1
|
Canales-Rodríguez EJ, Pizzolato M, Zhou FL, Barakovic M, Thiran JP, Jones DK, Parker GJM, Dyrby TB. Pore size estimation in axon-mimicking microfibers with diffusion-relaxation MRI. Magn Reson Med 2024; 91:2579-2596. [PMID: 38192108 PMCID: PMC7617479 DOI: 10.1002/mrm.29991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approach and a T2-based pore size estimation technique. THEORY AND METHODS A general diffusion-relaxation theoretical model for the spherical mean signal from water molecules within a distribution of cylinders with varying radii was introduced, encompassing the evaluated models as particular cases. Additionally, a new numerical approach was presented for estimating effective radii (i.e., MRI-visible mean radii) from the ground truth radii distributions, not reliant on previous theoretical approximations and adaptable to various acquisition sequences. The ground truth radii were obtained from scanning electron microscope images. RESULTS Both methods show a linear relationship between effective radii estimated from MRI data and ground-truth radii distributions, although some discrepancies were observed. The spherical mean power-law method overestimated fiber radii. Conversely, the T2-based method exhibited higher sensitivity to smaller fiber radii, but faced limitations in accurately estimating the radius in one particular phantom, possibly because of material-specific relaxation changes. CONCLUSION The study demonstrates the feasibility of both techniques to predict pore sizes of hollow microfibers. The T2-based technique, unlike the spherical mean power-law method, does not demand ultra-high diffusion gradients, but requires calibration with known radius distributions. This research contributes to the ongoing development and evaluation of neuroimaging techniques for fiber radius estimation, highlights the advantages and limitations of both methods, and provides datasets for reproducible research.
Collapse
Affiliation(s)
- Erick J Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Marco Pizzolato
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Feng-Lei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
- MicroPhantoms Limited, Cambridge, UK
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d'Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Geoffrey J M Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London (UCL), London, UK
- Bioxydyn Limited, Manchester, UK
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Drug-zein@lipid hybrid nanoparticles: Electrospraying preparation and drug extended release application. Colloids Surf B Biointerfaces 2021; 201:111629. [PMID: 33639514 DOI: 10.1016/j.colsurfb.2021.111629] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/30/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023]
Abstract
The reasonable selection and elaborate conversion of raw materials into desired functional products represent a main topic in modern material engineering. In this study, zein (a plant protein) and lipids (extracted from egg yolk) are converted into a new type of drug-polymer@lipid hybrid nanoparticles (HNPs) via modified coaxial electrospraying. Tamoxifen citrate (TC) is used as a model anticancer drug to prepare TC-zein monolithic nanocomposites (MNCs) via traditional blended electrospraying; these MNCs are then used for comparison. Modified coaxial electrospraying is a continuous and robust process for the preparation of solid particles because of the action of unsolidifiable shell lipid solutions. HNPs have a round morphology with clear core-shell nanostructures, whereas MNCs have an indented flat morphology. Although both hold the drug in an amorphous state because of the fine compatibility of TC and zein, HNPs demonstrate a better sustained release of TC compared with MNCs in terms of retarding initial burst release (6.7 %±2.9 % vs. 37.2 %±4.3 %) and prolonged linear release period (20.47 h vs. 4.97 h for releasing 90 % of the loaded drug). Mechanisms by which the shell's lipid layer adjusts the release behavior of TC molecules are proposed. The present protocol based on coaxial electrospraying shows a new strategy of combining edible protein and lipids to fabricate advanced functional nanomaterials.
Collapse
|
3
|
Reyes CG, Lagerwall JPF. Disruption of Electrospinning due to Water Condensation into the Taylor Cone. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26566-26576. [PMID: 32420728 PMCID: PMC7302509 DOI: 10.1021/acsami.0c03338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 05/28/2023]
Abstract
The well-known problems of electrospinning hygroscopic polymer fibers in humid air are usually attributed to water condensing onto the jet mid-flight: water enters the jet as an additional solvent, hindering solidification into well-defined fibers. Here, we show that fiber fusion and shape loss seen at the end of the process may actually stem from water already condensing into the Taylor cone from where the jet ejects, if the solvent is volatile and miscible with water, for example, ethanol. The addition of water can radically change the solvent character from good to poor, even if water on its own is an acceptable solvent. Moreover, and counterintuitively, the water condensation promotes solvent evaporation because of the release of heat through the phase transition as well as from the exothermic mixing process. The overall result is that the polymer solution develops a gel-like skin around the Taylor cone. The situation is significantly aggravated in the case of coaxial electrospinning to make functional composite fibers if the injected core fluid forms a complex phase diagram with miscibility gaps together with the polymer sheath solvent and the water condensing from the air. The resulting phase separation coagulates the polymer throughout the Taylor cone, as liquid droplets with different compositions nucleate and spread, setting up strong internal flows and concentration gradients. We demonstrate that these cases of uncontrolled polymer coagulation cause rapid Taylor cone deformation, multiple jet ejection, and the inability to spin coaxial fiber mats, illustrated by the example of coaxial electrospinning of an ethanolic polyvinylpyrrolidone solution with a thermotropic liquid crystal core, at varying humidities.
Collapse
|
4
|
Tandon B, Kamble P, Olsson RT, Blaker JJ, Cartmell SH. Fabrication and Characterisation of Stimuli Responsive Piezoelectric PVDF and Hydroxyapatite-Filled PVDF Fibrous Membranes. Molecules 2019; 24:E1903. [PMID: 31108899 PMCID: PMC6571942 DOI: 10.3390/molecules24101903] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
Abstract
Poly(vinylidene fluoride) has attracted interest from the biomaterials community owing to its stimuli responsive piezoelectric property and promising results for application in the field of tissue engineering. Here, solution blow spinning and electrospinning were employed to fabricate PVDF fibres and the variation in resultant fibre properties assessed. The proportion of piezoelectric β-phase in the solution blow spun fibres was higher than electrospun fibres. Fibre production rate was circa three times higher for solution blow spinning compared to electrospinning for the conditions explored. However, the solution blow spinning method resulted in higher fibre variability between fabricated batches. Fibrous membranes are capable of generating different cellular response depending on fibre diameter. For this reason, electrospun fibres with micron and sub-micron diameters were fabricated, along with successful inclusion of hydroxyapatite particles to fabricate stimuli responsive bioactive fibres.
Collapse
Affiliation(s)
- Biranche Tandon
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
- Bio-Active Materials Group, School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Prashant Kamble
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Richard T Olsson
- Department of Fibre and Polymer Technology, School of Chemical Science and Engineering, KTH Royal Institute of Technology, Teknikringen 56, SE-10044 Stockholm, Sweden.
| | - Jonny J Blaker
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
- Bio-Active Materials Group, School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| | - Sarah H Cartmell
- School of Materials, MSS Tower, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|