1
|
Choi J, Jung JC, Jung W. Advances in Carbon Xerogels: Structural Optimization for Enhanced EDLC Performance. Gels 2024; 10:400. [PMID: 38920946 PMCID: PMC11203384 DOI: 10.3390/gels10060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024] Open
Abstract
This review explores the recent progress on carbon xerogels (CXs) and highlights their development and use as efficient electrodes in organic electric double-layer capacitors (EDLCs). In addition, this work examines how the adjustment of synthesis parameters, such as pH, polymerization duration, and the reactant-to-catalyst ratio, crucially affects the structure and electrochemical properties of xerogels. The adaptability of xerogels in terms of modification of their porosity and structure plays a vital role in the improvement of EDLC applications as it directly influences the interaction between electrolyte ions and the electrode surface, which is a key factor in determining EDLC performance. The review further discusses the substantial effects of chemical activation with KOH on the improvement of the porous structure and specific surface area, which leads to notable electrochemical enhancements. This structural control facilitates improvement in ion transport and storage, which are essential for efficient EDLC charge-discharge (C-D) cycles. Compared with commercial activated carbons for EDLC electrodes, CXs attract interest for their superior surface area, lower electrical resistance, and stable performance across diverse C-D rates, which underscore their promising potential in EDLC applications. This in-depth review not only summarizes the advancements in CX research but also highlights their potential to expand and improve EDLC applications and demonstrate the critical role of their tunable porosity and structure in the evolution of next-generation energy storage systems.
Collapse
Affiliation(s)
- Jongyun Choi
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea;
| | - Ji Chul Jung
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea;
| | - Wonjong Jung
- Department of Mechanical, Smart, and Industrial Engineering, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
2
|
Abdul Khalil HPS, Yahya EB, Tajarudin HA, Balakrishnan V, Nasution H. Insights into the Role of Biopolymer-Based Xerogels in Biomedical Applications. Gels 2022; 8:334. [PMID: 35735678 PMCID: PMC9222565 DOI: 10.3390/gels8060334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022] Open
Abstract
Xerogels are advanced, functional, porous materials consisting of ambient, dried, cross-linked polymeric networks. They possess characteristics such as high porosity, great surface area, and an affordable preparation route; they can be prepared from several organic and inorganic precursors for numerous applications. Owing to their desired properties, these materials were found to be suitable for several medical and biomedical applications; the high drug-loading capacity of xerogels and their ability to maintain sustained drug release make them highly desirable for drug delivery applications. As biopolymers and chemical-free materials, they have been also utilized in tissue engineering and regenerative medicine due to their high biocompatibility, non-immunogenicity, and non-cytotoxicity. Biopolymers have the ability to interact, cross-link, and/or trap several active agents, such as antibiotic or natural antimicrobial substances, which is useful in wound dressing and healing applications, and they can also be used to trap antibodies, enzymes, and cells for biosensing and monitoring applications. This review presents, for the first time, an introduction to biopolymeric xerogels, their fabrication approach, and their properties. We present the biological properties that make these materials suitable for many biomedical applications and discuss the most recent works regarding their applications, including drug delivery, wound healing and dressing, tissue scaffolding, and biosensing.
Collapse
Affiliation(s)
- H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (H.A.T.)
- Cluster of Green Biopolymer, Coatings and Packaging, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (H.A.T.)
- Cluster of Green Biopolymer, Coatings and Packaging, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Husnul Azan Tajarudin
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (H.A.T.)
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Halimatuddahliana Nasution
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan 20155, Indonesia;
| |
Collapse
|
3
|
Ferreira-Gonçalves T, Constantin C, Neagu M, Reis CP, Sabri F, Simón-Vázquez R. Safety and efficacy assessment of aerogels for biomedical applications. Biomed Pharmacother 2021; 144:112356. [PMID: 34710839 DOI: 10.1016/j.biopha.2021.112356] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
The unique physicochemical properties of aerogels have made them an attractive class of materials for biomedical applications such as drug delivery, regenerative medicine, and wound healing. Their low density, high porosity, and ability to regulate the pore structure makes aerogels ideal nano/micro-structures for loading of drugs and active biomolecules. As a result of this, the number of in vitro and in vivo studies on the therapeutic efficacy of these porous materials has increased substantially in recent years and continues to be an area of great interest. However, data about their in vivo performance and safety is limited. Studies have shown that polymer-based, silica-based and some hybrid aerogels are generally regarded as safe but given that studies on the acute, subacute, and chronic toxicity for the majority of aerogel types is missing, more work is still needed. This review presents a comprehensive summary of different biomedical applications of aerogels proposed to date as well as new and innovative applications of aerogels in other areas such as decontamination. We have also reviewed their biological effect on cells and living organisms with a focus on therapeutic efficacy and overall safety (in vivo and in vitro).
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines, iMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania; Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania.
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, Bucharest 050096, Romania; Department of Pathology, Colentina University Hospital, Bucharest 020125, Romania.
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa - Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Firouzeh Sabri
- Department of Physics and Materials Science, University of Memphis, Memphis 38152, TN, United States.
| | - Rosana Simón-Vázquez
- CINBIO, Universidade de Vigo, Immunology Group, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), SERGAS-UVIGO, Spain.
| |
Collapse
|
4
|
Abdo GG, Zagho MM, Al Moustafa AE, Khalil A, Elzatahry AA. A comprehensive review summarizing the recent biomedical applications of functionalized carbon nanofibers. J Biomed Mater Res B Appl Biomater 2021; 109:1893-1908. [PMID: 33749098 DOI: 10.1002/jbm.b.34828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 02/04/2023]
Abstract
Since the discovery and fabrication of carbon nanofibers (CNFs) over a decade ago, scientists foster to discover novel myriad potential applications for this material in both biomedicine and industry. The unique economic viability, mechanical, electrical, optical, thermal, and structural properties of CNFs led to their rapid emergence. CNFs become an artificial intelligence platform for different uses, including a wide range of biomedical applications. Furthermore, CNFs have exceptionally large surface areas that make them flexible for tailoring and functionalization on demand. This review highlights the recent progress and achievements of CNFs in a wide range of biomedical fields, including cancer therapy, biosensing, tissue engineering, and wound dressing. Besides the synthetic techniques of CNFs, their potential toxicity and limitations, as biomaterials in real clinical settings, will be presented. This review discusses CNF's future investigations in other biomedical fields, including gene delivery and bioimaging and CNFs risk assessment.
Collapse
Affiliation(s)
- Ghada G Abdo
- College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Moustafa M Zagho
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi, 39406, USA
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, 2713, Qatar.,Biomedical Research Centre, Qatar University, Doha, 2713, Qatar
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, Doha, 2713, Qatar
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| |
Collapse
|
5
|
Cutrim ESM, Vale AAM, Manzani D, Barud HS, Rodríguez-Castellón E, Santos APSA, Alcântara ACS. Preparation, characterization and in vitro anticancer performance of nanoconjugate based on carbon quantum dots and 5-Fluorouracil. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111781. [PMID: 33545909 DOI: 10.1016/j.msec.2020.111781] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 01/22/2023]
Abstract
This study is focused on the development of a nanodevice for loading and release of 5-Fluorouracil (5-FU) with a view to improving its therapeutic efficiency, using as strategy the fabrication of a nanoconjugate through drug anchorage on the surface of carbon quantum dots (CQD). Several physicochemical and analytical techniques were employed to obtain information about materials morphology, structure, and optical properties. The results indicated that the interactions between both entities resulted in good physicochemical properties and photostability. Acid pH favored drug release, indicating a tendency to release 5-FU from 5-FU-CQD into the tumor microenvironment. The cytotoxicity of CQD and 5-FU-CQD nanoconjugate was evaluated against normal human lung fibroblast (GM07492A) and human breast cancer (MCF-7) cell lines. The CQD was non-toxic, indicating that these materials are biocompatible and can be used as a nanocarrier for 5-FU in biological systems. For the 5-FU-CQD nanoconjugate, it was observed a reduction in toxicity for normal cells compared to free 5-FU, suggesting that drug anchoring in CQD reduced drug-associated toxicity, while for cancer cells exhibited an antitumor effect equivalent to that of the free drug, opening perspectives for the application of this material in anticancer therapy.
Collapse
Affiliation(s)
- Elaine S M Cutrim
- Hybrid and Bionanocomposite Materials Research Group - Bionanos, Universidade Federal do Maranhão, Department of Chemistry, 65080-805 São Luís, MA, Brazil
| | - André A M Vale
- Laboratory for Applied Cancer Immunology, Universidade Federal do Maranhão, Biological and Health Sciences Center, 65080-805 São Luís, MA, Brazil
| | - Danilo Manzani
- São Carlos Institute of Chemistry, Universidade de São Paulo, 13566-590 São Carlos, SP, Brazil
| | - Hernane S Barud
- Laboratório de Biopolímeros e Biomateriais, Universidade de Araraquara/Uniara, 14801-320 Araraquara, São Paulo, Brazil
| | | | - Ana P S A Santos
- Laboratory for Applied Cancer Immunology, Universidade Federal do Maranhão, Biological and Health Sciences Center, 65080-805 São Luís, MA, Brazil
| | - Ana C S Alcântara
- Hybrid and Bionanocomposite Materials Research Group - Bionanos, Universidade Federal do Maranhão, Department of Chemistry, 65080-805 São Luís, MA, Brazil.
| |
Collapse
|
6
|
Prostredný M, Ledingham C, Principe IA, Altoumi ASM, Fletcher AJ. Effect of S-triazine Ring Substitution on the Synthesis of Organic Resorcinol-Formaldehyde Xerogels. Gels 2020; 6:gels6030021. [PMID: 32751834 PMCID: PMC7558494 DOI: 10.3390/gels6030021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
Resorcinol (R) and formaldehyde (F) gel synthesis has been well-studied along with alternative reagents. We present the synthesis of formaldehyde-based xerogels using chemically similar s-triazine precursors, with comparison to traditional analogues. The substitution ranges from tri-hydroxyl to tri-amine, with an intermediate species, allowing changing chemistry to be investigated. Each molecule (X) offers different acid/base properties, known to influence gel formation, as well as differences in crosslinking potential. Varying X/F ratios were selected to recreate the stoichiometry used in RF systems, where one represented higher F to match the increased reaction sites of the additives. X/C ratios were selected to probe different catalyst (C) ratios, while working within the range likely to produce viable gels. Results obtained show little impact for ammeline as an additive due to its similarity to resorcinol (activation sites and pKa); while melamine and cyanuric acid show differing behavior depending on the level of addition. Low concentrations show melamine to have the most impact due to increased activation and competition for formaldehyde; while at high concentrations, cyanuric acid is shown to have the greatest impact as it creates a more acidic environment, which diminishes textural character, possibly attributable to larger clusters and/or weaker cross-linking of the system.
Collapse
|
7
|
Effect of Aromatic Amines on the Properties of Formaldehyde-Based Xerogels. Gels 2020; 6:gels6010008. [PMID: 32131423 PMCID: PMC7151117 DOI: 10.3390/gels6010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 11/17/2022] Open
Abstract
This study investigates the synthesis of formaldehyde-based xerogels using alternative aromatic precursors, with comparison to traditional resorcinol-formaldehyde analogues, in order to alter the chemical composition of the resulting gels. By replacing resorcinol with aromatic amine molecules, i.e., ammeline, melamine and melem, each expected to undergo similar reactions with formaldehyde as the substituted species, we found that for all substituted gels, at low additive contents, the gel structure was compromised and non-porous materials were formed, as opposed to the most abundant monomers, and therefore, these additives seem to act as impurities at low levels. Working towards higher additive contents, melem monomers exhibited low solubility (~5%), even at elevated temperatures, thereby limiting the range to which melem could act as a substitute, while melamine could be incorporated up to ~40% under acidic conditions, with enhanced microporosity over this range. Pure gels were successfully synthesised from ammeline, but their performance was inferior to resorcinol-formaldehyde gels, while melamine-formaldehyde analogues required acidic reaction conditions but shrank considerably on sub-critical drying, adversely affecting the gel properties and demonstrating their lack of potential as sorbents. This demonstrates the potential for the inclusion of aminated aromatics within resorcinol-based gel systems, however, only as partial substitutes and not complete replacements.
Collapse
|
8
|
Han Y, Jin Y, Hong J, Jin S, Zhang Y, Li J. Properties of Carbon Xerogels Supported Cobalt‐Based Catalysts and Their Performance in CO Hydrogenation Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201902502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaoyao Han
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for Nationalities Wuhan 430074 China (Shiwei Jin
| | - Yan Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for Nationalities Wuhan 430074 China (Shiwei Jin
| | - Jingping Hong
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for Nationalities Wuhan 430074 China (Shiwei Jin
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for Nationalities Wuhan 430074 China (Shiwei Jin
| | - Yuhua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for Nationalities Wuhan 430074 China (Shiwei Jin
| | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials ScienceSouth-Central University for Nationalities Wuhan 430074 China (Shiwei Jin
| |
Collapse
|