1
|
Ureiro-Cueto G, Rodil SE, Santana-Vázquez M, Hoz-Rodriguez L, Arzate H, Montoya-Ayala G. Characterization of aTiO 2 surfaces functionalized with CAP-p15 peptide. J Biomed Mater Res A 2024; 112:1399-1411. [PMID: 38284510 DOI: 10.1002/jbm.a.37676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Functionalization of Titanium implants using adequate organic molecules is a proposed method to accelerate the osteointegration process, which relates to topographical, chemical, mechanical, and physical features. This study aimed to assess the potential of a peptide derived from cementum attachment protein (CAP-p15) adsorbed onto aTiO2 surfaces to promote the deposition of calcium phosphate (CaP) minerals and its impact on the adhesion and viability of human periodontal ligament cells (hPDLCs). aTiO2 surfaces were synthesized by magnetron sputtering technique. The CAP-p15 peptide was physically attached to aTiO2 surfaces and characterized by atomic force microscopy, fluorescence microscopy, and water contact angle measurement. We performed in vitro calcium phosphate nucleation assays using an artificial saliva solution (pH 7.4) to simulate the oral environment. morphological and chemical characterization of the deposits were evaluated by scanning electronic microscopy (SEM) and spectroscopy molecular techniques (Raman Spectroscopy, ATR-FTIR). The aTiO2 surfaces biofunctionalized with CAP-p15 were also analyzed for hPDLCs attachment, proliferation, and in vitro scratch-healing assay. The results let us see that the homogeneous amorphous titanium oxide coating was 70 nanometers thick. The CAP-p15 (1 μg/mL) displayed the ability to adsorb onto the aTiO2 surface, increasing the roughness and maintaining the hydrophilicity of the aTiO2 surfaces. The physical adsorption of CAP-p15 onto the aTiO2 surfaces promoted the precipitation of a uniform layer of crystals with a flake-like morphology and a Ca/P ratio of 1.79. According to spectroscopy molecular analysis, these crystalline deposits correspond to carbonated hydroxyapatite. Regarding cell behavior, the biofunctionalized aTiO2 surfaces improved the adhesion of hPDLCs after 24 h of cell culture, achieving 3.4-fold when compared to pristine surfaces. Moreover, there was an increase in cell proliferation and cell migration processes. Physical adsorption of CAP-p15 onto aTiO2 surfaces enhanced the formation of carbonate hydroxyapatite crystals and promoted the proliferation and migration of human periodontal ligament-derived cells in in vitro studies. This experimental model using the novel bioactive peptide CAP-p15 could be used as an alternative to increasing the osseointegration process of implants.
Collapse
Affiliation(s)
- Guadalupe Ureiro-Cueto
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de, México city, Mexico
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de, México city, Mexico
| | - Maricela Santana-Vázquez
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de, México city, Mexico
| | - Lia Hoz-Rodriguez
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de, México city, Mexico
| | - Higinio Arzate
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de, México city, Mexico
| | - Gonzalo Montoya-Ayala
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de, México city, Mexico
| |
Collapse
|
2
|
Hu J, Jiang Z, Zhang J, Yang G. Application of silk fibroin coatings for biomaterial surface modification: a silk road for biomedicine. J Zhejiang Univ Sci B 2023; 24:943-956. [PMID: 37961798 PMCID: PMC10646393 DOI: 10.1631/jzus.b2300003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/18/2023] [Indexed: 11/15/2023]
Abstract
Silk fibroin (SF) as a natural biopolymer has become a popular material for biomedical applications due to its minimal immunogenicity, tunable biodegradability, and high biocompatibility. Nowadays, various techniques have been developed for the applications of SF in bioengineering. Most of the literature reviews focus on the SF-based biomaterials and their different forms of applications such as films, hydrogels, and scaffolds. SF is also valuable as a coating on other substrate materials for biomedicine; however, there are few reviews related to SF-coated biomaterials. Thus, in this review, we focused on the surface modification of biomaterials using SF coatings, demonstrated their various preparation methods on substrate materials, and introduced the latest procedures. The diverse applications of SF coatings for biomedicine are discussed, including bone, ligament, skin, mucosa, and nerve regeneration, and dental implant surface modification. SF coating is conducive to inducing cell adhesion and migration, promoting hydroxyapatite (HA) deposition and matrix mineralization, and inhibiting the Notch signaling pathway, making it a promising strategy for bone regeneration. In addition, SF-coated composite scaffolds can be considered prospective candidates for ligament regeneration after injury. SF coating has been proven to enhance the mechanical properties of the substrate material, and render integral stability to the dressing material during the regeneration of skin and mucosa. Moreover, SF coating is a potential strategy to accelerate nerve regeneration due to its dielectric properties, mechanical flexibility, and angiogenesis promotion effect. In addition, SF coating is an effective and popular means for dental implant surface modification to promote osteogenesis around implants made of different materials. Thus, this review can be of great benefit for further improvements in SF-coated biomaterials, and will undoubtedly contribute to clinical transformation in the future.
Collapse
Affiliation(s)
- Jinxing Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jing Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
3
|
Wang B, Bian A, Jia F, Lan J, Yang H, Yan K, Xie L, Qiao H, Chang X, Lin H, Zhang H, Huang Y. "Dual-functional" strontium titanate nanotubes designed based on fusion peptides simultaneously enhancing anti-infection and osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112650. [PMID: 35034822 DOI: 10.1016/j.msec.2022.112650] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 12/31/2022]
Abstract
Currently, there is an increasing clinical demand for implants that effectively resist bacterial infections while promoting osseointegration. In this study, the fusion peptide technology was used to linearly fuse the antimicrobial peptide (AMP, HHC36) and the bone-promoting peptide (RGD), so that the titanium (Ti)-based implant modified by the polypeptide had the dual function of "antibacterial-promoting bone". Firstly, self-organized vertically-oriented strontium-doped titanium dioxide nanotubes (STN) were manufactured by anodizing and hydrothermal synthesis methods. Secondly, the fusion peptide (HHC36-RGD) was loaded into the tubular structure by a simple vacuum-assisted physical adsorption method. Finally, STN loaded with HHC36-RGD (H-R-STN) was obtained. The characterization results demonstrated that the surface of the H-R-STN had a roughness and hydrophilicity that promoted cell adhesion. Additionally, electrochemical tests showed that H-R-STN coating can reduce the corrosion rate of pure Ti. The fusion peptide and Sr2+ in H-R-STN were released in the initial fast and subsequent slow kinetic model. Expected, H-R-STN can kill more than 99% of clinically common pathogenic bacteria (Staphylococcus aureus and Escherichia coli), and significantly inhibit the formation of bacterial biofilms. Simultaneously, under the synergistic effect of RGD in the fusion peptide and strontium in STN, H-R-STN markedly promoted the adhesion and proliferation of mouse osteoblasts, and significantly promoted osteogenic markers (alkaline phosphatase, runt-related transcription, collagen, mineralization) expression. In summary, the bifunctional titanium-based implant constructed by H-R-STN in this article can effectively prevent bacterial infections and promote early osseointegration. The main advantage of the titanium surface treatment method of the study was that its simplicity, low cost, especially its versatility made it a promising anti-infective bone repair material.
Collapse
Affiliation(s)
- Bingbing Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Anqi Bian
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Fenghuan Jia
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Jingpin Lan
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ke Yan
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haixia Qiao
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Xiaotong Chang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hui Zhang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China.
| |
Collapse
|