1
|
Zhao S, Li Y, Cheng B. A tumor microenvironment-responsive microneedle patch for chemodynamic therapy of oral squamous cell carcinoma. NANOSCALE ADVANCES 2023; 5:6162-6169. [PMID: 37941950 PMCID: PMC10629002 DOI: 10.1039/d3na00527e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/16/2023] [Indexed: 11/10/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors of the head and neck, and this disease has become a threat to public health due to its poor prognosis and high fatality rate. Chemodynamic therapy (CDT) is an emerging oncology treatment based on the Fenton reaction. However, the lack of endogenous hydrogen peroxide (H2O2) in tumor cells and the high concentration of glutathione (GSH) that depletes toxic hydroxyl radicals (·OH) significantly impair the efficacy of CDT. Here, we developed a polyvinyl alcohol (PVA)-based soluble microneedle patch (denoted as Fe3O4 + VC-MN) loaded with Fe3O4 nanoparticles (NPs) and vitamin C (VC) for the effective treatment of OSCC. When Fe3O4 + VC-MNs are inserted into the OSCC tissue, the Fe3O4 NPs and VC loaded in the tip of the needle are released in a targeted manner. After VC is converted into oxidized vitamin C (DHA), it can consume GSH in tumor cells and generate sufficient intracellular H2O2in situ. Moreover, by virtue of their peroxidase-like activity, Fe3O4 NPs can induce the generation of lethal ·OH through the Fenton reaction with the aforementioned H2O2, leading to tumor cell ferroptosis and apoptosis, thus achieving CDT. Collectively, this functional microneedle patch provides a more efficient and minimally invasive targeted drug delivery solution for the treatment of OSCC.
Collapse
Affiliation(s)
- Siyu Zhao
- Department of Stomatology, Zhongnan Hospital of Wuhan University No. 169, Donghu Road, Wuchang District Wuhan 430071 China
| | - Yue Li
- Department of Stomatology, Zhongnan Hospital of Wuhan University No. 169, Donghu Road, Wuchang District Wuhan 430071 China
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University No. 169, Donghu Road, Wuchang District Wuhan 430071 China
| |
Collapse
|
2
|
Jafarkhani S, Khakbiz M, Amoabediny G, Mohammadi J, Tahmasebipour M, Rabbani H, Salimi A, Lee KB. A novel co-culture assay to evaluate the effects of sympathetic innervation on vascular smooth muscle differentiation. Bioorg Chem 2023; 133:106233. [PMID: 36731293 DOI: 10.1016/j.bioorg.2022.106233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022]
Abstract
Dedifferentiation of vascular smooth muscle cells (VSMCs) from a functional phenotype to an inverse synthetic phenotype is a symptom of cardiovascular disorders, such as atherosclerosis and hypertension. The sympathetic nervous system (SNS) is an essential regulator of the differentiation of vascular smooth muscle cells (VSMCs). In addition, numerous studies suggest that SNS also stimulates VSMCs to retain their contractile phenotype. However, the molecular mechanisms for this stimulation have not been thoroughly studied. In this study, we used a novel in vitro co-culture method to evaluate the effective cellular interactions and stimulatory effects of sympathetic neurons on the differentiation of VSMCs. We co-cultured rat neural-like pheochromocytoma cells (PC12) and rat aortic VSMCs with this method. Expression of VSMCs contractile genes, including smooth muscle actin (acta2), myosin heavy chain (myh11), elastin (eln), and smoothelin (smtn), were determined by quantitative real-time-PCR analysis as an indicator of VSMCs differentiation. Fold changes for specific contractile genes in VSMCs grown in vitro for seven days in the presence (innervated) and absence (non-innervated) of sympathetic neurons were 3.5 for acta2, 6.5 for myh11, 4.19 for eln, and 4 for smtn (normalized to Tata Binding Protein (TBP)). As a result, these data suggest that sympathetic innervation promotes VSMCs' contractile gene expression and also maintains VSMCs' functional phenotype.
Collapse
Affiliation(s)
- Saeed Jafarkhani
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran
| | - Mehrdad Khakbiz
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Ghasem Amoabediny
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran; Faculty of Chemical Engineering, College of Engineering, University of Tehran, Iran
| | - Javad Mohammadi
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran
| | - Mohammad Tahmasebipour
- Department of Interdisciplinary Technology, Faculty of New Sciences and Technologies, University of Tehran, North Karegar Ave., PO Box 14395-1561, Tehran, Iran
| | - Hodjattallah Rabbani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Salimi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Sadati V, Khakbiz M, Chagami M, Bagheri R, Chashmi FS, Akbari B, Shakibania S, Lee KB. Experimental investigation and finite element modelling of PMMA/carbon nanotube nanobiocomposites for bone cement applications. SOFT MATTER 2022; 18:6800-6811. [PMID: 36043848 DOI: 10.1039/d2sm00637e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) are one of the preferred candidates for reinforcing polymeric nanobiocomposites, such as acrylic bone type of cement. In this study, at first, bulk samples of the reinforced polymethylmethacrylate (PMMA) matrix were prepared with 0.1, 0.25, and 0.5 wt per wt% of MWCNTs by the casting method. Tensile and three-point bending tests were performed to determine the essential mechanical properties of bone cement, such as tensile and bending strengths. The tensile fracture surfaces were investigated by scanning electron microscopy (SEM). The commercial software (Abaqus) was used to conduct finite element analysis (FEA) by constructing a representative volume element (RVE) model for numerically computing the tensile and bending parameters of PMMA-MWCNT nanocomposites. Finally, MTT assays were utilized to evaluate the cell viability on the surface of nanobiocomposites. The results show that by increasing the MWCNT amount in the PMMA-based cement, the bending strengths (BS), tensile strength (TS), and elastic modulus (EM) increased considerably. Furthermore, the disparity between the FEA and experimental TS, EM, and BS values was less than 20%. According to MTT viability experiments, adding MWCNTs to PMMA had no influence on PMMA toxicity and resulted in a negative response to interaction with mesenchymal stem cells. The cell density on the nanobiocomposite was more than pristine-PMMA.
Collapse
Affiliation(s)
- Vahideh Sadati
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Ave., PO Box 14395-1561, Tehran, Iran.
| | - Mehrdad Khakbiz
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Ave., PO Box 14395-1561, Tehran, Iran.
| | - Milad Chagami
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Ave., PO Box 14395-1561, Tehran, Iran.
| | - Reza Bagheri
- Department of Materials science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Salahi Chashmi
- Department of Materials science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Babak Akbari
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Ave., PO Box 14395-1561, Tehran, Iran.
| | - Sara Shakibania
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, North Kargar Ave., PO Box 14395-1561, Tehran, Iran.
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Sun M, Wang Y, Wang X, Liu Q, Li M, Shulga YM, Li Z. In-Situ Synthesis of Layered Double Hydroxide/Silica Aerogel Composite and Its Thermal Safety Characteristics. Gels 2022; 8:gels8090581. [PMID: 36135293 PMCID: PMC9498337 DOI: 10.3390/gels8090581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
To adjust the thermal safety of hydrophobic silica aerogel, layered double hydroxide (LDH)/silica aerogel (SA) composites were prepared by an in-situ sol-gel process at ambient pressure. This study found the physical combination of SA and MgAl-LDH based on the FTIR spectra and phase composition of LDH/SA. The N2 sorption analysis confirms that the introduction of MgAl-LDH does not change the mesoporous attribution of LDH/SA significantly. With the increase in MgAl-LDH addictive content, the low density (0.12–0.13 g/cm3), low thermal conductivity (24.28–26.38 mW/m/K), and large specific surface area (730.7–903.7 m2g) of LDH/SA are still maintained, which can satisfy the requirements of thermal insulation. The TG-DSC analysis demonstrates that the endothermic effects and metal oxides formed during the MgAl-LDH decomposition are beneficial to the improvement of the thermal stability of LDH/SA composites. In addition, it was found that the gross calorific values of LDH/SA composites decrease with an increase in MgAl-LDH addictive content, all of which are lower than that of the pure SA. The research outcomes indicate that the thermal safety of LDH/SA composites is enhanced significantly by doping MgAl-LDH without impairing too many of the excellent properties, which benefits their expansion in the thermal insulation field.
Collapse
Affiliation(s)
- Mengtian Sun
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China
| | - Yang Wang
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China
| | - Xiaowu Wang
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China
| | - Qiong Liu
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China
| | - Ming Li
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China
| | - Yury M. Shulga
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia
- National University of Science and Technology MISIS, Leninsky pr. 4, Moscow 119049, Russia
| | - Zhi Li
- School of Resources and Safety Engineering, Central South University, Changsha 410083, China
- Correspondence:
| |
Collapse
|
5
|
Ponce MDV, Cina M, López C, Cerutti S. Synthesis and evaluation of a Zn-Al layered double hydroxide for the removal of ochratoxin A. Greenness assessment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2841-2848. [PMID: 35815894 DOI: 10.1039/d2ay00819j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The retention behavior of a dangerous toxin, ochratoxin A (OTA), present in food samples and derivatives was evaluated using Layered Double Hydroxides (LDHs). This nanomaterial composed mostly of zinc and aluminum was synthesized by the co-precipitation method and the obtained solid was characterized by different techniques, such as XRD, FTIR, TGA, SEM, and N2 adsorption-desorption isotherms. Experimental conditions were optimized by chemometric tools. Ochratoxin A determination was performed using an ultra-high-performance liquid chromatography (UHPLC) system coupled to tandem mass spectrometry. From the findings, quantitative removal of the mycotoxin was achieved. Thus, a novel, nanostructured, innocuous, low-cost, easily synthesized material, such as the Zn-Al layered double hydroxide, is proposed for ochratoxin A removal. This might represent an effective and sustainable approach with potential applications to different types of food and feed samples.
Collapse
Affiliation(s)
- María Del Valle Ponce
- Instituto de Química de San Luis (INQUISAL-CONICET-UNSL), Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina.
- Facultad de Ingeniería y Ciencias Agropecuarias, Universidad Nacional de San Luis, Ruta 148 Ext. Norte, Villa Mercedes, CP5730, Argentina
| | - Mariel Cina
- Instituto de Química de San Luis (INQUISAL-CONICET-UNSL), Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina.
- Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, CP5700, Argentina
| | - Carlos López
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET-UNSL), Almirante Brown 1455, San Luis, CP5700, Argentina
- Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, CP5700, Argentina
| | - Soledad Cerutti
- Instituto de Química de San Luis (INQUISAL-CONICET-UNSL), Laboratorio de Espectrometría de Masas, Bloque III, Ejército de los Andes 950, San Luis, CP5700, Argentina.
- Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, San Luis, CP5700, Argentina
| |
Collapse
|
6
|
Karmakar AK, Hasan MS, Sreemani A, Das Jayanta A, Hasan MM, Tithe NA, Biswas P. A review on the current progress of layered double hydroxide application in biomedical sectors. THE EUROPEAN PHYSICAL JOURNAL PLUS 2022; 137:801. [DOI: 10.1140/epjp/s13360-022-02993-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/22/2022] [Indexed: 01/06/2025]
|
7
|
Yin S, Chen Y, Li C, Qiu X, Zhang Y, Li Y. Er3+-doped ZnAl-LDH with near-infrared emissions used for the delivery and release of 5-fluorouracil in vitro. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02513-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Nanoarchitectonics of vanadium carbide MXenes for separation and catalytic degradation of contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Dadkan S, Khakbiz M, Ghazanfari L, Chen M, Lee KB. Evaluation of Antibacterial and Mechanical Features of Dental Adhesives Containing Colloidal Gold Nanoparticles. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Kankala RK. Nanoarchitectured two-dimensional layered double hydroxides-based nanocomposites for biomedical applications. Adv Drug Deliv Rev 2022; 186:114270. [PMID: 35421521 DOI: 10.1016/j.addr.2022.114270] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Despite the exceptional physicochemical and morphological characteristics, the pristine layered double hydroxides (LDHs), or two-dimensional (2D) hydrotalcite clays, often suffer from various shortcomings in biomedicine, such as deprived thermal and chemical stabilities, acid-prone degradation, as well as lack of targeting ability, hampering their scale-up and subsequent clinical translation. Accordingly, diverse nanocomposites of LDHs have been fabricated by surface coating of organic species, impregnation of inorganic species, and generation of core-shell architectures, resulting in the complex state-of-the-art architectures. In this article, we initially emphasize various bothering limitations and the chemistry of these pristine LDHs, followed by discussions on the engineering strategies of different LDHs-based nanocomposites. Further, we give a detailed note on diverse LDH nanocomposites and their performance efficacy in various biomedical applications, such as drug delivery, bioimaging, biosensing, tissue engineering and cell patterning, deoxyribonucleic acid (DNA) extraction, as well as photoluminescence, highlighting the influence of various properties of installed supramolecular assemblies on their performance efficacy. In summary, we conclude with interesting perspectives concerning the lessons learned to date and the strategies to be followed to further advance their scale-up processing and applicability in medicine.
Collapse
|
11
|
Rapid Synthesis of Hexagonal-Shaped Zn(Al)O-MMO Nanorods for Dye-Sensitized Solar Cell Using Zn/Al-LDH as Precursor. NANOMATERIALS 2022; 12:nano12091477. [PMID: 35564186 PMCID: PMC9101668 DOI: 10.3390/nano12091477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
This study reports a simple new technique for the preparation of novel hexagonal-shaped mixed metal oxides (MMO) nanorods using Zn/Al-layered double hydroxide (LDH) as a precursor for dye-sensitized solar cell (DSSC) application. The effect of the Zn to Al molar ratio demonstrated a sound correlation between the obtained nanorods’ diameter and the fabricated DSSCs efficiency. Additionally, the optical behavior of the fabricated MMO film as well as the absorption enhancement due to the utilized dye are also demonstrated; a cut-off phenomenon at around 376 nm corresponds to the attained hexagonal nanorods. The open-circuit voltage augmented noticeably from 0.6 to 0.64 V alongside an increase in the diameter of nanorods from 64 to 80 nm. The results indicated that an increment in the diameter of the nanorods is desirable due to the enhanced surface area through which a higher amount of dye N719 was loaded (0.35 mM/cm2). This, in turn, expedited the transport of electrons within the MMO matrix resulting in an advanced short-circuit current. Of the devices fabricated, ZA-8 exhibited the highest fill factor and efficiency of 0.37% and 0.69%, respectively, because of its boosted short-circuit current and open-circuit voltage.
Collapse
|
12
|
Comunian T, Babazadeh A, Rehman A, Shaddel R, Akbari-Alavijeh S, Boostani S, Jafari S. Protection and controlled release of vitamin C by different micro/nanocarriers. Crit Rev Food Sci Nutr 2020; 62:3301-3322. [DOI: 10.1080/10408398.2020.1865258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- T. Comunian
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - A. Babazadeh
- Center for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - A. Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - R. Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S. Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S. Boostani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S.M. Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
13
|
Olya N, Ghasemi E, Mahdavian M, Ramezanzadeh B. Construction of a novel corrosion protective composite film based on a core-shell LDH-Mo@SiO2 inhibitor nanocarrier with both self-healing/barrier functions. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C. Carbohydr Polym 2020; 234:115920. [DOI: 10.1016/j.carbpol.2020.115920] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 01/12/2023]
|
15
|
Smalenskaite A, Kaba MM, Grigoraviciute-Puroniene I, Mikoliunaite L, Zarkov A, Ramanauskas R, Morkan IA, Kareiva A. Sol-Gel Synthesis and Characterization of Coatings of Mg-Al Layered Double Hydroxides. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3738. [PMID: 31766177 PMCID: PMC6888420 DOI: 10.3390/ma12223738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023]
Abstract
In this study, new synthetic approaches for the preparation of thin films of Mg-Al layered double hydroxides (LDHs) have been developed. The LDHs were fabricated by reconstruction of mixed-metal oxides (MMOs) in deionized water. The MMOs were obtained by calcination of the precursor gels. Thin films of sol-gel-derived Mg-Al LDHs were deposited on silicon and stainless-steel substrates using the dip-coating technique by a single dipping process, and the deposited film was dried before the new layer was added. Each layer in the preparation of the Mg-Al LDH multilayers was separately annealed at 70 °C or 300 °C in air. Fabricated Mg-Al LDH coatings were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and atomic force microscopy (AFM). It was discovered that the diffraction lines of Mg3Al LDH thin films are sharper and more intensive in the sample obtained on the silicon substrate, confirming a higher crystallinity of synthesized Mg3Al LDH. However, in both cases the single-phase crystalline Mg-Al LDHs have formed. To enhance the sol-gel processing, the viscosity of the precursor gel was increased by adding polyvinyl alcohol (PVA) solution. The LDH coatings could be used to protect different substrates from corrosion, as catalyst supports, and as drug-delivery systems in medicine.
Collapse
Affiliation(s)
- A. Smalenskaite
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| | - M. M. Kaba
- Department of Chemistry, Institute of Natural Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey; (M.M.K.); (I.A.M.)
| | - I. Grigoraviciute-Puroniene
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| | - L. Mikoliunaite
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
- Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania;
| | - A. Zarkov
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| | - R. Ramanauskas
- Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania;
| | - I. A. Morkan
- Department of Chemistry, Institute of Natural Sciences, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey; (M.M.K.); (I.A.M.)
| | - A. Kareiva
- Department of Inorganic Chemistry, Faculty of Chemistry, Vilnius University, Vilnius LT-03225, Lithuania; (A.S.); (I.G.-P.); (L.M.); (A.Z.)
| |
Collapse
|