: 10.3390/nano11071682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022]
Abstract
The present work is intended to biosynthesize zinc oxide nanoparticles (ZnO NPs) via facile and modern route using aqueous Ziziphus jujuba leaves extract assisted by microwave and explore their photocatalytic degradation of methyl orange anionic dye and methylene blue cationic dye under solar irradiation. The biosynthesized microwave assisted ZnO NPs were characterized and the results showed that ZnO NPs contain hexagonal wurtzite and characterized with a well-defined spherical-like shape with an outstanding band gap (2.70 eV), average particle size of 25 nm and specific surface area of 11.4 m2/g. The photocatalytic degradation of the MO and MB dyes by biosynthesized ZnO NPs under solar irradiation was studied and the results revealed the selective nature of the ZnO NPs for the adsorption and further photocatalytic degradation of the MO dye compared to the MB dye. In addition, the photocatalytic degradation of MO and MB dyes by the ZnO NPs under solar radiation was fitted by the first-order kinetics. Moreover, the photodegradation mechanism proposed that superoxide ions and hydroxyl radicals are the main reactive species.
Collapse
Affiliation(s)
- Maymounah N. Alharthi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (M.N.A.); (I.I.)
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Iqbal Ismail
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (M.N.A.); (I.I.)
| | - Stefano Bellucci
- National Laboratories of Frascati, National Institute of Nuclear Physics, I-00044 Frascati, Italy;
| | - Nezar H. Khdary
- King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Mohamed Abdel Salam
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia; (M.N.A.); (I.I.)
| |
Collapse
|
10
|
Mostafavi A, Abdullah T, Russell CS, Mostafavi E, Williams TJ, Salah N, Alshahrie A, Harris S, Basri SMM, Mishra YK, Webster TJ, Memic A, Tamayol A. In situ printing of scaffolds for reconstruction of bone defects. Acta Biomater 2021; 127:313-326. [PMID: 33705990 DOI: 10.1016/j.actbio.2021.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023]
Abstract
Bone defects are commonly caused by traumatic injuries and tumor removal and critically sized defects overwhelm the regenerative capacity of the native tissue. Reparative strategies such as auto, xeno, and allografts have proven to be insufficient to reconstruct and regenerate these defects. For the first time, we introduce the use of handheld melt spun three dimensional printers that can deposit materials directly within the defect site to properly fill the cavity and form free-standing scaffolds. Engineered composite filaments were generated from poly(caprolactone) (PCL) doped with zinc oxide nanoparticles and hydroxyapatite microparticles. The use of PCL-based materials allowed low-temperature printing to avoid overheating of the surrounding tissues. The in situ printed scaffolds showed moderate adhesion to wet bone tissue, which can prevent scaffold dislocation. The printed scaffolds showed to be osteoconductive and supported the osteodifferentiation of mesenchymal stem cells. Biocompatibility of the scaffolds upon in vivo printing subcutaneously in mice showed promising results. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Azadeh Mostafavi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | | | - Carina S Russell
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States
| | - Tyrell J Williams
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | - Numan Salah
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Alshahrie
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Seth Harris
- Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
| | | | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, Denmark
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Ali Tamayol
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States; Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, United States.
| |
Collapse
|
11
|
Pardo-Figuerez M, Chiva-Flor A, Figueroa-Lopez K, Prieto C, Lagaron JM. Antimicrobial Nanofiber Based Filters for High Filtration Efficiency Respirators. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:900. [PMID: 33915897 PMCID: PMC8067087 DOI: 10.3390/nano11040900] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023]
Abstract
Electrospinning has been used to develop and upscale polyacrylonitrile (PAN) nanofibers as effective aerosol filtration materials for their potential use in respirators. The fibers were deposited onto non-woven spunbond polypropylene (SPP) and the basis weight (grammage, g/m2) was varied to assess the resulting effect on filtration efficiency and breathing resistance of the materials. The results indicated that a basis weight in excess of 0.4 g/m2 of PAN electrospun fibers yielded a filtration efficiency over 97%, with breathing resistance values that increased proportionally with the amount of basis weight added. With the aim of retaining filter efficiency whilst lowering breathing resistance, the basis weight of 0.4 g/m2 and 0.8 g/m2 of PAN electrospun fibers were strategically split up and stacked with SPP in different configurations. The results suggested that a symmetric structure based on SPP/PAN/PAN/SPP was the optimal structure, as it reduces SPP consumption while maintaining an FFP2-type of filtration efficiency, while reducing breathing resistance, specially at high air flow rates, such as those mimicking FFP2 exhalation conditions. The incorporation of zinc oxide (ZnO) nanoparticles within the electrospun nanofibers in the form of nanocomposites, retained the high filtration characteristics of the unfilled filter, while exhibiting a strong bactericidal capacity, even after short contact times. This study demonstrates the potential of using the symmetric splitting of the PAN nanofibers layer as a somewhat more efficient configuration in the design of filters for respirators.
Collapse
Affiliation(s)
- Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.P.-F.); (K.F.-L.); (C.P.)
- Bioinicia S.L., R & D Department, Calle Algepser, 65 Nave 3, 46980 Paterna, Spain;
| | - Alberto Chiva-Flor
- Bioinicia S.L., R & D Department, Calle Algepser, 65 Nave 3, 46980 Paterna, Spain;
| | - Kelly Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.P.-F.); (K.F.-L.); (C.P.)
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.P.-F.); (K.F.-L.); (C.P.)
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain; (M.P.-F.); (K.F.-L.); (C.P.)
| |
Collapse
|
12
|
Zare EN, Zheng X, Makvandi P, Gheybi H, Sartorius R, Yiu CKY, Adeli M, Wu A, Zarrabi A, Varma RS, Tay FR. Nonspherical Metal-Based Nanoarchitectures: Synthesis and Impact of Size, Shape, and Composition on Their Biological Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007073. [PMID: 33710754 DOI: 10.1002/smll.202007073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Metal-based nanoentities, apart from being indispensable research tools, have found extensive use in the industrial and biomedical arena. Because their biological impacts are governed by factors such as size, shape, and composition, such issues must be taken into account when these materials are incorporated into multi-component ensembles for clinical applications. The size and shape (rods, wires, sheets, tubes, and cages) of metallic nanostructures influence cell viability by virtue of their varied geometry and physicochemical interactions with mammalian cell membranes. The anisotropic properties of nonspherical metal-based nanoarchitectures render them exciting candidates for biomedical applications. Here, the size-, shape-, and composition-dependent properties of nonspherical metal-based nanoarchitectures are reviewed in the context of their potential applications in cancer diagnostics and therapeutics, as well as, in regenerative medicine. Strategies for the synthesis of nonspherical metal-based nanoarchitectures and their cytotoxicity and immunological profiles are also comprehensively appraised.
Collapse
Affiliation(s)
| | - Xuanqi Zheng
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Homa Gheybi
- Institute of Polymeric Materials and Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, 53318-17634, Iran
| | - Rossella Sartorius
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, 80131, Italy
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong SAR, China
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad, 68151-44316, Iran
| | - Aimin Wu
- Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacký University in Olomouc, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
13
|
Morphology-Controlled Synthesis of ZnO Nanostructures for Caffeine Degradation and Escherichia coli Inactivation in Water. Catalysts 2021. [DOI: 10.3390/catal11010063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photocatalytic and antibacterial activity of nanoparticles are strongly governed by their morphology. By varying the type of solvent used, one can obtain different shapes of ZnO nanoparticles and tune the amount of reactive oxygen species (ROS) and metal ion (Zn2+) generation, which in turn dictates their activity. ZnO nanostructures were fabricated via facile wet chemical method by varying the type of solvents. Solar light assisted photocatalytic degradation of caffeine and antibacterial activity against E. coli were examined in presence ZnO nanostructures. In addition to an elaborate nanoparticle characterization, adsorption and kinetic experiments were performed to determine the ability of nanostructures to degrade caffeine. Zone of inhibition, time kill assay and electron microscopy imaging were carried out to assess the antibacterial activity. Experimental findings indicate that ZnO nanospheres generated maximum ROS and Zn2+ ions followed by ZnO nanopetals and ZnO nanorods. As a result, ZnO nanospheres exhibited highest degradation of caffeine as well as killing of E. coli. While ROS is mainly responsible for the photocatalytic activity of nanostructures, their antibacterial activity is mostly due to the combination of ROS, metal ion, physical attrition and cell internalization.
Collapse
|
14
|
Size-controlled, single-crystal CuO nanosheets and the resulting polyethylene–carbon nanotube nanocomposite as antimicrobial materials. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03112-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Abudula T, Qurban RO, Bolarinwa SO, Mirza AA, Pasovic M, Memic A. 3D Printing of Metal/Metal Oxide Incorporated Thermoplastic Nanocomposites With Antimicrobial Properties. Front Bioeng Biotechnol 2020; 8:568186. [PMID: 33042969 PMCID: PMC7523645 DOI: 10.3389/fbioe.2020.568186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) printing has experienced a steady increase in popularity for direct manufacturing, where complex geometric items can be produced without the aid of templating tools, and manufacturing waste can be remarkably reduced. While customized medical devices and daily life items can be made by 3D printing of thermoplastics, microbial contamination has been a serious obstacle during their usage. A very clever approaches to overcome this challenge is to incorporate antimicrobial metal or metal oxide (M/MO) nanoparticles within the thermoplastics during or prior to 3D printing. Many M/MO nanoparticles can prevent contamination from a wide range of microorganism, including antibiotic-resistant bacteria via various antimicrobial mechanisms. Additionally, they can be easily printed with thermoplastic without losing their integrity and functionality. In this mini review, we summarize recent advancements and discuss future trends related to the development of 3D printed antimicrobial thermoplastic nanocomposites by addition of M/MO nanoparticles.
Collapse
Affiliation(s)
| | - Rayyan O Qurban
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherifdeen O Bolarinwa
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A Mirza
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mirza Pasovic
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Khan FU, Khan ZUH, Ma J, Khan AU, Sohail M, Chen Y, Yang Y, Pan X. An Astragalus membranaceus based eco-friendly biomimetic synthesis approach of ZnO nanoflowers with an excellent antibacterial, antioxidant and electrochemical sensing effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111432. [PMID: 33255026 DOI: 10.1016/j.msec.2020.111432] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Nowadays featuring outstanding eco-friendliness, the phytochemical fabrication method of nanostructures is very popular. Here, we propose to utilize the Astragalus membranaceus extract as the reducing and capping agent to stabilize the metal and to avoid the aggregations of nanoparticles during ZnO nanoflowers synthesis procedure. As a result, the whole fabrication procedure was highly efficient and cost-effective without requiring a special environment of high pressure or elevated temperature and without chemical hazards used or produced. After the fabrication, detailed characterization about material morphology and crystal structure was carried out, including scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscope (FTIR). Moreover, the ZnO nanoflowers demonstrated distinctive antibacterial, antioxidant and electrochemical sensing effect. Specifically, ZnO nanoflowers had an antibacterial inhibition zone of 19(±0.7) and 15(±0.8) mm in diameter against the concentration of 50 μL (1 mg/mL) Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), which is greatly improved compared to the reference drug (Kanamycin). Besides, antioxidant activity was also tested using H2O2 free radical scavenging assay and 60% 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition of 0.5 mg/mL was reported. Finally, controlled by the diffusion process during the charge transfer procedure, 4-nitorphenol was dramatically reduced and a limit of detection of 0.08 μM by ZnO nanoflowers modified electrode was observed during the cyclic voltammetry (CV) experiment. Because the phenolic compounds originating from Astragalus membranaceus helped to facilitate the electron transfer, the limit of detection was lower compared to other materials, such as copper oxide nanoparticles (Cu2O-NPs), silicon dioxide/silver nanoparticles (SiO2/Ag-NPs), zinc oxide nanoparticles (ZnO-NPs), activated carbon (AC) and cobalt oxide nanocubes (Co3O4). Therefore, featuring easy operation, low-cost and eco-friendliness, our proposed ZnO nanoflowers fabrication method will have a great potential in biomedical and electro-catalytic fields.
Collapse
Affiliation(s)
- Faheem Ullah Khan
- College of Electronics and Information Engineering, Shenzhen University, Guangdong Province 518000, China
| | - Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus,61100, Pakistan
| | - Junxian Ma
- College of Electronics and Information Engineering, Shenzhen University, Guangdong Province 518000, China
| | - Arif Ullah Khan
- Beijing Advanced Innovation Center for Soft Matter Science & Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Muhammad Sohail
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - Yongmei Chen
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment & Accident Analysis, Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yatao Yang
- College of Electronics and Information Engineering, Shenzhen University, Guangdong Province 518000, China.
| | - Xiaofang Pan
- College of Electronics and Information Engineering, Shenzhen University, Guangdong Province 518000, China.
| |
Collapse
|
17
|
Wojnarowicz J, Chudoba T, Lojkowski W. A Review of Microwave Synthesis of Zinc Oxide Nanomaterials: Reactants, Process Parameters and Morphoslogies. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1086. [PMID: 32486522 PMCID: PMC7353225 DOI: 10.3390/nano10061086] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022]
Abstract
Zinc oxide (ZnO) is a multifunctional material due to its exceptional physicochemical properties and broad usefulness. The special properties resulting from the reduction of the material size from the macro scale to the nano scale has made the application of ZnO nanomaterials (ZnO NMs) more popular in numerous consumer products. In recent years, particular attention has been drawn to the development of various methods of ZnO NMs synthesis, which above all meet the requirements of the green chemistry approach. The application of the microwave heating technology when obtaining ZnO NMs enables the development of new methods of syntheses, which are characterised by, among others, the possibility to control the properties, repeatability, reproducibility, short synthesis duration, low price, purity, and fulfilment of the eco-friendly approach criterion. The dynamic development of materials engineering is the reason why it is necessary to obtain ZnO NMs with strictly defined properties. The present review aims to discuss the state of the art regarding the microwave synthesis of undoped and doped ZnO NMs. The first part of the review presents the properties of ZnO and new applications of ZnO NMs. Subsequently, the properties of microwave heating are discussed and compared with conventional heating and areas of application are presented. The final part of the paper presents reactants, parameters of processes, and the morphology of products, with a division of the microwave synthesis of ZnO NMs into three primary groups, namely hydrothermal, solvothermal, and hybrid methods.
Collapse
Affiliation(s)
- Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; (T.C.); (W.L.)
| | | | | |
Collapse
|
18
|
Figueroa-Lopez KJ, Torres-Giner S, Enescu D, Cabedo L, Cerqueira MA, Pastrana LM, Lagaron JM. Electrospun Active Biopapers of Food Waste Derived Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) with Short-Term and Long-Term Antimicrobial Performance. NANOMATERIALS 2020; 10:nano10030506. [PMID: 32168913 PMCID: PMC7153266 DOI: 10.3390/nano10030506] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/01/2023]
Abstract
This research reports about the development by electrospinning of fiber-based films made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) derived from fermented fruit waste, so-called bio-papers, with enhanced antimicrobial performance. To this end, different combinations of oregano essential oil (OEO) and zinc oxide nanoparticles (ZnONPs) were added to PHBV solutions and electrospun into mats that were, thereafter, converted into homogeneous and continuous films of ~130 μm. The morphology, optical, thermal, mechanical properties, crystallinity, and migration into food simulants of the resultant PHBV-based bio-papers were evaluated and their antimicrobial properties were assessed against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in both open and closed systems. It was observed that the antimicrobial activity decreased after 15 days due to the release of the volatile compounds, whereas the bio-papers filled with ZnONPs showed high antimicrobial activity for up to 48 days. The electrospun PHBV biopapers containing 2.5 wt% OEO + 2.25 wt% ZnONPs successfully provided the most optimal activity for short and long periods against both bacteria.
Collapse
Affiliation(s)
- Kelly J. Figueroa-Lopez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain;
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain;
- Correspondence: (S.T.-G.); (J.M.L.); Tel.: +34-963-900-022 (S.T.-G.); +34-963-900-022 (J.M.L.)
| | - Daniela Enescu
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (D.E.); (M.A.C.); (L.M.P.)
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat s/n, 12071 Castellón, Spain;
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (D.E.); (M.A.C.); (L.M.P.)
| | - Lorenzo M. Pastrana
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (D.E.); (M.A.C.); (L.M.P.)
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain;
- Correspondence: (S.T.-G.); (J.M.L.); Tel.: +34-963-900-022 (S.T.-G.); +34-963-900-022 (J.M.L.)
| |
Collapse
|
19
|
Jatoi AW, Kim IS, Ogasawara H, Ni QQ. Characterizations and application of CA/ZnO/AgNP composite nanofibers for sustained antibacterial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110077. [PMID: 31546450 DOI: 10.1016/j.msec.2019.110077] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 11/30/2022]
Abstract
Although silver based nanofibers possess excellent bactericidal and bacteriostatic characteristics. However, excess release/contact with silver may induce harmful side-effects including carcinoma, argyria, argyrosis and allergies. Similarly, silver depletion may limit prolonged antibacterial activities as well. Thus present research proposes electrospun CA/ZnO/AgNPs composite nanofibers for biologically safer and sustained antibacterial applications. The ZnO/AgNPs were synthesized using dopamine hydrochloride (Dopa) as reducing agent to immobilize AgNPs on ZnO nanoparticles. A simple solution-mixing procedure effectively generated AgNPs on ZnO nanoparticles. Strong adhesive characteristics of Dopa initiate adsorption of silver ions on ZnO nanoparticle surfaces and its metal ion reducing properties generate AgNPs. Additionally, the Dopa mediation generates strongly adhered AgNPs. The ZnO/AgNPs were used to fabricate CA/ZnO/AgNPs nanofibers. Characterization techniques, XRD, XPS, TEM, FTIR and SEM confirmed synthesis of nanocomposites. Crystallite sizes of ZnO and AgNPs calculated by Debye-Scherrer equation were 17.85 nm and 11.68 nm respectively. Antibacterial assays confirmed CA/ZnO/AgNP's effectiveness in growth inhibition of E. coli and S. aureus strains on agar plate and in liquid medium. The nanofiber composites demonstrated 100% bactericidal properties against both the test strains. Bacterial growth inhibition in LB medium for 108 h indicated suitability of CA/ZnO/AgNPs composite nanofibers in sustained antibacterial applications such as antibacterial wound dressings and other applications demanding sustained antimicrobial properties.
Collapse
Affiliation(s)
- Abdul Wahab Jatoi
- Bioscience and Textile Technology Department, Shinshu University, Ueda, Nagano, Japan; Department of Textile Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan.
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano Prefecture 386-8567, Japan.
| | - Hiroshi Ogasawara
- Division of Gene Research, Center of Research for Supports Advanced Science, Department of Life Sciences, Shinshu University, Tokida, 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Qing-Qing Ni
- Department of Mechanical Engineering and Robotics, Shinshu University, Tokida 3-15-1, Ueda, Nagano Prefecture 386-8567, Japan.
| |
Collapse
|